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Abstract. The need to access spatial data at multiple levels of detail is a 
fundamental requirement of many applications of geographical information, yet 
conventional spatial database access methods are based on single resolution 
spatial objects.  In this paper we present a design for multi-scale spatial objects 
in which both spatial objects and the vertices of their component geometry are 
labelled with scale priority values. Alternative approaches to database imple-
mentation are considered in which vertices are organised into scale-bounded 
layers. Access times for spatially-indexed vertex block schemes (comparable to 
the PR-File) were superior to a BLOB scheme where only entire multi-scale 
objects were spatially indexed. The use of a 3D R-tree to integrate scale and 
space indexing was found to improve considerably on using either R-Tree 
indexing of space only or B-tree indexing of scale. Techniques are also 
presented for client-side reconstruction of cached multi-scale geometry. Imple-
mentations are compared in a client-server environment using the Informix 
object relational database system. 

1   Introduction 

A characteristic of spatial objects in most geographical and geoscientific databases is 
that they represent a view of reality at some particular level of semantic and geo-
metric abstraction. Many applications of geographical data however require access at 
several levels of abstraction, for purposes of information browsing as well as scale-
specific analyses. These needs are met typically by storing distinct representations 
that refer to the same real world phenomena. Typically these representations are simp-
ly digital versions of the scale-specific map series produced by topographic mapping 
agencies. The approach suffers from inflexibility of scale, imposed by the source data, 
in combination with data duplication and with problems of integrity maintenance of 
the multiple versions.  

In theory it is possible to envisage storing in a spatial database a single detailed 
representation of the phenomena of interest and then applying map generalisation 
algorithms online to retrieve the scale-specific representation that suits the user's 
interests. For applications requiring large spatial databases that may be applied across 
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a wide range of levels of detail, there appears to be little immediate prospect of such a 
scenario being realised. The reasons relate to the computational overheads of 
processing potentially very large volumes of data in order to retrieve a small subset, 
as well as the functional and performance limitations of existing map generalisation 
procedures.  

A pragmatic solution is one of pre-computation that strikes a balance between the 
use of digitised manually generalised map data and the exploitation of existing map 
generalisation procedures where they are appropriate. The most widely investigated 
area of map generalisation is that of simplification of linear features. These proce-
dures can be used to attach scale-related priority values to the vertices of linear fea-
tures. If these values are stored, it is possible to retrieve subsets of the vertex geo-
metry that can be re-assembled into simplified versions of the line. This principle 
underlies several multiresolution data structures and database storage schemes. Ex-
amples are the strip tree data structure [1] and its variants such as the arc-tree [2], the 
BLG-tree (employed in the reactive data structures of [3]), the binary tree structure of 
[4] and layered schemes such as the Multi-Scale Line Tree [5], the Multi-Scale 
Implicit Triangulated Irregular Network [6], which both used quadtree indexing, and 
the PR-File [7] which used a type of R-tree for spatial indexing.  

An issue not addressed in the above schemes is that of topological consistency of 
the simplified spatial objects. All of these schemes employed point selection tech-
niques that can result in simplified lines that overlap themselves and neighbouring 
features. An approach that maintains topological integrity of polygonal maps at mul-
tiple scales was presented in [8] while [9] have described a scheme to maintain topo-
logical integrity between complete spatial objects of different types. An important 
related development is the design of line generalisation procedures that are inherently 
topology-preserving, in that all realisations of the line that can be generated by the 
procedure are guaranteed topologically consistent. Examples of such procedures are 
those of [10, 11 and 12], the latter being employed in the progressive transmission 
scheme of [13]. The presence of topologically consistent generalisation techniques 
introduces the possibility of database storage of multi-scale spatial objects that have 
explicit degrees of consistency with themselves and with other objects in the database 
[14]. Pre-computation of topological consistency, for limited ensembles of stored 
objects, may then be combined with online generalisation procedures for purposes of 
i) graphical conflict resolution due to arbitrary selection of map symbols [15, 16] and 
ii) topologically-consistent generalisation of sub-sets of objects that do not have pre-
computed consistency. 

In this paper we focus on several multi-scale spatial database implementation 
issues, in particular: scale-range coding of vertices; clipping-support for multi-scale 
geometry; strategies for client-side reconstruction of cached multi-scale geometry; 
and the relationships between indexing on scale and indexing on geometric space. It 
should be noted that the paper deals primarily with issues concerning access to the 
geometry of individual multi-scale spatial objects, primarily lines and polygons. It is 
assumed that these objects store data that covers a specified range of scale. The 
geometry of an object may have been derived from larger scale objects in the course 
of map generalisation operations, such as amalgamation and dimensional collapse, 
and it may itself be a source of more generalised spatial objects through similar trans-
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formations. The scale values attached to vertices are assumed to be scalars that are 
functionally related to map scale. 

The remainder of the paper is set out as follows. In Section 2 we show how scale 
can be associated with spatial data. Section 3 introduces scale-coding methods that 
can be used to partition geometry into scale-specific intervals. In Section 4 we present 
alternative storage schemes for maintaining the geometry of multi-scale geometry 
objects. The issue of clipping multi-scale linear and polygonal features is addressed in 
Section 5 as a precursor to the definition in Section 6 of client-side functions for 
panning and zooming with multi-scale geometry. Two methods for object-recon-
struction from cached geometry are presented. Section 7 introduces alternative 
approaches to indexing on scale. In Section 8, experimental results of spatially 
indexing different sized blocks of vertices in an extended relational environment are 
compared with object-level spatial indexing in a BLOB implementation. The results 
of applying the two cached-object reconstruction techniques are described, as well as 
the results of using both B-tree and 3D R-tree indexing on scale. The paper concludes 
in Section 9 by summarising the relative merits of the various implemented 
techniques. 

2   Spatial Objects and Scale 

An observation of a spatial phenomenon is made at a certain time from a certain point 
of view reflecting the degree of abstraction, or scale of the observation. In the general 
case a spatial object may be located in 3D space and refer to a specific time span. 
Here we confine ourselves to 2D space and assume that all data relate to single period 
of time. A spatial object SO can therefore be defined as a function in a 3-dimension 
space SV on ℜ, consisting of two spatial dimensions and the scale dimension. Thus 
SO =  f(s, x, y), where f is a function to map point p(s, x, y) in SV to SO. 

We define a snapshot of a spatial object at scale s as SOs = (oid, Rs(Gs)), where oid 
is an unique identity of the spatial object, Gs = (GID, {gi | i = 1, n}) is a geometry set 
with identity GID and Rs is an operator to assemble all geometry objects g in G into 
the spatial form of SO at scale s.  

Each geometry object g consists of one or several vertices, which may be  a point; 
an open curve (a polyline) or a closed curve (a polygon). A vertex vs has a unique 
identifier vid, a sequence number vsn indicating the position of the vertex in the 
parent geometry object, and spatial coordinates x, y. The scale property s of the spatial 
object snapshot is inherited by its geometry set and in turn by all the geometry and 
vertices. 

