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ABSTRACT

In many instances of the object tracking problem the topological
properties of objects can change over time. Such changes include
the splitting of an object into multiple objects or merging of multi-
ple objects into a single object. We propose a novel tracking model
which is robust to such changes. This model is formulated terms of
homology theory whereby 0-dimensional homology classes, which
correspond to path-connected components, are tracked. A gener-
alisation of this model for tracking spatially close objects lying
in an ambient metric space is also proposed. This generalisation
is particularly suitable for tracking spatial-temporal phenomena
such as weather phenomena. The utility of the proposed model is
demonstrated with respect to tracking rain clouds in radar imagery.
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1 INTRODUCTION

Object tracking is necessary in many applications. For example,
when making inferences with respect to future weather conditions,
it is necessary to track weather phenomena such as a snow storm.
Given sensor measurements at a sequence of discrete times, the
tracking problem requires the inference of object locations plus cor-
respondences between the same object existing at different discrete
times. In many instances of the tracking problem object properties
can change over time making it difficult to correctly infer corre-
spondences. For example, when tracking an individual in a video
sequence, both the appearance and shape of that individual may
change over time. When tracking weather phenomena, the shape
and topology of the phenomena may change over time. Changes in
the topology include the formation of holes plus the splitting into
and merging of multiple objects. Therefore when tracking objects
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with changing properties, it is necessary to do so in a manner which
is robust to such changes.

In this article we propose a novel tracking model capable of
tracking objects whose topological properties change over time.
The model assumes objects have been modelled at a sequence of
discrete times using a sequence of simplicial complexes. A simplicial
complex is a general representation capable of modelling a variety
of types of objects such as graphs and point clouds. Consequently,
the proposed model is a general model capable of tracking a variety
of types of objects. However in this article we focus on the problem
of tracking objects corresponding to subsets of R?.

The proposed model formulates the problem of tracking in terms
of homology theory whereby it tracks 0-dimensional homology
classes which correspond to path-connected components. Persis-
tent homology is a commonly employed approach from homology
theory to tracking homology classes of given dimension. However,
in its native form, persistent homology is only capable of inferring
the appearance and subsequent disappearance of such classes and
cannot infer their locations [4]. Generalising persistent homology
to overcome this limitation was identified as a challenge in [2] and
represents the main contribution of this article.

The layout of this article is as follows. Section 2 describes the
proposed tracking model. This section also describes a generalisa-
tion of this model for tracking objects in an ambient metric space
where objects correspond to sets of spatially close homology classes.
For many real world tracking problems, such as tracking weather
phenomena, this is the more appropriate model. Section 3 demon-
strates application of the model to tracking objects in rainfall radar
imagery.

2 TRACKING MODEL

This section presents the proposed tracking model. The model as-
sumes that the objects have been modelled at a sequence of discrete
times using a sequence of simplicial complexes. In most real world
scenarios this sequence will be obtained by performing a triangula-
tion of the objects in question where triangulation is the process of
constructing a simplicial complex representation. This section is
structured as follows. Section 2.1 presents background material on
homology theory and formulates the problem of tracking in terms
of computing maps between 0-dimensional homology classes. A
fundamental component of computing these maps is the pullback of
the zig-zag diagram which is explained in section 2.2. Subsequently,
section 2.3 describes how the pullback is employed to compute
the maps in question. Section 2.4 describes how object tracking is
inferred from these maps. Finally, section 2.5 presents a general-
isation of the proposed model for tracking objects in an ambient
metric space where objects correspond to sets of spatially close
homology classes.
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Figure 1: Two simplicial complexes K; and K and their union K; U K are displayed in (a), (b) and (c) respectively. In each
figure red dots represent 0-simplices, blue lines represent 1-simplices and green triangles represent 2-simplices.

2.1 Model Formulation

An (abstract) simplicial complex %K is a finite collection of sets such
that for each o € K all subsets of o are also contained in K. Each
element o € K is called a simplex or k-simplex where k = |o| —11is
the dimension of the simplex. The faces of a simplex ¢ correspond to
all simplices 7 where 7 C ¢. The dimension of a simplicial complex
K is the largest dimension of any simplex o € K.

