

Design and Implementation of Multi-scale Databases1

Sheng Zhou and Christopher B. Jones

Department of Computer Science
Cardiff University

Cardiff CF24 3XF, United Kingdom
{s.zhou,c.b.jones}@cs.cf.ac.uk

Abstract. The need to access spatial data at multiple levels of detail is a
fundamental requirement of many applications of geographical information, yet
conventional spatial database access methods are based on single resolution
spatial objects. In this paper we present a design for multi-scale spatial objects
in which both spatial objects and the vertices of their component geometry are
labelled with scale priority values. Alternative approaches to database imple-
mentation are considered in which vertices are organised into scale-bounded
layers. Access times for spatially-indexed vertex block schemes (comparable to
the PR-File) were superior to a BLOB scheme where only entire multi-scale
objects were spatially indexed. The use of a 3D R-tree to integrate scale and
space indexing was found to improve considerably on using either R-Tree
indexing of space only or B-tree indexing of scale. Techniques are also
presented for client-side reconstruction of cached multi-scale geometry. Imple-
mentations are compared in a client-server environment using the Informix
object relational database system.

1 Introduction

A characteristic of spatial objects in most geographical and geoscientific databases is
that they represent a view of reality at some particular level of semantic and geo-
metric abstraction. Many applications of geographical data however require access at
several levels of abstraction, for purposes of information browsing as well as scale-
specific analyses. These needs are met typically by storing distinct representations
that refer to the same real world phenomena. Typically these representations are simp-
ly digital versions of the scale-specific map series produced by topographic mapping
agencies. The approach suffers from inflexibility of scale, imposed by the source data,
in combination with data duplication and with problems of integrity maintenance of
the multiple versions.

In theory it is possible to envisage storing in a spatial database a single detailed
representation of the phenomena of interest and then applying map generalisation
algorithms online to retrieve the scale-specific representation that suits the user's
interests. For applications requiring large spatial databases that may be applied across

1 This research was funded by EPSRC Grant GR/L49314 in collaboration with the Ordnance

Survey and ESRI(UK).

C.S. Jensen et al. (Eds.): SSTD 2001, LNCS 2121, pp. 365−384, 2001.
 Springer-Verlag Berlin Heidelberg 2001

a wide range of levels of detail, there appears to be little immediate prospect of such a
scenario being realised. The reasons relate to the computational overheads of
processing potentially very large volumes of data in order to retrieve a small subset,
as well as the functional and performance limitations of existing map generalisation
procedures.

A pragmatic solution is one of pre-computation that strikes a balance between the
use of digitised manually generalised map data and the exploitation of existing map
generalisation procedures where they are appropriate. The most widely investigated
area of map generalisation is that of simplification of linear features. These proce-
dures can be used to attach scale-related priority values to the vertices of linear fea-
tures. If these values are stored, it is possible to retrieve subsets of the vertex geo-
metry that can be re-assembled into simplified versions of the line. This principle
underlies several multiresolution data structures and database storage schemes. Ex-
amples are the strip tree data structure [1] and its variants such as the arc-tree [2], the
BLG-tree (employed in the reactive data structures of [3]), the binary tree structure of
[4] and layered schemes such as the Multi-Scale Line Tree [5], the Multi-Scale
Implicit Triangulated Irregular Network [6], which both used quadtree indexing, and
the PR-File [7] which used a type of R-tree for spatial indexing.

An issue not addressed in the above schemes is that of topological consistency of
the simplified spatial objects. All of these schemes employed point selection tech-
niques that can result in simplified lines that overlap themselves and neighbouring
features. An approach that maintains topological integrity of polygonal maps at mul-
tiple scales was presented in [8] while [9] have described a scheme to maintain topo-
logical integrity between complete spatial objects of different types. An important
related development is the design of line generalisation procedures that are inherently
topology-preserving, in that all realisations of the line that can be generated by the
procedure are guaranteed topologically consistent. Examples of such procedures are
those of [10, 11 and 12], the latter being employed in the progressive transmission
scheme of [13]. The presence of topologically consistent generalisation techniques
introduces the possibility of database storage of multi-scale spatial objects that have
explicit degrees of consistency with themselves and with other objects in the database
[14]. Pre-computation of topological consistency, for limited ensembles of stored
objects, may then be combined with online generalisation procedures for purposes of
i) graphical conflict resolution due to arbitrary selection of map symbols [15, 16] and
ii) topologically-consistent generalisation of sub-sets of objects that do not have pre-
computed consistency.

In this paper we focus on several multi-scale spatial database implementation
issues, in particular: scale-range coding of vertices; clipping-support for multi-scale
geometry; strategies for client-side reconstruction of cached multi-scale geometry;
and the relationships between indexing on scale and indexing on geometric space. It
should be noted that the paper deals primarily with issues concerning access to the
geometry of individual multi-scale spatial objects, primarily lines and polygons. It is
assumed that these objects store data that covers a specified range of scale. The
geometry of an object may have been derived from larger scale objects in the course
of map generalisation operations, such as amalgamation and dimensional collapse,
and it may itself be a source of more generalised spatial objects through similar trans-

366 S. Zhou and C.B. Jones

formations. The scale values attached to vertices are assumed to be scalars that are
functionally related to map scale.

The remainder of the paper is set out as follows. In Section 2 we show how scale
can be associated with spatial data. Section 3 introduces scale-coding methods that
can be used to partition geometry into scale-specific intervals. In Section 4 we present
alternative storage schemes for maintaining the geometry of multi-scale geometry
objects. The issue of clipping multi-scale linear and polygonal features is addressed in
Section 5 as a precursor to the definition in Section 6 of client-side functions for
panning and zooming with multi-scale geometry. Two methods for object-recon-
struction from cached geometry are presented. Section 7 introduces alternative
approaches to indexing on scale. In Section 8, experimental results of spatially
indexing different sized blocks of vertices in an extended relational environment are
compared with object-level spatial indexing in a BLOB implementation. The results
of applying the two cached-object reconstruction techniques are described, as well as
the results of using both B-tree and 3D R-tree indexing on scale. The paper concludes
in Section 9 by summarising the relative merits of the various implemented
techniques.