2.1   The Scope of an Observation  

The validity of a snapshot of a spatial object may be extended to cover a scale 
interval, i.e. SOs = (oid, Rs(Gs)), s ∈ [sc, sd]   where  sc ≤ sd. Following standard carto-
graphic terminology, we regard a larger scale (e.g. sd > sc) as the scale corresponding 
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to a more detailed map while a smaller scale is for a map with less detail. A 
cartographic scale can then be any value in (0, ∞). 

We define a scale range as the collection of one or more scale intervals that may 
be continuous, adjacent or disjoint. In the following discussion, the term scale range 
and scale interval are used interchangeably when no confusion will be caused. Also, 
we refer to the smallest scale value in a scale range/interval as its lower scale bound 
and the largest scale value as its higher scale bound. 

2.2   The Scale Range of a Spatial Object 

A spatial object may be defined as a collection of all of its snapshots, which consist of 
all spatial information that we have on the object SO = {SOsi | i = 1, n}. We denote 
the scale range of SO as S, the union of the individual scale ranges [sc, sd] i  for i= 1..n. 

The collection of geometry sets of all snapshots Gg = {gj | j = 1, m} forms the entire 
geometry set of SO.  Thus a spatial object contains one geometry set only and a 
geometry object g may be referenced by more than one geometry set Gi of different 
spatial objects. It will inherit scale properties from all these geometry sets. A geo-
metry object g is specified as g = (gid, Sg, {vj | j = 1, m}) where Sg are scale properties 
of the geometry inherited from all geometry sets referring to this geometry. Assuming 
there are k geometry sets referring to this geometry, Sg  = ∪ si  for i =1..k. Note that si 
may be an interval. 

In the general case a vertex v(x, y) may be referred to by more than one geometry 
object belonging to the same or different spatial object. The specification of a vertex 
then becomes v = (vid, Sv, vsn(s, gid), x, y). Sv are the vertex scale properties inherited 
from all geometry that refers to it. Assuming k geometry objects refer to the vertex,  
Sv = ∪ Sgi for i =1..k. The vertex set of a spatial object is  V = {vi | vi ∈ gj; gj ∈ Gg}. 

2.3   Continuous, Subsetting, and Non-subsetting Vertices  

When scale priority values are attached to the constituent vertices of a linear or 
polygonal feature, several possibilities arise regarding the ranges of scales to which an 
individual vertex may be applicable. Here we distinguish between different types of 
scale-labelled vertex.  

Let S' be the intersection of the scale range Sv of a vertex vi and the scale range S of 
a spatial object SO referring to the vertex. If S' = Sv ∩ S = [sa, sb], sa ≤ sb is a 
continuous scale interval, we regard a vertex vi as a continuous vertex of spatial object 
SO. If sb = smax ∈ S (smax is the higher scale bound of the scale range of SO), we regard 
vi as a continuous subsetting vertex of SO, reflecting the fact that the vertex is present 
in the most detailed representation of SO. If S' is not continuous then the vertex is a 
non-continuous vertex of SO. Similar subsetting concepts apply to geometry objects.  
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3   Scale Coding 

A multi-scale spatial database should be able to support scale change in a continuous 
manner across the entire scale range of the stored data.  Due to the fact that the 
number of vertices in any dataset is limited, storage of a finite set of discrete scale 
intervals within the database is sufficient to support queries made at any scale. In 
practice the number of intervals required is normally quite small, unless an 
application demands very minor distinctions  to be made between scale values. 

A query on a multi-scale spatial dataset may be defined as: given a query scale sq 
and a query window QW, find all spatial objects SO (with scale range S) in map M 
where SO.MBR ∩ QW ≠ ∅ and sq ∈ S and MBR refers to the minimum bounding 
rectangle of the spatial object. A group of vertices {vi | sq ∈ Svi ∧ (xi,yi)∈QW} will be 
retrieved to form this representation. A map is a finite set of spatial objects and hence 
a finite set of vertices. The scale range of a vertex is a set of scale intervals: 

Svi = {[sa, sb] | sb≥sa;sa+1>sb} 
Here sa+1>sb is used because if sa+1 = sb the two intervals can be merged.  Therefore 
the scale range  for  the map  is: 

Smap= ∪ Svi = {[sc, sd] |sd≥sc;sc+1≥sd} 
which is a finite set of scale intervals. Note that these intervals are merged in the 
following manner: for [s1, s2] ⊆ Svi and [s3, s4] ⊆ Svj and s1<s3<s2<s4, three intervals 
will be formed in the scale range of the map: [s1, s3] ,[s3, s2]  and [s2, s4]. In the above 
expression sc+1≥sd is used because the intervals are created by bounding scale values 
coming from different vertices. If all scale values defining these intervals are unique, 
there are at most r-1 intervals for r different scale values between 0 and ∞. In this 
case, the scale range for the map is continuous and all scale intervals defined above 
can be merged to a single interval [smin, smax].  

Clearly for each of these intervals [sc, sd] in Smap, the scale range of a vertex Sv_i 
either covers it or not covers it. Consequently for any sq ∈ [sc, sd], the same set of 
vertices (where [sc, sd] ⊆ Sv_i) will be retrieved. As there is no restriction on the 
possible value of sq (if sq∉Smap, an empty representation is retrieved), we can conclude 
that we are able to classify vertices in a finite set of scale intervals to support queries 
based on continuously varying query scale values.  

When all intervals in a scale range are stored,  as: SR = {[si, sj]|i,j=1, n; si ≤ sj}, the 
test for inclusion of a query scale value in a range is "If sq ∈ [si, sj] ∈ SR Then SR 
covers sq Else SR does not cover sq". The scheme will work for all three vertex types 
of continuous, continuous subsetting and non-continuous. For the two continuous 
cases, the scale range has a single interval form: SR = [Smin, Smax]. For the continuous 

subsetting case, we have: SR = [Smin, Smapmax
]. Indeed, in practice only the Smin value 

is needed and the test can be further simplified to "If sq ≥ Smin ∈ SR Then SR covers sq 
Else SR does not cover sq". For the non-continuous case, the resulting scale range will 
have a length-varying form that will certainly increase the complexity of storage and 
query process.  

In practice, nominal variables (bit coding, C-style enumeration etc) may be used to 
represent bounding scale values or scale intervals to improve storage efficiency. 
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4   Database Access Schemes for Multi-scale Geometry Objects 

In this section we introduce database storage structures that allow us to evaluate 
alternative approaches to implementing the geometry objects introduced in previous 
sections. A geometry object is denoted in the database as an MGEO (Multi-Scale 
Geometry Object) and it is referenced by an MSO (Multi-Scale Spatial Object). For 
purposes of experimentation we introduce the following constraints on the previous 
data model: 
Constraint A: A vertex belongs to only one MGEO; 
Constraint B: All vertices of the same geometry object are continuous subsetting.  