A p-chain on a simplicial complex K is defined in Equation 1
where each 0; € K is a p-simplex and each 4; is an element in a
specified field. The set of p-chains forms a group called the chain
group Cp(K). The boundary map ) is a map from a p-simplex to
the sum of its (p — 1)-simplex faces as defined in Equation 2. Here
[v0,...,%i,...,vp]is the (p—1)-simplex obtained by deleting the 0-
simplex v; from the p-simplex [vy, . . . , vp]. This map is distributive
and extends to the chain groups giving the sequence of chain groups
in Equation 3.

c= Z/liai (1)

p
dpo = Z(—l)l[vo, s TBie s 0p) @)
i=0
Op+1 9p Op-1
o= Cpr1(K) =25 Cp(K) = Cpat(K) —— ... (3)

A p-chain c is a p-cycle if dc = 0 and a p-boundary if there
exists a (p + 1)-chain d where ¢ = dd. The sets of all p-cycles and
p-boundaries form groups which are denoted Z, (%) and B, (K) re-
spectively. Each of these groups is a subgroup of Cp(K). As a conse-
quence of the fact dp+10p = 0, it can be proved that B, (K) € Z,(K).
The quotient group Hy(K) = Z,(K)/Bp(K) is a vector space and
is called the p-dimensional homology group of K. The elements
of Hp(K) are called p-dimensional homology classes. Each homol-
ogy class is an equivalence class over cycles where two cycles in
the same homology class are said to be homologous. This means
they differ by a boundary. A homology class of Hy(K) corresponds
to a p-dimensional hole in the simplicial complex K. Note that, a
homology class of Hy(%) corresponds to a path-connected compo-
nent in the simplicial complex %; this is a consequence of the fact
that all 0-simplices in a path-connected component differ by the
boundary of a 1-chain equal to the sum of 1-simplices connecting

the 0-simplices in question. The focus of this article is tracking
objects which we define as path-connected components; therefore
we consider the 0-dimensional homology classes and ignore higher
order homology classes.

There exist a number of algorithms to compute the number and
locations of the homology classes of Hy (%K) for a given simplicial
complex K and dimension p [4]. In this work we assume a sequence
of n simplicial complexes K . .. K}, obtained by triangulating the
objects in question at a sequence of n discrete time steps. We wish to
track 0-dimensional homology classes existing within this sequence.
Toward this goal, for a given i in the range i ... (n — 1), we define
an injective map T; which maps the homology classes of Hy(%;)
to the homology classes of Hy(%+1). Given this, we formulate the
problem of tracking as computing the sequence of maps T; defined
in Equation 4 where i = 1...(n—1). For i < j, two path-connected
components corresponding to a homology class in Hy(K;) and a
homology class in Hyo(%) are determined to be the same object
if and only if there exists a composition of maps T; o --- o Tj_;
between the homology classes in question.

T; T T Th-
Ho(Ki1) — Ho(Kz) —> Ho(Kz) = ... — Ho(Kn)  (4)

2.2 Pullback of the Zig-Zag Diagram

Before computing the maps T; we first define the pullback which is
a subspace of the direct sum of 0-dimensional homology groups in
question. Toward this goal we first construct the zig-zag diagram
of simplicial complexes with inclusion maps defined in Equation 5
[1]. Note that, K; and K are subcomplexes of K; U K. As will be
illustrated in the next section, the mapping of consecutive simpli-
cial complexes to their union in the zig-zag diagram facilitates the
definition of the required map between homology classes. By ap-
plying the 0-dimensional homology functor to the zig-zag diagram
of Equation 5 this gives the zig-zag diagram of homology groups
with induced linear maps defined in Equation 6 [1].