2 Spatial Objects and Scale

An observation of a spatial phenomenon is made at a certain time from a certain point
of view reflecting the degree of abstraction, or scale of the observation. In the general
case a spatial object may be located in 3D space and refer to a specific time span.
Here we confine ourselves to 2D space and assume that all data relate to single period
of time. A spatial object SO can therefore be defined as a function in a 3-dimension
space SV on ℜ, consisting of two spatial dimensions and the scale dimension. Thus
SO = f(s, x, y), where f is a function to map point p(s, x, y) in SV to SO.

We define a snapshot of a spatial object at scale s as SOs = (oid, Rs(Gs)), where oid
is an unique identity of the spatial object, Gs = (GID, {gi | i = 1, n}) is a geometry set
with identity GID and Rs is an operator to assemble all geometry objects g in G into
the spatial form of SO at scale s.

Each geometry object g consists of one or several vertices, which may be a point;
an open curve (a polyline) or a closed curve (a polygon). A vertex vs has a unique
identifier vid, a sequence number vsn indicating the position of the vertex in the
parent geometry object, and spatial coordinates x, y. The scale property s of the spatial
object snapshot is inherited by its geometry set and in turn by all the geometry and
vertices.

2.1 The Scope of an Observation

The validity of a snapshot of a spatial object may be extended to cover a scale
interval, i.e. SOs = (oid, Rs(Gs)), s ∈ [sc, sd] where sc ≤ sd. Following standard carto-
graphic terminology, we regard a larger scale (e.g. sd > sc) as the scale corresponding

367Design and Implementation of Multi-scale Databases

to a more detailed map while a smaller scale is for a map with less detail. A
cartographic scale can then be any value in (0, ∞).

We define a scale range as the collection of one or more scale intervals that may
be continuous, adjacent or disjoint. In the following discussion, the term scale range
and scale interval are used interchangeably when no confusion will be caused. Also,
we refer to the smallest scale value in a scale range/interval as its lower scale bound
and the largest scale value as its higher scale bound.

2.2 The Scale Range of a Spatial Object

A spatial object may be defined as a collection of all of its snapshots, which consist of
all spatial information that we have on the object SO = {SOsi | i = 1, n}. We denote
the scale range of SO as S, the union of the individual scale ranges [sc, sd] i for i= 1..n.

The collection of geometry sets of all snapshots Gg = {gj | j = 1, m} forms the entire
geometry set of SO. Thus a spatial object contains one geometry set only and a
geometry object g may be referenced by more than one geometry set Gi of different
spatial objects. It will inherit scale properties from all these geometry sets. A geo-
metry object g is specified as g = (gid, Sg, {vj | j = 1, m}) where Sg are scale properties
of the geometry inherited from all geometry sets referring to this geometry. Assuming
there are k geometry sets referring to this geometry, Sg = ∪ si for i =1..k. Note that si
may be an interval.

In the general case a vertex v(x, y) may be referred to by more than one geometry
object belonging to the same or different spatial object. The specification of a vertex
then becomes v = (vid, Sv, vsn(s, gid), x, y). Sv are the vertex scale properties inherited
from all geometry that refers to it. Assuming k geometry objects refer to the vertex,
Sv = ∪ Sgi for i =1..k. The vertex set of a spatial object is V = {vi | vi ∈ gj; gj ∈ Gg}.

2.3 Continuous, Subsetting, and Non-subsetting Vertices

When scale priority values are attached to the constituent vertices of a linear or
polygonal feature, several possibilities arise regarding the ranges of scales to which an
individual vertex may be applicable. Here we distinguish between different types of
scale-labelled vertex.

Let S' be the intersection of the scale range Sv of a vertex vi and the scale range S of
a spatial object SO referring to the vertex. If S' = Sv ∩ S = [sa, sb], sa ≤ sb is a
continuous scale interval, we regard a vertex vi as a continuous vertex of spatial object
SO. If sb = smax ∈ S (smax is the higher scale bound of the scale range of SO), we regard
vi as a continuous subsetting vertex of SO, reflecting the fact that the vertex is present
in the most detailed representation of SO. If S' is not continuous then the vertex is a
non-continuous vertex of SO. Similar subsetting concepts apply to geometry objects.

368 S. Zhou and C.B. Jones

3 Scale Coding

A multi-scale spatial database should be able to support scale change in a continuous
manner across the entire scale range of the stored data. Due to the fact that the
number of vertices in any dataset is limited, storage of a finite set of discrete scale
intervals within the database is sufficient to support queries made at any scale. In
practice the number of intervals required is normally quite small, unless an
application demands very minor distinctions to be made between scale values.

A query on a multi-scale spatial dataset may be defined as: given a query scale sq
and a query window QW, find all spatial objects SO (with scale range S) in map M
where SO.MBR ∩ QW ≠ ∅ and sq ∈ S and MBR refers to the minimum bounding
rectangle of the spatial object. A group of vertices {vi | sq ∈ Svi ∧ (xi,yi)∈QW} will be
retrieved to form this representation. A map is a finite set of spatial objects and hence
a finite set of vertices. The scale range of a vertex is a set of scale intervals:

Svi = {[sa, sb] | sb≥sa;sa+1>sb}
Here sa+1>sb is used because if sa+1 = sb the two intervals can be merged. Therefore
the scale range for the map is:

Smap= ∪ Svi = {[sc, sd] |sd≥sc;sc+1≥sd}
which is a finite set of scale intervals. Note that these intervals are merged in the
following manner: for [s1, s2] ⊆ Svi and [s3, s4] ⊆ Svj and s1<s3<s2<s4, three intervals
will be formed in the scale range of the map: [s1, s3] ,[s3, s2] and [s2, s4]. In the above
expression sc+1≥sd is used because the intervals are created by bounding scale values
coming from different vertices. If all scale values defining these intervals are unique,
there are at most r-1 intervals for r different scale values between 0 and ∞. In this
case, the scale range for the map is continuous and all scale intervals defined above
can be merged to a single interval [smin, smax].