The representation REPM of a map at scale sq and with a query window QW is: 
  REPM(sq, QW) = {MGEOi,Sq | sq ∈ Smgeo; MGEOi.MBR ∩ QW ≠ ∅} and                    
  MGEOSq = {vi | sq > svmin_i}.  

The part of the multi-scale database that stores MGEOs may be represented 
conceptually by the relations MGEO(MGEOID, SMGEO) and VERTEX(MGEOID, VID, 
Sv, vsn, x, y). As the multi-scale geometry objects are the basic building blocks for 
implementing the whole model described above, in the remainder of this section we 
focus on methods for organising the storage of vertices within individual MGEOs.  

4.1   Vertex Layer 

If the VERTEX relation above were to be used directly in a real database implemen-
tation, the resulting vertex table would normally consist of a huge number of rows, 
making database queries very inefficient. It is desirable therefore to use structures 
larger than a single vertex as the storage unit. Hence we introduce the concept of a 
vertex layer VL as the set of all vertices which belong to the same MGEO and whose 
scale ranges share the same lower scale bound:  

VL = (lsn, SVL, {vi  | vi ∈ MGEO; svmin_i =svmin_j=sVLmin, i ≠ j ;  vsni< vsnj,  i<j }) where 
lsn is the identifier and SVL is the scale range of the vertex layer. Applying the 
assumption of continuous subsetting within an MGEO, all vertices inside a vertex-
layer have the same scale range, leading to the simplification:  

VL = (lsn, SVL, {vi  | vi ∈ MGEO; Svi = SVL, ; vsni < vsnj, i < j}) 

4.2   Grouping Vertices in Geometry 

As explained in Section 3.1, the scale range of a MGEO can be decomposed into a 
finite set of scale intervals {[sn, sn-1], ..., [s3, s2], [s2, s1]}, ( si < si-1) where the scale 
range of a vertex is [si, s1] (n ≥ i > 1). Therefore, we may group vertices into several 
vertex layers corresponding to the following predefined set with n scale intervals  
{[ sn, s1], ..., [s3, s1], [s2, s1]}. We can then define an MGEO with n vertex layers as 
follows: 
  MGEO = (SMGEO = [sn, s1], { VLi | i = 2, n}) 

VLi = (SVL_i=[si, s1], { vj | Sv_j = [si, s1]}) and ∀vk(Sv_k = [si, s1]) ⇒ vk ∈ VLi. Given a 
query scale sq ≤ s1, a subset of vertex-layers {VLi | si ≤ sq} forms a legible 
representation of the MGEO at this scale. 
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4.3   Storage Schemes with Explicit Vertex Sequence Numbers 

Since vertex-layers are a scale-based decomposition of the vertex set of a MGEO, the 
ordering of vertices, relative to the original sequence, can be preserved inside each 
layer but not among different layers. When a subset of vertex layers is used to form a 
legible representation of the geometry, the original order of all selected vertices 
should be restored. One simple solution is to use an explicit sequence number (vsn) in 
the vertex data structure. Vertices in the subset of vertex-layers will then be sorted 
according to their vsn at the stage of object reconstruction. It should be remarked here 
that, alternatively, it is possible to maintain vertex ordering implicitly, without 
sequence numbers, by using references between vertices at different levels in 
combination with local ordering within layers [5]. A further option, which 
corresponds to most existing implementations of multiple scale data, is of course to 
store complete versions of the geometry at each scale-specific layer.  We now 
introduce two approaches to storing sequence-numbered vertices that are organised in 
vertex layers. 

4.3.1   Single Entity Geometry (BLOBSN) 
As the binary large object data type (BLOB) is widely available in modern DBMS, a 
MGEO with many vertices may be stored as a single entity in the database. A BLOB-
based representation of a MGEO has the following structure:   <(sn, end_offsetn), ..., 
(s1, end_offset1)><VLn, ..., VL1>. Thus vertex layers are stored after a head section 
(the length of which, fixed or varying, is known). Inside the head section, the end 
offset of each vertex layer is stored as an index used by application programs to read 
vertex layers from the BLOB object. Note that the starting offset of a vertex layer is 
the same as the ending offset of the layer preceding it. In this scheme spatial indexing 
is performed on the complete BLOB and hence refers to the entire geometry object 
represented by the MGEO. 

4.3.2   Multi-segment Geometry (VBSN) 
If spatial indexing is to be performed on parts of a geometry object then the vertex 
layers of a MGEO can be divided into multiple segments. If we set a limit to the size 
of each segment, they may be implemented as an extended data type in the DBMS 
and stored as fields of a record or row. The limit on size can either be the number of 
vertices in a segment or the total data volume of the segment. In the current treatment, 
we will use the number of vertices (bsz) as the size constraint. We regard such 
segments as vertex blocks (VB) where 

VB = (bsn, SVB,{vi | i=1,n; n≤bsz; vi∈MGEOk; Sv_i =SVB; vsni < vsnj, i <j }) 
and the block sequence number bsn is the identifier of the vertex block. Each vertex 
block is indexed by a minimum bounding rectangle and for two blocks VB1 and VB2 
belonging to the same vertex-layer, if vi ∈ VB1 and vj ∈ VB2 , and bsn1 < bsn2 then we 
have vsni < vsnj. 
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5   Dynamic MBR and Object Clipping 

In this section we address the problem of defining the extent of bounding rectangles 
that can be used for spatial indexing of vertex blocks. An important issue in querying 
a spatial database is to maintain topological consistency of objects overlapping the 
boundary of the query window. To do this it is necessary to retrieve vertices outside 
the query window that are neighbours of vertices of the same MGEO that are inside 
the query window. The associated edges can then be clipped to the window boundary. 
In an MGEO it important that the retrieved external vertices are at a level of detail 
equivalent to that of the neighbouring internal vertices 

A simple solution is to retrieve the entire set of vertices of the object at the query 
scale. This is the approach adopted with the BLOBSN storage scheme. However, this 
approach may result in significant data redundancy as an object with many vertices 
may have only a small intersection with the query window. A solution to the problem 
is to associate with each vertex, or vertex block, a dynamic minimum bounding 
rectangle (DMBR) that includes the location of neighbouring vertices at the same or 
lower levels of detail, plus all intermediate vertices. The principle underlying the 
DMBR was introduced originally in [6] to support proximity queries. 

5.1   Dynamic MBR of a Vertex 

For vertex vi=(vsni, Sv_i=[sj, s1], x, y) in a MGEO, the DMBRv_i = (xmin, ymin, xmax, ymax). 
It covers: 1) the vertex itself, 2) the two neighbouring vertices that have a lower scale 
bound equal to or smaller than the lower scale bound of the vertex (i.e. having 
equivalent or less detailed scales), and 3) all other vertices between these two vertices 
that have a greater lower scale bound (and hence represent greater detail). Note that 
for closed curve geometry, the search for the two neighbouring vertices should be 
extended beyond the beginning or the end of the vertex sequence when necessary. For 
the case where there is only one vertex with the scale range of the MGEO, its DMBR 
is the MBR of the MGEO. 