K-> KUKy — Ky — - — Ky, (5)

Hy(K1) — Ho(K1 UKs) «— Ho(Kz) — -+« Ho(Kn)  (6)
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Let K; and K be a pair of consecutive simplicial complexes in the
sequence of simplicial complexes; that is, j = i + 1. Furthermore, let
f and g be the inclusion maps defined in Equation 7, and let f; and
g« be induced maps defined in Equation 8. Recall that 0-dimensional
homology classes correspond to path-connected components. Both
f+ and g are surjective maps which map a 0-dimensional homol-
ogy class in the domain to a 0-dimensional homology class in the
codomain if and only if the path-connected component correspond-
ing to the former is a subset of the path-connected component
corresponding to the latter. This property is a consequence of the
fact that individual 0-dimensional homology classes correspond to
path-connected components.

To illustrate the maps f; and gs consider the example in Fig-
ure 1. Here simplicial complexes corresponding to K; and K are
represented in (a) and (b) respectively and their union %G UK is rep-
resented in (c). In the figure individual path-connected components
are labelled with a unique letter in the range a-g. In this example
f maps the 0-dimensional homology classes corresponding to the
path-connected components a and b in K to the 0-dimensional ho-
mology classes corresponding to the path-connected components f
and g in %; U K respectively. Similarly, g maps the 0-dimensional
homology classes corresponding to the path-connected components
c and d in %K to the 0-dimensional homology class corresponding
to the path-connected component f in %; U K. It also maps the 0-
dimensional homology class corresponding to the path-connected
component e in Kj to the 0-dimensional homology class corre-
sponding to the path-connected component g in K; U K.

% Loa v & x; ()
fe s«
Ho(%;) 25 Ho(K; UKG) &= Ho(K;) ®)

The pullback P of the maps f and g is defined in Equation 9 and
is a subspace of the direct sum Hy(%;) @ Ho(%;). Specifically, the
pullback is the set of all pairs of 0-dimensional homology classes of
% and K; which map to the same 0-dimensional homology class
of K; U K. To illustrate the pullback consider again the example
provided in Figure 1. Here the pullback is {(a, ¢), (a, d), (b, e)} where
0-dimensional homology classes are stated in terms of the labels of
the path-connected components they correspond to.

P = {(a,b) € Hy(Ki) ® Ho(K;) : fula) = g.(b)} ©)

2.3 Map of Homology Groups

Each element in the pullback P defines a map from an element of
Hy(%;) to an element of Hy(K;). That is, if (a, b) € P this defines a
map from a € Hy(%;) to b € Hy(Kj). Recalling that j = i + 1, if we
were to construct the required map T; to be union of all elements in
the pullback, this might not be an injective map'. For example, if a
path-connected component splits into two path-connected compo-
nents the pullback will contain two elements and the resulting map
will not satisfy the property that the image of every element of the
map’s domain is at most one element of its codomain. Persistent ho-
mology computes an injective map between homology classes [3].
! A map is injective if and only if every element of the map’s codomain is the image of

at most one element of its domain and furthermore the image of every element of the
map’s domain is at most one element of its codomain.
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To maintain consistency with persistent homology, we construct
the required map T; to be injective by assigning it to be the union
of a subset of the maps defined by the elements in the pullback.
This subset is constructed using that outlined in Algorithm 1 which
employs a heuristic giving preference with respect to persistence
to homology classes which firstly have persisted for longer and
secondly correspond to larger path-connected components.

Algorithm 1 first defines independent total orders on the ele-
ments of Hy(%;) and Ho(%;) (lines 3 and 4). A total order on the
elements of Hy(K;) is defined using the lexicographical order over
the time since appearing followed by the size of the corresponding
path-connected component. A homology class appears at K, if its
preimage under the map Tj,_; is the empty set. A total order on
the elements of Hy(%j) is defined using the order over size of the
corresponding path-connected components. To illustrate these inde-
pendent orderings consider again the example of Figure 1. Assume
the homology class corresponding to the path-connected compo-
nent a was born before that corresponding to the path-connected
component b. In this case, the total order on the homology classes
of K; will be that corresponding to b less than or equal to that
corresponding to a. As a consequence of the fact that all the path-
connected components in K are of equal size, any ordering of the
homology classes in question is valid.

Given the total orders defined above, a total order on the elements
of the pullback P is defined using the lexicographical order (line 5).
These elements are then iterated through in decreasing order from
largest to smallest (line 6) and each element is added to the map
T; if its addition does not invalidate the injective property (lines 7
and 8).