Clearly for each of these intervals [sc, sd] in Smap, the scale range of a vertex Sv_i
either covers it or not covers it. Consequently for any sq ∈ [sc, sd], the same set of
vertices (where [sc, sd] ⊆ Sv_i) will be retrieved. As there is no restriction on the
possible value of sq (if sq∉Smap, an empty representation is retrieved), we can conclude
that we are able to classify vertices in a finite set of scale intervals to support queries
based on continuously varying query scale values.

When all intervals in a scale range are stored, as: SR = {[si, sj]|i,j=1, n; si ≤ sj}, the
test for inclusion of a query scale value in a range is "If sq ∈ [si, sj] ∈ SR Then SR
covers sq Else SR does not cover sq". The scheme will work for all three vertex types
of continuous, continuous subsetting and non-continuous. For the two continuous
cases, the scale range has a single interval form: SR = [Smin, Smax]. For the continuous

subsetting case, we have: SR = [Smin, Smapmax
]. Indeed, in practice only the Smin value

is needed and the test can be further simplified to "If sq ≥ Smin ∈ SR Then SR covers sq
Else SR does not cover sq". For the non-continuous case, the resulting scale range will
have a length-varying form that will certainly increase the complexity of storage and
query process.

In practice, nominal variables (bit coding, C-style enumeration etc) may be used to
represent bounding scale values or scale intervals to improve storage efficiency.

369Design and Implementation of Multi-scale Databases

4 Database Access Schemes for Multi-scale Geometry Objects

In this section we introduce database storage structures that allow us to evaluate
alternative approaches to implementing the geometry objects introduced in previous
sections. A geometry object is denoted in the database as an MGEO (Multi-Scale
Geometry Object) and it is referenced by an MSO (Multi-Scale Spatial Object). For
purposes of experimentation we introduce the following constraints on the previous
data model:
Constraint A: A vertex belongs to only one MGEO;
Constraint B: All vertices of the same geometry object are continuous subsetting.

The representation REPM of a map at scale sq and with a query window QW is:
 REPM(sq, QW) = {MGEOi,Sq | sq ∈ Smgeo; MGEOi.MBR ∩ QW ≠ ∅} and
 MGEOSq = {vi | sq > svmin_i}.

The part of the multi-scale database that stores MGEOs may be represented
conceptually by the relations MGEO(MGEOID, SMGEO) and VERTEX(MGEOID, VID,
Sv, vsn, x, y). As the multi-scale geometry objects are the basic building blocks for
implementing the whole model described above, in the remainder of this section we
focus on methods for organising the storage of vertices within individual MGEOs.

4.1 Vertex Layer

If the VERTEX relation above were to be used directly in a real database implemen-
tation, the resulting vertex table would normally consist of a huge number of rows,
making database queries very inefficient. It is desirable therefore to use structures
larger than a single vertex as the storage unit. Hence we introduce the concept of a
vertex layer VL as the set of all vertices which belong to the same MGEO and whose
scale ranges share the same lower scale bound:

VL = (lsn, SVL, {vi | vi ∈ MGEO; svmin_i =svmin_j=sVLmin, i ≠ j ; vsni< vsnj, i<j }) where
lsn is the identifier and SVL is the scale range of the vertex layer. Applying the
assumption of continuous subsetting within an MGEO, all vertices inside a vertex-
layer have the same scale range, leading to the simplification:

VL = (lsn, SVL, {vi | vi ∈ MGEO; Svi = SVL, ; vsni < vsnj, i < j})

4.2 Grouping Vertices in Geometry

As explained in Section 3.1, the scale range of a MGEO can be decomposed into a
finite set of scale intervals {[sn, sn-1], ..., [s3, s2], [s2, s1]}, (si < si-1) where the scale
range of a vertex is [si, s1] (n ≥ i > 1). Therefore, we may group vertices into several
vertex layers corresponding to the following predefined set with n scale intervals
{[sn, s1], ..., [s3, s1], [s2, s1]}. We can then define an MGEO with n vertex layers as
follows:
 MGEO = (SMGEO = [sn, s1], { VLi | i = 2, n})

VLi = (SVL_i=[si, s1], { vj | Sv_j = [si, s1]}) and ∀vk(Sv_k = [si, s1]) ⇒ vk ∈ VLi. Given a
query scale sq ≤ s1, a subset of vertex-layers {VLi | si ≤ sq} forms a legible
representation of the MGEO at this scale.

370 S. Zhou and C.B. Jones

4.3 Storage Schemes with Explicit Vertex Sequence Numbers

Since vertex-layers are a scale-based decomposition of the vertex set of a MGEO, the
ordering of vertices, relative to the original sequence, can be preserved inside each
layer but not among different layers. When a subset of vertex layers is used to form a
legible representation of the geometry, the original order of all selected vertices
should be restored. One simple solution is to use an explicit sequence number (vsn) in
the vertex data structure. Vertices in the subset of vertex-layers will then be sorted
according to their vsn at the stage of object reconstruction. It should be remarked here
that, alternatively, it is possible to maintain vertex ordering implicitly, without
sequence numbers, by using references between vertices at different levels in
combination with local ordering within layers [5]. A further option, which
corresponds to most existing implementations of multiple scale data, is of course to
store complete versions of the geometry at each scale-specific layer. We now
introduce two approaches to storing sequence-numbered vertices that are organised in
vertex layers.

4.3.1 Single Entity Geometry (BLOBSN)
As the binary large object data type (BLOB) is widely available in modern DBMS, a
MGEO with many vertices may be stored as a single entity in the database. A BLOB-
based representation of a MGEO has the following structure: <(sn, end_offsetn), ...,
(s1, end_offset1)><VLn, ..., VL1>. Thus vertex layers are stored after a head section
(the length of which, fixed or varying, is known). Inside the head section, the end
offset of each vertex layer is stored as an index used by application programs to read
vertex layers from the BLOB object. Note that the starting offset of a vertex layer is
the same as the ending offset of the layer preceding it. In this scheme spatial indexing
is performed on the complete BLOB and hence refers to the entire geometry object
represented by the MGEO.