5.2   Dynamic MBR of a Vertex-Block and Object Clipping 

With the above definition of DMBR for an individual vertex, we can define the 
DMBR for a vertex-block  as VB.DMBR = MBR({vi.DMBR | vi ∈VB}). This is the 
MBR of the DMBRs of all its vertices. 

When a vertex vi = (Sv_i=[sk, s1]) is retrieved by a query Q(sq≥sk, QW), its adjacent 
vertex vr with equal or lower scale bound, if outside the QW, should also be retrieved. 
However, this can not be achieved by a conventional query of the form: 

Q(sq, QW) ← {vi =  ([si, s1], x, y)| si ≤ sq ∧ Overlap(QW, (x,y)) 
as vr is outside QW. With the help of the DMBR, we can amend the query to: 

QDMBR (sq, QW) ← {vi = ([si,s1],DMBR,x, y) | si≤sq ∧ ( Overlap(QW, vi.DMBR)} 
In this case an externally adjacent vertex vr will be retrieved because its DBMR will 
include the location of the internal neighbour and hence overlap QW. In general, most 
vertices outside the query window will not pass this test, thereby avoiding redundant 
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retrieval. Note that the definition of DMBR is simply an alternative to conventional 
MBR so it will not introduce any storage or performance overhead. 

 
             Fig. 1.  DMBRs of vertices                     Fig. 2. The real dataset and query windows    

 
The above convention also applies to the situation when vertex-blocks are used. If 

the vertex vi mentioned above is a boundary vertex of its block VBi (i.e. the first or 
last in the vertex sequence of the block), the vertex-block (say, VBr) containing vr 
should be retrieved. Since the DMBR of a vertex-block covers the DMBRs of all its 
vertices, if vr.DMBR overlaps QW then so will its vertex block VBr.DMBR.  

The query for a vertex-block based dataset is therefore: 
QDMBR(sq,QW)←{ VBi=([si,s1],DMBR,{vj|j=1, n}) | si≤sq ∧ Overlap(QW, VBi.DMBR))} 

For example, in Fig. 1, a vertex vi_j refers to a vertex with lower scale bound i and 
sequence number j. According to the definition of DMBR of vertices, the DMBRs of 
v1_1 and v1_8 are defined by rectangles (1, 2, 3, 4), v2_2 (1,5,6,7), v2_6 (8,9,10,11) and 
v2_7 (12,13,3,14). When a query (QW, Sq <=2) is made, v2_2 is inside QW and retrieved 
directly and v1_1, v2_6, v1_8 are also retrieved because their DMBRs intersect QW. 
Therefore the intersection of the object with the boundary of QW is represented 
correctly by segment v1_1-v2_2 and v2_2-v2_6. As already mentioned, there will still be 
some redundant vertices retrieved (v1_8). However, v2_7 is not retrieved so that the 
redundancy rate is reduced. Note that the three unlabelled vertices in the figure have a 
larger lower scale bound and make no impact on the query result. 

6   Object Caching for Zoom-In, Zoom-Out, and Panning 

Querying a multi-scale spatial database is rarely a one-off operation. Users may want 
to zoom-in, zoom-out or pan around the entire dataset. Here we define these basic 
operations in the context of the vertex block storage scheme, before introducing some 
procedures to facilitate their implementation with cached data on the client. 

In what follows each local windowing operation results in a new client-side result 
set RSm_1 of the multi-scale data that supplements the existing client-side result set 
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RSm_0. We start by retrieving an initial representation RSm_0 using a window QW0 and 
a query scale of sq_0: 

  RSm_0 = (QDMBR (sq_0, QW0) ←  
  {VBi=([si,s1],DMBR,{vj | j = 1, n }) | si≤sq_0 ∧ Overlap(QW0, VBi.DMBR))}  
We may define a panning operation with a new window QW1 as: 

  RSm_1 = RSm_0  +  (QDMBR (sq_0, QW1) ← 
  {VBi=([si,s1],DMBR,{vj|j=1,n})|si≤sq_0 ∧ Overlap(QW1, VBi.DMBR) ∧                            

                                                                         ¬Overlap(QW0, VBi.DMBR) )}   
Note that those vertex-blocks that are retrieved by the previous queries and are 

outside the new query window QW1 become redundant for the current map.  
A zoom-in operation is with a window QW1 is defined as: 

RSm_1 = RSm_0 +  (QDMBR (sq_1, QW1) ←                                              
{VB i=([si,s1],DMBR,{v j | j=1, n}) | sq_0 < si ≤ sq_1  ∧ Overlap(QW1, VBi.DMBR)} 

Implementation of this operation retrieves some additional vertex-blocks of 
MGEOs that have been partially retrieved in previous queries and plugs the new 
vertex blocks into the previous representation. Note that QW0 is normally but not 
necessarily larger than QW1. 

Finally, a zoom-out operation to scale sq_1 may be defined as  
  RSm_1=RSm_0 +  (QDMBR (sq_1, QW1) ← 
  {VBi=([si,s1],DMBR,{vj|j=1,n})| si ≤ sq_1 ∧ Overlap(QW1, VBi.DMBR) ∧      
                                                                       ¬Overlap(QW0, VBi.DMBR) }         
In this case, some new vertex-blocks outside QW0 may be retrieved while some 

existing vertex-blocks with a larger low scale bound (si > sq_1) become redundant to 
the current map. 

These three operations are defined relative to the operation immediately preceding 
them. In a more general situation, the initial result set is the result of a series of 
previous queries {Q0, Q1, …, Qn}. In this case, a new query Qn+1 will generate a new 
result set as RSn+1 = RSn + {VBi | VBi ∈ (Qn+1 ∧ ¬(Q0∨Q1∨…∨Qn))}. Obviously, such 
an expression could generate a very long and inefficient query statement. Therefore in 
practice a balance must be found between the increased complexity of the query 
statement and reduced retrieved data volume.  

The purpose of supporting object caching is to make use of data that have already 
been retrieved and reduce the overall data communication between client and server. 
Although the method of supporting object caching is highly implementation 
dependent, we would like to address some relevant issues here. 

6.1   An Enlarged Query Window 

If panning operations are to be expected, then there are benefits to be gained from 
retrieving a larger query window than that requested by the user. We assume that in 
the application program there will be a mechanism to map a query window of 
particular size, say QW0, to a query scale, say sq, and that objects with [si ≤ sq, s1]  that 
overlap QW0 will be retrieved. When si < sq, we can map si back to a window QW'0 
which is larger than QW0 and shares the same geometric centre with QW0. By using 
this enlarged query window QW'0 to make the query, the retrieved dataset will remain 
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relevant when subsequent panning or zoom-out operations are restricted to being 
within QW'0 and no new queries will need to be carried out. The size of QW'0 will 
depend upon the storage resources of the system. In addition, we may use a larger 
query scale (say, s'q > sq) to retrieve more detailed data of objects so that zoom-in 
operations  to scales smaller than or equal to s'q can also be supported.  