Algorithm 1: Compute Map T; : Ho(K;) — Ho(Kj)
Input: The pullback P as defined by Equation 9.
Output: Injective map T; from Hy(%;) to Ho(%K).

1 begin

2 T; = 0.

3 Compute the total order (Hy(%;), <;).
4 Compute the total order (Hy(Kj), <;).
5 Compute the total order (P, <p).

6 for t € SortDecreasing(P) do

7 if T; U t is injective then
8 | Ti=T;ut

9 end

10 end

11 return T;

12 end

To illustrate the construction of T; consider again the exam-
ple provided in Figure 1 where the pullback is {(a, ¢), (a, d), (b, e)}.
Here the lexicographical order is (b,e) < (a,d) < (a,c) and as a
consequence the subset used to construct T; is {(a, ¢), (b, €)}.

2.4 Tracking

As stated in the model formulation of section 2.1, for i < j homology
classes in Ho(%;) and Ho(%;) are determined to be the same object if
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Figure 2: The robust tracking of objects in a sequence of four rain radar images is illustrated. The objects in question correspond
to spatially close path-connected components and are uniquely coloured.

and only if there exists a compositions of maps Tjo- - -oTj_; between
the homology classes in question. Given this, we compute the set
of homology classes corresponding to each object in the sequence
K1 ... %Ky using an algorithm which is now briefly outlined.

The algorithm first constructs a graph G = (V, E) where the set
of vertices V correspond to homology classes and the set of edges
E correspond to the existence of a map T; between the homology
classes in question. Each connected component in this graph cor-
responds to an individual object and the set of homology classes
contained in a given connected component equals those correspond-
ing to the object in question. The connected components in G are
computed using a breadth first search and the set of homology
classes in each of these components is constructed.

2.5 Tracking in a Metric Space

In many instances of the tracking problem, the objects in question
lie in an ambient metric space where an individual object might not
correspond to a single 0-dimensional homology class but instead
a set of such classes which are spatially close. For example, the
problem of tracking a rainstorm may be formulated in terms of
tracking a set of homology classes in R? which are spatially close
and where each corresponds to an individual rain cloud. We pro-
pose a generalisation of the proposed tracking method capable of
tracking such objects corresponding to spatially close homology
classes. In the original model we assume a sequence of n simpli-
cial complexes K . . . K}, obtained by triangulating path-connected
components at a sequence of n discrete time steps. In the generalised
model we assume an additional sequence of n simplicial complexes
K] ... %, obtained by triangulating an enlargement of the original
path-connected components at the same sequence of discrete times.
The relationship between these two sequences of simplicial com-
plexes is that spatially close path-connected components in a given
K; will form a single larger path-connected component in %.

In the generalised model, we apply the original tracking model
to the sequence of simplicial complexes K7 ... K. Recall that, this
model will compute the set of homology classes corresponding

to each object in the sequence K7 ... K},. We next propagate the
result of this tracking to the sequence K ... %,.

3 RESULTS

This section describes the application of the generalised tracking
model, described in section 2.5, to rainfall radar images obtained
from the UK Meteorological (Met) Office. The Met office provides
this data at 15 minute intervals. For a given time, the image data in
question categorises the rainfall level at each location in a 500x500
regular grid over Ireland and the UK. Given this data, we consider
the problem of tracking objects corresponding to spatially close
path-connected components of R? with a rainfall level greater than
a threshold. Recall that, the generalised tracking model requires
that at each time we triangulate both the original and enlarged path-
connected components. The enlarged path-connected components
are constructed by performing a binary morphology dilation of the
grid of points with a rainfall level greater than the threshold.

Figure 2 illustrates the application of the model to a short se-
quence of rainfall radar images. In this figure all path-connected
components corresponding to the same object are uniquely coloured.
It is evident from this figure that the model accurately tracks ob-
jects corresponding to spatially close path-connected components.
For example, the path-connected components in the center of the
radar images are spatially close and are correctly determined to
correspond to a single object which is coloured orange. A video
clip displaying a longer tracking sequence can be viewed online at
the following URL - https://youtu.be/w_IZSZEzAsg.
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