4.3.2 Multi-segment Geometry (VBSN)
If spatial indexing is to be performed on parts of a geometry object then the vertex
layers of a MGEO can be divided into multiple segments. If we set a limit to the size
of each segment, they may be implemented as an extended data type in the DBMS
and stored as fields of a record or row. The limit on size can either be the number of
vertices in a segment or the total data volume of the segment. In the current treatment,
we will use the number of vertices (bsz) as the size constraint. We regard such
segments as vertex blocks (VB) where

VB = (bsn, SVB,{vi | i=1,n; n≤bsz; vi∈MGEOk; Sv_i =SVB; vsni < vsnj, i <j })
and the block sequence number bsn is the identifier of the vertex block. Each vertex
block is indexed by a minimum bounding rectangle and for two blocks VB1 and VB2
belonging to the same vertex-layer, if vi ∈ VB1 and vj ∈ VB2 , and bsn1 < bsn2 then we
have vsni < vsnj.

371Design and Implementation of Multi-scale Databases

5 Dynamic MBR and Object Clipping

In this section we address the problem of defining the extent of bounding rectangles
that can be used for spatial indexing of vertex blocks. An important issue in querying
a spatial database is to maintain topological consistency of objects overlapping the
boundary of the query window. To do this it is necessary to retrieve vertices outside
the query window that are neighbours of vertices of the same MGEO that are inside
the query window. The associated edges can then be clipped to the window boundary.
In an MGEO it important that the retrieved external vertices are at a level of detail
equivalent to that of the neighbouring internal vertices

A simple solution is to retrieve the entire set of vertices of the object at the query
scale. This is the approach adopted with the BLOBSN storage scheme. However, this
approach may result in significant data redundancy as an object with many vertices
may have only a small intersection with the query window. A solution to the problem
is to associate with each vertex, or vertex block, a dynamic minimum bounding
rectangle (DMBR) that includes the location of neighbouring vertices at the same or
lower levels of detail, plus all intermediate vertices. The principle underlying the
DMBR was introduced originally in [6] to support proximity queries.

5.1 Dynamic MBR of a Vertex

For vertex vi=(vsni, Sv_i=[sj, s1], x, y) in a MGEO, the DMBRv_i = (xmin, ymin, xmax, ymax).
It covers: 1) the vertex itself, 2) the two neighbouring vertices that have a lower scale
bound equal to or smaller than the lower scale bound of the vertex (i.e. having
equivalent or less detailed scales), and 3) all other vertices between these two vertices
that have a greater lower scale bound (and hence represent greater detail). Note that
for closed curve geometry, the search for the two neighbouring vertices should be
extended beyond the beginning or the end of the vertex sequence when necessary. For
the case where there is only one vertex with the scale range of the MGEO, its DMBR
is the MBR of the MGEO.

5.2 Dynamic MBR of a Vertex-Block and Object Clipping

With the above definition of DMBR for an individual vertex, we can define the
DMBR for a vertex-block as VB.DMBR = MBR({vi.DMBR | vi ∈VB}). This is the
MBR of the DMBRs of all its vertices.

When a vertex vi = (Sv_i=[sk, s1]) is retrieved by a query Q(sq≥sk, QW), its adjacent
vertex vr with equal or lower scale bound, if outside the QW, should also be retrieved.
However, this can not be achieved by a conventional query of the form:

Q(sq, QW) ← {vi = ([si, s1], x, y)| si ≤ sq ∧ Overlap(QW, (x,y))
as vr is outside QW. With the help of the DMBR, we can amend the query to:

QDMBR (sq, QW) ← {vi = ([si,s1],DMBR,x, y) | si≤sq ∧ (Overlap(QW, vi.DMBR)}
In this case an externally adjacent vertex vr will be retrieved because its DBMR will
include the location of the internal neighbour and hence overlap QW. In general, most
vertices outside the query window will not pass this test, thereby avoiding redundant

372 S. Zhou and C.B. Jones

retrieval. Note that the definition of DMBR is simply an alternative to conventional
MBR so it will not introduce any storage or performance overhead.

 Fig. 1. DMBRs of vertices Fig. 2. The real dataset and query windows

The above convention also applies to the situation when vertex-blocks are used. If

the vertex vi mentioned above is a boundary vertex of its block VBi (i.e. the first or
last in the vertex sequence of the block), the vertex-block (say, VBr) containing vr
should be retrieved. Since the DMBR of a vertex-block covers the DMBRs of all its
vertices, if vr.DMBR overlaps QW then so will its vertex block VBr.DMBR.

The query for a vertex-block based dataset is therefore:
QDMBR(sq,QW)←{ VBi=([si,s1],DMBR,{vj|j=1, n}) | si≤sq ∧ Overlap(QW, VBi.DMBR))}

For example, in Fig. 1, a vertex vi_j refers to a vertex with lower scale bound i and
sequence number j. According to the definition of DMBR of vertices, the DMBRs of
v1_1 and v1_8 are defined by rectangles (1, 2, 3, 4), v2_2 (1,5,6,7), v2_6 (8,9,10,11) and
v2_7 (12,13,3,14). When a query (QW, Sq <=2) is made, v2_2 is inside QW and retrieved
directly and v1_1, v2_6, v1_8 are also retrieved because their DMBRs intersect QW.
Therefore the intersection of the object with the boundary of QW is represented
correctly by segment v1_1-v2_2 and v2_2-v2_6. As already mentioned, there will still be
some redundant vertices retrieved (v1_8). However, v2_7 is not retrieved so that the
redundancy rate is reduced. Note that the three unlabelled vertices in the figure have a
larger lower scale bound and make no impact on the query result.

6 Object Caching for Zoom-In, Zoom-Out, and Panning

Querying a multi-scale spatial database is rarely a one-off operation. Users may want
to zoom-in, zoom-out or pan around the entire dataset. Here we define these basic
operations in the context of the vertex block storage scheme, before introducing some
procedures to facilitate their implementation with cached data on the client.