6.2   Object Reconstruction with Cached Geometry 

Both the BLOB and Vertex Block storage schemes have the potential to support 
object caching in a graphic presentation system. For a one-off query, the normal 
sequence of actions is: 

1) retrieve vertices in server representation; 
2) reconstruct client-side representation of vertices from their server 

representation, put vertices into a linear data structure, which can be sorted 
efficiently, and delete the server representation; 

3) sort vertices in the linear structure; 
4) convert vertices to logical/device coordinates for graphic presentation. 

If an associative data structure (such as the map template in C++ standard library) 
is used, steps 2 and 3 may be merged. In step 4, a new linear data structure which is 
compatible with the graphic presentation system might have to used and new vertices 
compatible with the graphic system have to be created. In this case, the original 
linear/associative structure may be discarded. 

To support object caching in a multi-query situation, there are some alternatives for 
zoom-in/panning: 

a) keep the original server representation and repeat steps 2, 3, 4 when new data 
are added; 
b) keep the linear structure in 2 and 3, add new data directly into it and then carry 
out step 4 after re-sorting (for which there will be no need in the case of an 
associative structure). 

For zoom-out, if the original server representation is not preserved, the scale range of 
each individual vertex has to be stored in the data structure for client-side vertices, in 
order to eliminate extra vertices in step 4. 

7   Indexing the Scale Ranges 

A technique for indexing on scale in combination with spatial indexing was intro-
duced in [17]. We pursue a related idea here with scale values associated with 
individual vertices as well as complete objects. We consider several alternative ap-
proaches. At one extreme it is possible to index simply on scale. For the continuous 
subsetting cases, a B-tree may be used to index the scale range field in a multi-scale 
spatial database. One way to index and query non-subsetting data is to use two fields 
for the scale range and to build a B-tree on the higher scale bound in the scale range 
and use an extra expression to compare the query scale value and the lower scale 
bound of the range. Alternatively, if a generic R-tree is available, a 1-D R-tree index 
may be built for the scale range column by defining necessary operations on the scale 
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range values. An integrated approach is to combine the scale range with the spatial 
extent of objects (i.e. MBR) in a multi-dimensional R-tree index. For the non-
continuous case, the above technique also applies but extra value testing is needed. 
Further design and implementation details are given in section 8.2 and in section 
8.5.4 in which we perform a comparison of the three approaches of a B-tree index 
on scale, an R-tree index on space and a 3D R-tree that integrates indexing on scale 
with space. 

8   Implementation and Experimental Results 

8.1   Database Schemas 

For purposes of evaluation four database schemas have been implemented. The first 
two, referred to as VBSN and VBSN_NONCLIP, are based on the vertex block 
design introduced in Section 4.3 and respectively include and omit clipping support 
on vertex blocks. The third uses blob storage (BLOBSN), as described in Section 4.3. 
The fourth is a blob based multi-version schema (BLOBMV) under which a complete 
representation for each scale interval is stored. Thus in the latter case all vertices 
present, at each of the multiple scales, are stored in correct order, with no need for a 
reconstruction step. In all implementations there are two primary tables: an MSO 
table and an MGEO table. 

8.1.1   BLOBSN and BLOBMV 
For these implementations a row in the MSO table is represented by a tuple (mso_id, 
lsb, hsb, geomtype, mbr). The value geomtype indicates whether the object is an open 
or a closed curve. lsb and hsb  are the lower and higher scale bounds of the scale 
range of the object. A row in the MGEO table has the form of (mso_id, lsb, hsb, mbr, 
blob_vertices). Here blob_vertices is a handle to the blob object in the database 
storing all vertices of this MGEO. The internal structure of the blob object for 
BLOBSN has been described in section 4.3.1. The blob for BLOBMV is simply a 
succession of the multiple versions in ascending order of their lower scale bound. 

8.1.2   VBSN_NONCLIP and VBSN 
The MSO table for VBSN_NONCLIP has the same structure as for BLOBSN. The 
form of its MGEO table is (mso_id, lsb, hsb, bsn, mbr, opaque_vertices). bsn is a 
sequence number assigned to a vertex-block and  opaque_vertices is an Informix 
opaque data type containing vertices of this vertex-block.  

The MSO and MGEO tables of VBSN have the same structure as those for 
VBSN_NONCLIP except that dynamic MBRs of vertex-blocks instead of 
conventional MBRs are stored in the mbr column. 
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8.2   Spatial-Scale Indexing 

8.2.1   Indexing on Scale 
Using the generic B-tree and R-tree utilities in Informix, we tested three methods to 
create indices for MSO/MGEO tables on their scale/spatial extent columns to support 
efficient query executions. The first method is to generate a B-tree index, referred to 
here as mso_scale_index, on the lower scale bound column lsb. A query statement on 
the mso_table generated from a query Q(sq, QW) has the following form: 

Select {+index(mso_table mso_scale_index)} mso_id, geomtype from mso_table 
                  where lsb <= sq AND sq <= hsb AND overlap(mbr, QW); 
where the directive {+index()} forces the query parser to use the specified index 
whenever possible.  

The query above refers to data that are encoded with continuous vertices. To 
handle scale bounds of non-continuous scale ranges, we can create an extended data 
type, ScaleRange{Scale lsb, hsb;}, to contain the two bounds and define a group of 
operations (such as Overlap, Contains, Within, Equal) which are, in Informix terms, 
R-tree strategy and support functions on this data type. Creating a 1-d R-tree index on 
columns sr (scale range) using this data type, the query becomes: 

Select {+index(mso_table mso_scale_index)} mso_id, geomtype from mso_table 
                 where overlap(sr, ‘sq, sq’::ScaleRange) AND overlap(mbr, QW); 

As the overlap operation will take two parameters of the type ScaleRange, we have 
to convert the query scale sq to a zero-extent scale range in the query statement. 

8.2.2   Spatial Indexing 
All mbr/dmbr columns have the type GeoRect, which is an extended data type 
representing a rectangle with R-tree strategy/support functions defined for it. With an 
R-tree index (mso_spatial_index) created on the mbr column the  query statement is: 

Select {+index(mso_table mso_spatial_index)}  mso_id, geomtype from mso_table 
            where lsb <= sq AND overlap(mbr, QW) 

8.2.3   Integrated Spatial-Scale Indexing 
In order to index spatial and scale dimensions integrally, we defined an extended data 
type GeoCube {Scale lsb, hsb; Coord minx, miny, maxx, maxy;}. R-tree 
strategy/support functions, including overlap, are also defined for this type. With this 
data type, we can merge the scale range column(s) and the spatial extent column into 
a single column (say, mbc, the minimum bounding cube). The schema of the MSO 
table then becomes (mso_id, geomtype, mbc) and we can create a 3-D R-tree index 
(mso_integrated_index) on the mbc column and the query statement becomes: 
Select {+index(mso_table, mso_integrated_index)} mso_id, geomtype  
  from mso_table 
  where overlap(mbc, ‘sq, sq, QW.minx, QW.miny, QW.maxx, QW.maxy’::GeoCube); 
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8.3   Generation of Sample Datasets 

We regard the process of generating a multi-scale map dataset from a source dataset 
at a single large scale as one of calculating scale ranges for map objects and vertices 
and then, if necessary, classifying them according to a set of predefined scale 
intervals. From the viewpoint of map generalisation, this requires a mapping between 
various parameters of generalisation algorithms and the predefined scale interval set. 
It should be remarked that in theory the process of creating a multi-scale dataset could 
be based on several source datasets at different base scales, but for the sake of 
simplicity, we do not consider that possibility further. 