In what follows each local windowing operation results in a new client-side result
set RSm_1 of the multi-scale data that supplements the existing client-side result set

v1_1

v1_8

v2_2

v2_7

v2_6

1
2

3
4

5

6 7

8 9

10
11

12
13

14

QW

373Design and Implementation of Multi-scale Databases

RSm_0. We start by retrieving an initial representation RSm_0 using a window QW0 and
a query scale of sq_0:

 RSm_0 = (QDMBR (sq_0, QW0) ←
 {VBi=([si,s1],DMBR,{vj | j = 1, n }) | si≤sq_0 ∧ Overlap(QW0, VBi.DMBR))}
We may define a panning operation with a new window QW1 as:

 RSm_1 = RSm_0 + (QDMBR (sq_0, QW1) ←
 {VBi=([si,s1],DMBR,{vj|j=1,n})|si≤sq_0 ∧ Overlap(QW1, VBi.DMBR) ∧

 ¬Overlap(QW0, VBi.DMBR))}
Note that those vertex-blocks that are retrieved by the previous queries and are

outside the new query window QW1 become redundant for the current map.
A zoom-in operation is with a window QW1 is defined as:

RSm_1 = RSm_0 + (QDMBR (sq_1, QW1) ←
{VB i=([si,s1],DMBR,{v j | j=1, n}) | sq_0 < si ≤ sq_1 ∧ Overlap(QW1, VBi.DMBR)}

Implementation of this operation retrieves some additional vertex-blocks of
MGEOs that have been partially retrieved in previous queries and plugs the new
vertex blocks into the previous representation. Note that QW0 is normally but not
necessarily larger than QW1.

Finally, a zoom-out operation to scale sq_1 may be defined as
 RSm_1=RSm_0 + (QDMBR (sq_1, QW1) ←
 {VBi=([si,s1],DMBR,{vj|j=1,n})| si ≤ sq_1 ∧ Overlap(QW1, VBi.DMBR) ∧
 ¬Overlap(QW0, VBi.DMBR) }
In this case, some new vertex-blocks outside QW0 may be retrieved while some

existing vertex-blocks with a larger low scale bound (si > sq_1) become redundant to
the current map.

These three operations are defined relative to the operation immediately preceding
them. In a more general situation, the initial result set is the result of a series of
previous queries {Q0, Q1, …, Qn}. In this case, a new query Qn+1 will generate a new
result set as RSn+1 = RSn + {VBi | VBi ∈ (Qn+1 ∧ ¬(Q0∨Q1∨…∨Qn))}. Obviously, such
an expression could generate a very long and inefficient query statement. Therefore in
practice a balance must be found between the increased complexity of the query
statement and reduced retrieved data volume.

The purpose of supporting object caching is to make use of data that have already
been retrieved and reduce the overall data communication between client and server.
Although the method of supporting object caching is highly implementation
dependent, we would like to address some relevant issues here.

6.1 An Enlarged Query Window

If panning operations are to be expected, then there are benefits to be gained from
retrieving a larger query window than that requested by the user. We assume that in
the application program there will be a mechanism to map a query window of
particular size, say QW0, to a query scale, say sq, and that objects with [si ≤ sq, s1] that
overlap QW0 will be retrieved. When si < sq, we can map si back to a window QW'0
which is larger than QW0 and shares the same geometric centre with QW0. By using
this enlarged query window QW'0 to make the query, the retrieved dataset will remain

374 S. Zhou and C.B. Jones

relevant when subsequent panning or zoom-out operations are restricted to being
within QW'0 and no new queries will need to be carried out. The size of QW'0 will
depend upon the storage resources of the system. In addition, we may use a larger
query scale (say, s'q > sq) to retrieve more detailed data of objects so that zoom-in
operations to scales smaller than or equal to s'q can also be supported.

6.2 Object Reconstruction with Cached Geometry

Both the BLOB and Vertex Block storage schemes have the potential to support
object caching in a graphic presentation system. For a one-off query, the normal
sequence of actions is:

1) retrieve vertices in server representation;
2) reconstruct client-side representation of vertices from their server

representation, put vertices into a linear data structure, which can be sorted
efficiently, and delete the server representation;

3) sort vertices in the linear structure;
4) convert vertices to logical/device coordinates for graphic presentation.

If an associative data structure (such as the map template in C++ standard library)
is used, steps 2 and 3 may be merged. In step 4, a new linear data structure which is
compatible with the graphic presentation system might have to used and new vertices
compatible with the graphic system have to be created. In this case, the original
linear/associative structure may be discarded.

To support object caching in a multi-query situation, there are some alternatives for
zoom-in/panning:

a) keep the original server representation and repeat steps 2, 3, 4 when new data
are added;
b) keep the linear structure in 2 and 3, add new data directly into it and then carry
out step 4 after re-sorting (for which there will be no need in the case of an
associative structure).

For zoom-out, if the original server representation is not preserved, the scale range of
each individual vertex has to be stored in the data structure for client-side vertices, in
order to eliminate extra vertices in step 4.

7 Indexing the Scale Ranges

A technique for indexing on scale in combination with spatial indexing was intro-
duced in [17]. We pursue a related idea here with scale values associated with
individual vertices as well as complete objects. We consider several alternative ap-
proaches. At one extreme it is possible to index simply on scale. For the continuous
subsetting cases, a B-tree may be used to index the scale range field in a multi-scale
spatial database. One way to index and query non-subsetting data is to use two fields
for the scale range and to build a B-tree on the higher scale bound in the scale range
and use an extra expression to compare the query scale value and the lower scale
bound of the range. Alternatively, if a generic R-tree is available, a 1-D R-tree index
may be built for the scale range column by defining necessary operations on the scale

375Design and Implementation of Multi-scale Databases

range values. An integrated approach is to combine the scale range with the spatial
extent of objects (i.e. MBR) in a multi-dimensional R-tree index. For the non-
continuous case, the above technique also applies but extra value testing is needed.
Further design and implementation details are given in section 8.2 and in section
8.5.4 in which we perform a comparison of the three approaches of a B-tree index
on scale, an R-tree index on space and a 3D R-tree that integrates indexing on scale
with space.