As the generalisation of a map dataset with multiple geometric feature types 
remains a challenging task, that has yet to be fully automated, we restrict ourselves to 
handling map datasets with a single geometric feature category, namely open or 
closed polylines. One real map dataset and two simulated map datasets were used to 
test various multi-scale schemes presented in this paper.  

The real map dataset (Fig. 2) consists of contours extracted from a 1:5000 
topographical map which covers a region of about 50 km2 with 627 contour lines and 
48478 vertices. An amended Douglas-Peucker algorithm was used to generate scale 
range values of vertices taking account of the "extending beyond endpoint" situation 
[2]. Also, four selection levels decided by experiment were set to eliminate entire 
contours with certain elevation values as scale decreases. A base-2 scale interval set 
was used (i.e. {1:2i×1000|i = 0, n}) in this process and the values of tolerance in the 
Douglas-Peucker algorithm were mapped to this scale interval set. 

Since the size of the real dataset is fairly small for the purpose of performance 
testing and the data points/lines inside this dataset are distributed unevenly, we used a 
Koch curve (order = 3) along with the Douglas-Peucker vertex selection criterion to 
create two simulated map datasets (see extracts in Fig. 4) in a "central place" style 
(and hence with some degree of geographical reality). A base-3 scale interval set was 
used (i.e. {1:3i×1000|i = 0, n}). Datasets created in this way result in a similar density 
of retrieved objects on the presentation medium for various scales, which conforms to 
the geometric presentation of a real map series. In addition, using this method, a 
dataset of arbitrarily large size can be generated easily. 

The first simulated dataset covers a 10km by 8km region at 1:5000 base scale with  
17,187 objects and 1,335,534 vertices. The second set is much larger, at 40km by 
32km, with 273,996 objects and 21,073,087 vertices. In order to eliminate objects of 
very small size, curves with less than three levels are not created. Consequently, the 
smallest object has an extent of about 25m with 48 vertices. 

8.4   Test Environment and Query Generation 

Our experiments were carried out on a PIII-600MHz PC with 128MB RDRAM 
running Windows NT Workstation 4.0. The extensible object-relational DBMS used 
here was Informix Dynamic Server 2000 ver.9.20.TC3. All application programs to 
generate and process test datasets, load data to database server and make queries on 
the server were written in C++ with Informix Object Interface for C++ v.2.6. 
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The location of query windows on the real dataset was determined arbitrarily as 
covering a “region of interest”. For the two simulated map datasets, a series of query 
windows was generated automatically with each window having the size of one 
quarter of the area of the window at a higher level. The query scale value was 
calculated by the query program according to the size of the query windows and an 
input value for  “screen resolution”, assuming a fixed display device area. In the 
results presented here, we used resolutions of 0.2mm, 1mm and 5mm respectively. 
Fine screen resolutions result in retrieving more detailed representations, while 
coarser resolutions lead to a smaller query scale value and hence less detail. 

In our application programs, a query to the map database is carried out in two 
steps. First a set of MSO objects is retrieved and then in the second step their 
associated geometry objects are retrieved and reassembled. The results shown are the 
average of several runs when applicable. 

8.5   Results 

We carried out various measurements on different aspects of the query and object 
reconstruction process. In the following discussions, we refer to “retrieval time” (RT) 
as the interval between when the query is issued and the result set is returned (for blob 
object based schemes, the time to read data from the blob object should be added). 
“Process time” (PT) is the interval between the return of the result set and completion 
of reconstruction of the representation of the map dataset (for the blob object based 
scheme, the time to read data from blob objects should be excluded). “Client-side data 
redundancy”(CDR) is the ratio of the number of retrieved vertices outside the query 
window (Vout) to the number of vertices inside the query window (Vin). 

8.5.1   Multi-version vs. Multi-scale 
Our results (Table 1, 10k by 8k simulated dataset, where Rscr is the "screen resolution" 
used and Q_Res is the actual field resolution) shows that the multi-version scheme, 
understandably, usually has a better process time than the sequence number based 
scheme, which needs to carry out a sorting operation after retrieval in order to 
perform object reconstruction. However, its advantage on this aspect is typically no 
better than about 10%. 

             Table 1. Process time of BLOBSN and BLOBMV schemes (in seconds) 

Relative 
QW Area 

Rscr = 0.2mm Rscr = 1.0mm Rscr = 5.0mm 

 SN PT MV PT Q_Res SN PT MV PT Q_Res SN PT MV PT Q_Res 

0.39%    0.431 0.37 1 0.28 0.23 9 
1.56%    0.952 0.942 3 1.162 0.921 9 
6.25% 3.742 3.497 1 3.496 3.234 9 1.422 1.274 27 
25% 16.004 15.92 3 15.763 15.833 9 0.741 0.822 81 
100% 89.701 89.501 3 20.998 19.625 27 3.025 3.357 81 

The main disadvantage of the multi-version scheme appears to be the server side 
data redundancy (SDR). Theoretically, we would expect the data redundancy to be: 
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 where N is the average number of vertices inserted between two 

vertices at a higher level and n is the number of vertex layers (proof is omitted here). 
In practice we encountered much higher redundancy rates which implies a very small 
N. Table 2 shows the data volumes of the real map dataset using the two schemes: 

 Table 2. Data volume of blob schemes in bytes(the real dataset) 
 BLOBSN BLOBMV SDR 
No-selection 969,560 4,131,664 3.261 

Selection 969,560 2,624,688 1.707 

When the selection generalisation operator is used (to eliminate some entire 
contours as scale decreases), the number of vertex layers is relatively small and the 
redundancy is lower. However, a redundancy rate of 1.7 is still significant. Indeed, the 
result shown above is based on a predefined scale interval set with only a few 
intervals (similar to an ordinary topographical map series). If the multi-version 
method is used to support continuous scale change, the number of versions will be 
much higher. Another difficulty associated with the multi-version scheme is the 
preservation of information on scale range of individual vertices. If this information is 
to be stored for each vertex, the redundancy rate will be even higher. It is also 
difficult to maintain efficiently the identity of a vertex that is present in multiple 
vertex layers, which may be important for some analytical purposes. This may be 
solved by introducing an explicit identification number (or indeed, a sequence 
number) for each vertex, which, however, will turn the scheme into a sequence 
number based one with multiple versions. Finally, the multi-version scheme does not 
provide support for efficient client-side object caching operations other than panning. 