8 Implementation and Experimental Results

8.1 Database Schemas

For purposes of evaluation four database schemas have been implemented. The first
two, referred to as VBSN and VBSN_NONCLIP, are based on the vertex block
design introduced in Section 4.3 and respectively include and omit clipping support
on vertex blocks. The third uses blob storage (BLOBSN), as described in Section 4.3.
The fourth is a blob based multi-version schema (BLOBMV) under which a complete
representation for each scale interval is stored. Thus in the latter case all vertices
present, at each of the multiple scales, are stored in correct order, with no need for a
reconstruction step. In all implementations there are two primary tables: an MSO
table and an MGEO table.

8.1.1 BLOBSN and BLOBMV
For these implementations a row in the MSO table is represented by a tuple (mso_id,
lsb, hsb, geomtype, mbr). The value geomtype indicates whether the object is an open
or a closed curve. lsb and hsb are the lower and higher scale bounds of the scale
range of the object. A row in the MGEO table has the form of (mso_id, lsb, hsb, mbr,
blob_vertices). Here blob_vertices is a handle to the blob object in the database
storing all vertices of this MGEO. The internal structure of the blob object for
BLOBSN has been described in section 4.3.1. The blob for BLOBMV is simply a
succession of the multiple versions in ascending order of their lower scale bound.

8.1.2 VBSN_NONCLIP and VBSN
The MSO table for VBSN_NONCLIP has the same structure as for BLOBSN. The
form of its MGEO table is (mso_id, lsb, hsb, bsn, mbr, opaque_vertices). bsn is a
sequence number assigned to a vertex-block and opaque_vertices is an Informix
opaque data type containing vertices of this vertex-block.

The MSO and MGEO tables of VBSN have the same structure as those for
VBSN_NONCLIP except that dynamic MBRs of vertex-blocks instead of
conventional MBRs are stored in the mbr column.

376 S. Zhou and C.B. Jones

8.2 Spatial-Scale Indexing

8.2.1 Indexing on Scale
Using the generic B-tree and R-tree utilities in Informix, we tested three methods to
create indices for MSO/MGEO tables on their scale/spatial extent columns to support
efficient query executions. The first method is to generate a B-tree index, referred to
here as mso_scale_index, on the lower scale bound column lsb. A query statement on
the mso_table generated from a query Q(sq, QW) has the following form:

Select {+index(mso_table mso_scale_index)} mso_id, geomtype from mso_table
 where lsb <= sq AND sq <= hsb AND overlap(mbr, QW);
where the directive {+index()} forces the query parser to use the specified index
whenever possible.

The query above refers to data that are encoded with continuous vertices. To
handle scale bounds of non-continuous scale ranges, we can create an extended data
type, ScaleRange{Scale lsb, hsb;}, to contain the two bounds and define a group of
operations (such as Overlap, Contains, Within, Equal) which are, in Informix terms,
R-tree strategy and support functions on this data type. Creating a 1-d R-tree index on
columns sr (scale range) using this data type, the query becomes:

Select {+index(mso_table mso_scale_index)} mso_id, geomtype from mso_table
 where overlap(sr, ‘sq, sq’::ScaleRange) AND overlap(mbr, QW);

As the overlap operation will take two parameters of the type ScaleRange, we have
to convert the query scale sq to a zero-extent scale range in the query statement.

8.2.2 Spatial Indexing
All mbr/dmbr columns have the type GeoRect, which is an extended data type
representing a rectangle with R-tree strategy/support functions defined for it. With an
R-tree index (mso_spatial_index) created on the mbr column the query statement is:

Select {+index(mso_table mso_spatial_index)} mso_id, geomtype from mso_table
 where lsb <= sq AND overlap(mbr, QW)

8.2.3 Integrated Spatial-Scale Indexing
In order to index spatial and scale dimensions integrally, we defined an extended data
type GeoCube {Scale lsb, hsb; Coord minx, miny, maxx, maxy;}. R-tree
strategy/support functions, including overlap, are also defined for this type. With this
data type, we can merge the scale range column(s) and the spatial extent column into
a single column (say, mbc, the minimum bounding cube). The schema of the MSO
table then becomes (mso_id, geomtype, mbc) and we can create a 3-D R-tree index
(mso_integrated_index) on the mbc column and the query statement becomes:
Select {+index(mso_table, mso_integrated_index)} mso_id, geomtype
 from mso_table
 where overlap(mbc, ‘sq, sq, QW.minx, QW.miny, QW.maxx, QW.maxy’::GeoCube);

377Design and Implementation of Multi-scale Databases

8.3 Generation of Sample Datasets

We regard the process of generating a multi-scale map dataset from a source dataset
at a single large scale as one of calculating scale ranges for map objects and vertices
and then, if necessary, classifying them according to a set of predefined scale
intervals. From the viewpoint of map generalisation, this requires a mapping between
various parameters of generalisation algorithms and the predefined scale interval set.
It should be remarked that in theory the process of creating a multi-scale dataset could
be based on several source datasets at different base scales, but for the sake of
simplicity, we do not consider that possibility further.

As the generalisation of a map dataset with multiple geometric feature types
remains a challenging task, that has yet to be fully automated, we restrict ourselves to
handling map datasets with a single geometric feature category, namely open or
closed polylines. One real map dataset and two simulated map datasets were used to
test various multi-scale schemes presented in this paper.

The real map dataset (Fig. 2) consists of contours extracted from a 1:5000
topographical map which covers a region of about 50 km2 with 627 contour lines and
48478 vertices. An amended Douglas-Peucker algorithm was used to generate scale
range values of vertices taking account of the "extending beyond endpoint" situation
[2]. Also, four selection levels decided by experiment were set to eliminate entire
contours with certain elevation values as scale decreases. A base-2 scale interval set
was used (i.e. {1:2i×1000|i = 0, n}) in this process and the values of tolerance in the
Douglas-Peucker algorithm were mapped to this scale interval set.