8.5.2   BLOB vs. Vertex-Block 
The main difference between the two implementation strategies of blob based and 
vertex-block based schemes is that vertices are stored in-row under the vertex-block 
scheme (VBSN) while vertices in blob objects are stored separately in a different 
“dbspace”. To open a blob object and read data from it is a relatively expensive 
operation. On the other hand, a MGEO table based on a blob scheme will have fewer 
rows which will result in a better query performance (reflected in our “retrieval 
time”). However, under our software/hardware environment, this advantage on query 
execution did not result in a better overall performance, as the operation of opening 
blob objects and reading data from blob objects is the bottleneck of the whole process. 
Table 3 below shows the average timing results of 4 runs on the first simulated dataset 
with a query window of 10km by 8km (i.e. the extent of the dataset) and a query scale 
1:15000 (the second largest in the bounding scales of the scale interval set). Rblob is to 
the time to retrieve the content of blobs. Note that the application programs have been 
optimised using customised memory management schemes. 

                                          Table 3 (The 10k by 8k simulated dataset) 
BLOBSN (in seconds) VBSN (in seconds) 

RT' + Rblob PT'-Rblob Rblob Overall RT PT Overall 
55.541 61.701 50.556 117.242 60.828 14.805 75.633 
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8.5.3   Non-clipping vs. Clipping 

When object clipping is not supported, all vertices in a geometry object that are 
visible at the query scale have to be retrieved in order to maintain topological 
consistency with the boundary of the query window. In some cases, this can result in 
large client-side data redundancy. Although the approach of sending all vertices may 
be useful for a client-side object caching scheme, it may generate an unstable query 
response performance. With DMBR-based clipping support, we are able to reduce the 
data redundancy significantly. Fig. 3 shows the graphic presentations of some of the 
datasets retrieved from queries without clipping support and queries with clipping 
support and different block sizes. As shown in the figures, when the vertex block size 
increases the data redundancy of the retrieved dataset will increase as well.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Data retrieved without and with vertex-level clipping. The spurious line cross-overs 
outside the query window are due to arbitrary variations in detail of redundant data beyond the 
immediate vicinity of the window. Data inside the window are at consistent levels of detail.  

The reduction of data redundancy results in a much better performance. In our 
experiment with 14 queries on the real dataset (block size = 1, not optimised), the 
average query time with clipping was 87% (SD=25%) of that of non-clipping, while 
the vertex process time was only 33.4% (SD=22.4%) of the non-clipping scheme. 

8.5.4   Scale Indexing, Spatial Indexing, and Integrated Indexing 
Here we compare experimental query response times using B-tree indexing on scale, 
R-tree indexing on space and integrated 3D R-tree indexing on space and scale. Fig. 5 
shows the results of queries for all three types of index across a wide range of sizes of 
spatial window, with corresponding change in the computed scale value (retrieval 
resolution), for a screen resolution of 5 mm. The results show that indexing on scale 
alone gives very poor results for small window sizes while the R-tree indexing on 
space alone gives poor results for large window sizes. The reason is that in both cases 
the intermediate result sets returned by the indexed query directive in the composite 

Retrieval without clipping 
(blobsn and vbsn_nonclip) 

Retrieval with clipping 
(block size = 12) 

Retrieval with clipping        
(block size = 36) 
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query statements (described in Section 8.2) are very large and subsequently the other 
query directives are executed sequentially on these large result sets. The integrated 
(3D R-tree) indexing method strikes a balance between space and scale resulting in 
overall superior performance (which applies for all screen resolutions though the 
other results are not presented here).   
 

     Fig. 4. Part of a simulated map              Fig. 5. Comparison of indexing with R-Tree (space), 
        dataset based on Koch curve                       B-Tree (scale) and space-scale 3D R-tree 
 

The results indicate that when the query window is very large, the B-tree generates 
a slightly better performance than the 3D R-tree. We believe this is due to the uneven 
distribution of spatial objects on the scale dimension (conforming here to Topfer's 
“radical law”). Thus, when the query window is large, the B-tree index filter retrieves 
a very small result set and a subsequent spatial extent check can then be done quickly. 
On the other hand, the 3D R-tree treats the three dimensions equally which may result 
in a decomposition of space whose configuration is not optimal when the query 
window is large and the query scale is small. It appears that if at the top level (or a 
few levels at the top) of the 3D R-tree the decomposition were to be carried out with a 
scale priority instead of a spatial priority, the overall performance of the integrated 3D 
R-tree could be further improved. 

8.5.5   Client-Side Object Caching 
So far the results presented have been based on single queries. We implemented the 
two client-side object caching schemes described in Section 6.1.2, with the VBSN 
storage scheme, to test the performance of a series of zoom-in, zoom-out and panning 
queries, with and without object caching. The first scheme maintains an indexed data 
structure (we used C++ map template) for vertices. When new vertices are retrieved, 
they are added into this data structure and sorted. At the stage of linear feature 
reconstruction, prior to display, all vertices in the indexed structure are examined and 
those with a lower scale bound smaller than the query scale are selected. The second 
scheme keeps a list of retrieved vertex-blocks for each object. When a linear feature is 
to be reconstructed, the block list is scanned. Selected vertices are then put into a 
linear data structure and sorted according to their sequence number. 

Query using three index methods 
(40k_32k dataset, Scr_Res = 5mm)
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For each action of zoom-in, zoom-out and pan, an initial query is carried out to 
construct a client-side result set. Subsequently two zoom-in/zoom-out/panning opera-
tions are carried out and new objects/vertices are merged into the initial result set. 
Table 4 illustrates the data volume reduction of caching in comparison to non-caching 
using the 10k by 8k dataset. Ver_Num is the number of vertices added into the result 
set after two operations and Data_valume is the total volume of vertex data retrieved 
from the server over the two operations. In all these operations, one level of caching is 
used (i.e. the query statement of the previous query is used to optimise the new query 
statement). The percentage is simply the cached data divided by the non-cached data. 
Our results show that the vertex-block list based scheme provides a better perfor-
mance for on-line reconstruction for the retrieved objects. In addition, this scheme has 
the potential of supporting client-side clipping at the stage of constructing the graphic 
presentation if we store the DMBR of vertex-blocks on the client-side. We may do the 
same for the other scheme but that would involve storing the DMBR of each vertex.  