Since the size of the real dataset is fairly small for the purpose of performance
testing and the data points/lines inside this dataset are distributed unevenly, we used a
Koch curve (order = 3) along with the Douglas-Peucker vertex selection criterion to
create two simulated map datasets (see extracts in Fig. 4) in a "central place" style
(and hence with some degree of geographical reality). A base-3 scale interval set was
used (i.e. {1:3i×1000|i = 0, n}). Datasets created in this way result in a similar density
of retrieved objects on the presentation medium for various scales, which conforms to
the geometric presentation of a real map series. In addition, using this method, a
dataset of arbitrarily large size can be generated easily.

The first simulated dataset covers a 10km by 8km region at 1:5000 base scale with
17,187 objects and 1,335,534 vertices. The second set is much larger, at 40km by
32km, with 273,996 objects and 21,073,087 vertices. In order to eliminate objects of
very small size, curves with less than three levels are not created. Consequently, the
smallest object has an extent of about 25m with 48 vertices.

8.4 Test Environment and Query Generation

Our experiments were carried out on a PIII-600MHz PC with 128MB RDRAM
running Windows NT Workstation 4.0. The extensible object-relational DBMS used
here was Informix Dynamic Server 2000 ver.9.20.TC3. All application programs to
generate and process test datasets, load data to database server and make queries on
the server were written in C++ with Informix Object Interface for C++ v.2.6.

378 S. Zhou and C.B. Jones

The location of query windows on the real dataset was determined arbitrarily as
covering a “region of interest”. For the two simulated map datasets, a series of query
windows was generated automatically with each window having the size of one
quarter of the area of the window at a higher level. The query scale value was
calculated by the query program according to the size of the query windows and an
input value for “screen resolution”, assuming a fixed display device area. In the
results presented here, we used resolutions of 0.2mm, 1mm and 5mm respectively.
Fine screen resolutions result in retrieving more detailed representations, while
coarser resolutions lead to a smaller query scale value and hence less detail.

In our application programs, a query to the map database is carried out in two
steps. First a set of MSO objects is retrieved and then in the second step their
associated geometry objects are retrieved and reassembled. The results shown are the
average of several runs when applicable.

8.5 Results

We carried out various measurements on different aspects of the query and object
reconstruction process. In the following discussions, we refer to “retrieval time” (RT)
as the interval between when the query is issued and the result set is returned (for blob
object based schemes, the time to read data from the blob object should be added).
“Process time” (PT) is the interval between the return of the result set and completion
of reconstruction of the representation of the map dataset (for the blob object based
scheme, the time to read data from blob objects should be excluded). “Client-side data
redundancy”(CDR) is the ratio of the number of retrieved vertices outside the query
window (Vout) to the number of vertices inside the query window (Vin).

8.5.1 Multi-version vs. Multi-scale
Our results (Table 1, 10k by 8k simulated dataset, where Rscr is the "screen resolution"
used and Q_Res is the actual field resolution) shows that the multi-version scheme,
understandably, usually has a better process time than the sequence number based
scheme, which needs to carry out a sorting operation after retrieval in order to
perform object reconstruction. However, its advantage on this aspect is typically no
better than about 10%.

 Table 1. Process time of BLOBSN and BLOBMV schemes (in seconds)

Relative
QW Area

Rscr = 0.2mm Rscr = 1.0mm Rscr = 5.0mm

 SN PT MV PT Q_Res SN PT MV PT Q_Res SN PT MV PT Q_Res

0.39% 0.431 0.37 1 0.28 0.23 9
1.56% 0.952 0.942 3 1.162 0.921 9
6.25% 3.742 3.497 1 3.496 3.234 9 1.422 1.274 27
25% 16.004 15.92 3 15.763 15.833 9 0.741 0.822 81
100% 89.701 89.501 3 20.998 19.625 27 3.025 3.357 81

The main disadvantage of the multi-version scheme appears to be the server side
data redundancy (SDR). Theoretically, we would expect the data redundancy to be:

379Design and Implementation of Multi-scale Databases

Nrud
n

R 1lim =
∞→

 where N is the average number of vertices inserted between two

vertices at a higher level and n is the number of vertex layers (proof is omitted here).
In practice we encountered much higher redundancy rates which implies a very small
N. Table 2 shows the data volumes of the real map dataset using the two schemes:

 Table 2. Data volume of blob schemes in bytes(the real dataset)
 BLOBSN BLOBMV SDR
No-selection 969,560 4,131,664 3.261

Selection 969,560 2,624,688 1.707

When the selection generalisation operator is used (to eliminate some entire
contours as scale decreases), the number of vertex layers is relatively small and the
redundancy is lower. However, a redundancy rate of 1.7 is still significant. Indeed, the
result shown above is based on a predefined scale interval set with only a few
intervals (similar to an ordinary topographical map series). If the multi-version
method is used to support continuous scale change, the number of versions will be
much higher. Another difficulty associated with the multi-version scheme is the
preservation of information on scale range of individual vertices. If this information is
to be stored for each vertex, the redundancy rate will be even higher. It is also
difficult to maintain efficiently the identity of a vertex that is present in multiple
vertex layers, which may be important for some analytical purposes. This may be
solved by introducing an explicit identification number (or indeed, a sequence
number) for each vertex, which, however, will turn the scheme into a sequence
number based one with multiple versions. Finally, the multi-version scheme does not
provide support for efficient client-side object caching operations other than panning.

8.5.2 BLOB vs. Vertex-Block
The main difference between the two implementation strategies of blob based and
vertex-block based schemes is that vertices are stored in-row under the vertex-block
scheme (VBSN) while vertices in blob objects are stored separately in a different
“dbspace”. To open a blob object and read data from it is a relatively expensive
operation. On the other hand, a MGEO table based on a blob scheme will have fewer
rows which will result in a better query performance (reflected in our “retrieval
time”). However, under our software/hardware environment, this advantage on query
execution did not result in a better overall performance, as the operation of opening
blob objects and reading data from blob objects is the bottleneck of the whole process.
Table 3 below shows the average timing results of 4 runs on the first simulated dataset
with a query window of 10km by 8km (i.e. the extent of the dataset) and a query scale
1:15000 (the second largest in the bounding scales of the scale interval set). Rblob is to
the time to retrieve the content of blobs. Note that the application programs have been
optimised using customised memory management schemes.