Table 4. Caching vs. non-caching after two operations  

Operation Scheme Ver_Num Data_Volume (bytes) 
Caching 141,449 2,828,980 Zoom-In 
Non-caching 190,966 

74.07% 
3,781,200 

74.82% 

Caching 162,574 3,253,920 Zoom-out 

Non-caching 212,483 

76.67% 

4,227,900 

76.96% 

Caching 23,044 482,640 Panning 
Non-caching 32,998 

69.83% 
684,720 

70.49% 

9   Conclusions 

The need to access spatial data at multiple scales provides a strong motivation to 
develop efficient strategies for implementation of and access to multi-scale spatial 
objects. In this paper we have addressed several practical issues in implementing 
multi-scale data access schemes in which vertices of geometric objects are associated 
with scale-priority values and explicit sequence numbers. In the context of scale 
range-coding of geometry, we have shown that, because of the discrete nature of scale 
ranges attached to vertices, scale-specific layers of vertices can be used to maintain  
scale-range attributes of the vertices, and hence support queries on arbitrary scale 
values. The implemented multi-scale storage schemes were based on blob storage of 
scale-specific layers, in which only the entire geometric object was spatially indexed, 
and on extended relational storage of spatially-indexed vertex blocks (in the manner 
of the PR-File) respectively. These were compared with a conventional multi-version 
approach to storage of geometry in blobs at multiple levels of detail. In our implemen-
tation, the multi-version storage scheme had significant storage overheads compared 
to the multi-scale geometric object schemes, while providing no more than about 10% 
improvement in timings for reconstruction of scale-specific geometric objects. In a 
comparison of the spatially-indexed vertex block based scheme with the blob multi-
scale scheme, the former was found to be clearly superior, demonstrating the merits of 
spatial indexing of subsets of vertices. Varying the resolution of this spatial indexing 
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(with different block sizes), the results confirm the expectation that larger block sizes 
combine faster retrieval with greater redundancy of retrieved data.  

Following on from the work of [17] we have compared R-tree spatial indexing, B-
tree scale-indexing and a 3D generic R-tree that integrates space and scale. The 
integrated method was found to outperform the other two methods.  

Two approaches to client-side reconstruction of linear features from cached 
geometry have been presented. The advantages in object reconstruction of both multi-
resolution caching strategies were demonstrated relative to a non-caching scheme. 
The best performance was obtained with client-side maintenance of geometry in the 
form of vertex blocks, as opposed to insertion into an index list of scale-coded 
vertices.  
 
References 

1. Ballard, D., Strip trees: a hierarchical representation for curves. Communications of the 
ACM, 24, 1981, 310-321. 

2. Gunther, O., Efficient Structures for Geometric data Management. Lecture Notes in 
Computer Science, Vol. 337, 1988, Berlin, Springer-Verlag. 

3. van Oosterom, P., Reactive Data Structures for Geographic Information Systems, 1994, 
Oxford, OUP. 

4. Cromley, R.G., Hierarchical methods of line simplification. Cartography and Geographic 
Information Systems, 18(2), 1991, 125-131. 

5. Jones, C.B. and I.M. Abraham. Design considerations for a scale-independent database. In 
Second International Symposium on Spatial Data Handling, 1986, Seattle, 384-398. 

6. Jones C.B., D.B. Kidner and J.M. Ware. The Implicit TIN and multiscale spatial databases, 
The Computer Journal 37(1), 1994, 43-57. 

7. Becker, B., H.-W. Six, and P. Widmayer. Spatial priority search: an access technique for 
scaleless maps. In ACM SIGMOD, 1991, Denver, Colorado, 128-137. 

8. van Putten, J. and P. van Oosterom. New results with generalised area partitionings. In 8th 
International Symposium on Spatial Data Handling, 1998, Vancouver, 485-495. 

9. Bertolotto, M. and M.J. Egenhofer. Progressive vector transmission. in 7th ACM 
Symposium on Advances in Geographic Information Systems, 1999, Kansas City, ACM 
Press, 152-157. 

10. de Berg, M., M. van Kreveld, and S. Schirra, Topologically correct subdivision 
simplification using the bandwidth criterion. Cartography and Geographic Information 
Systems, 25(4), 1998, 243-257. 

11. van der Poorten, P. and C.B. Jones. Customisable line generalisation using Delaunay 
triangulation. In 19th Conf. of Int. Cartographic Association, 1999, Ottawa, CDROM. 

12. Saalfield, A., Topologically consistent line simplification with the Douglas-Peucker 
algorithm. Cartography and Geographic Information Science, 26(1), 1999, 7-18. 

13. Buttenfield, B.P. Sharing Vector Geospatial Data on the Internet. in 19th Conference of 
International Cartographic Association, 1999, Vancouver, CDROM. 

14. Jones, C.B., et al. Multi-Scale Spatial Database Design for Online Generalisation. in 9th 
International Symposium on Spatial Data Handling, 2000, Beijing, IGU, 7b.34-44. 

15. Ware, J.M. and C.B. Jones Conflict Reduction in Map Generalisation Using Iterative 
Improvement. GeoInformatica, 2(4), 1998, 383-407. 

16. Harrie L. and T. Sarjakoski. Simultaneous Graphic Generalisation of Vector Data Sets, 
submitted to GeoInformatica. 

17. Horhammer, M. and M. Freeston. Spatial indexing with a scale dimension. In 6th 
International Symposium on Spatial Databases, SSD'99, 1999, Hong Kong, Springer, 52-
71. 

384 S. Zhou and C.B. Jones


	1 Introduction
	2 Spatial Objects and Scale
	2.1 The Scope of an Observation
	2.2 The Scale Range of a Spatial Object
	2.3 Continuous, Subsetting, and Non-subsetting Vertices

	3 Scale Coding
	4 Database Access Schemes for Multi-scale Geometry Objects
	4.1 Vertex Layer
	4.2 Grouping Vertices in Geometry
	4.3 Storage Schemes with Explicit Vertex Sequence Numbers
	4.3.1 Single Entity Geometry (BLOBSN)
	4.3.2 Multi-segment Geometry (VBSN)


	5 Dynamic MBR and Object Clipping
	5.1 Dynamic MBR of a Vertex
	5.2 Dynamic MBR of a Vertex-Block and Object Clipping

	6 Object Caching for Zoom-In, Zoom-Out, and Panning
	6.1 An Enlarged Query Window
	6.2 Object Reconstruction with Cached Geometry

	7 Indexing the Scale Ranges
	8 Implementation and Experimental Results
	8.1 Database Schemas
	8.1.1 BLOBSN and BLOBMV
	8.1.2 VBSN_NONCLIP and VBSN

	8.2 Spatial-Scale Indexing
	8.2.1 Indexing on Scale
	8.2.2 Spatial Indexing
	8.2.3 Integrated Spatial-Scale Indexing

	8.3 Generation of Sample Datasets
	8.4 Test Environment and Query Generation
	8.5 Results
	8.5.1 Multi-version vs. Multi-scale
	8.5.2 BLOB vs. Vertex-Block
	8.5.3 Non-clipping vs. Clipping
	8.5.4 Scale Indexing, Spatial Indexing, and Integrated Indexing
	8.5.5 Client-Side Object Caching


	9 Conclusions