 Table 3 (The 10k by 8k simulated dataset)
BLOBSN (in seconds) VBSN (in seconds)

RT' + Rblob PT'-Rblob Rblob Overall RT PT Overall
55.541 61.701 50.556 117.242 60.828 14.805 75.633

380 S. Zhou and C.B. Jones

8.5.3 Non-clipping vs. Clipping

When object clipping is not supported, all vertices in a geometry object that are
visible at the query scale have to be retrieved in order to maintain topological
consistency with the boundary of the query window. In some cases, this can result in
large client-side data redundancy. Although the approach of sending all vertices may
be useful for a client-side object caching scheme, it may generate an unstable query
response performance. With DMBR-based clipping support, we are able to reduce the
data redundancy significantly. Fig. 3 shows the graphic presentations of some of the
datasets retrieved from queries without clipping support and queries with clipping
support and different block sizes. As shown in the figures, when the vertex block size
increases the data redundancy of the retrieved dataset will increase as well.

Fig. 3. Data retrieved without and with vertex-level clipping. The spurious line cross-overs
outside the query window are due to arbitrary variations in detail of redundant data beyond the
immediate vicinity of the window. Data inside the window are at consistent levels of detail.

The reduction of data redundancy results in a much better performance. In our
experiment with 14 queries on the real dataset (block size = 1, not optimised), the
average query time with clipping was 87% (SD=25%) of that of non-clipping, while
the vertex process time was only 33.4% (SD=22.4%) of the non-clipping scheme.

8.5.4 Scale Indexing, Spatial Indexing, and Integrated Indexing
Here we compare experimental query response times using B-tree indexing on scale,
R-tree indexing on space and integrated 3D R-tree indexing on space and scale. Fig. 5
shows the results of queries for all three types of index across a wide range of sizes of
spatial window, with corresponding change in the computed scale value (retrieval
resolution), for a screen resolution of 5 mm. The results show that indexing on scale
alone gives very poor results for small window sizes while the R-tree indexing on
space alone gives poor results for large window sizes. The reason is that in both cases
the intermediate result sets returned by the indexed query directive in the composite

Retrieval without clipping
(blobsn and vbsn_nonclip)

Retrieval with clipping
(block size = 12)

Retrieval with clipping
(block size = 36)

381Design and Implementation of Multi-scale Databases

query statements (described in Section 8.2) are very large and subsequently the other
query directives are executed sequentially on these large result sets. The integrated
(3D R-tree) indexing method strikes a balance between space and scale resulting in
overall superior performance (which applies for all screen resolutions though the
other results are not presented here).

 Fig. 4. Part of a simulated map Fig. 5. Comparison of indexing with R-Tree (space),
 dataset based on Koch curve B-Tree (scale) and space-scale 3D R-tree

The results indicate that when the query window is very large, the B-tree generates
a slightly better performance than the 3D R-tree. We believe this is due to the uneven
distribution of spatial objects on the scale dimension (conforming here to Topfer's
“radical law”). Thus, when the query window is large, the B-tree index filter retrieves
a very small result set and a subsequent spatial extent check can then be done quickly.
On the other hand, the 3D R-tree treats the three dimensions equally which may result
in a decomposition of space whose configuration is not optimal when the query
window is large and the query scale is small. It appears that if at the top level (or a
few levels at the top) of the 3D R-tree the decomposition were to be carried out with a
scale priority instead of a spatial priority, the overall performance of the integrated 3D
R-tree could be further improved.

8.5.5 Client-Side Object Caching
So far the results presented have been based on single queries. We implemented the
two client-side object caching schemes described in Section 6.1.2, with the VBSN
storage scheme, to test the performance of a series of zoom-in, zoom-out and panning
queries, with and without object caching. The first scheme maintains an indexed data
structure (we used C++ map template) for vertices. When new vertices are retrieved,
they are added into this data structure and sorted. At the stage of linear feature
reconstruction, prior to display, all vertices in the indexed structure are examined and
those with a lower scale bound smaller than the query scale are selected. The second
scheme keeps a list of retrieved vertex-blocks for each object. When a linear feature is
to be reconstructed, the block list is scanned. Selected vertices are then put into a
linear data structure and sorted according to their sequence number.

Query using three index methods
(40k_32k dataset, Scr_Res = 5mm)

1.00

10.00

100.00

1000.00

0.001 0.0039 0.0156 0.0625 0.25 1

Relative Area (%)

R
et

rie
va

l T
im

e
(s

)

R-Tree

B-Tree

Integrated

382 S. Zhou and C.B. Jones

For each action of zoom-in, zoom-out and pan, an initial query is carried out to
construct a client-side result set. Subsequently two zoom-in/zoom-out/panning opera-
tions are carried out and new objects/vertices are merged into the initial result set.
Table 4 illustrates the data volume reduction of caching in comparison to non-caching
using the 10k by 8k dataset. Ver_Num is the number of vertices added into the result
set after two operations and Data_valume is the total volume of vertex data retrieved
from the server over the two operations. In all these operations, one level of caching is
used (i.e. the query statement of the previous query is used to optimise the new query
statement). The percentage is simply the cached data divided by the non-cached data.
Our results show that the vertex-block list based scheme provides a better perfor-
mance for on-line reconstruction for the retrieved objects. In addition, this scheme has
the potential of supporting client-side clipping at the stage of constructing the graphic
presentation if we store the DMBR of vertex-blocks on the client-side. We may do the
same for the other scheme but that would involve storing the DMBR of each vertex.

Table 4. Caching vs. non-caching after two operations

Operation Scheme Ver_Num Data_Volume (bytes)
Caching 141,449 2,828,980 Zoom-In
Non-caching 190,966

74.07%
3,781,200

74.82%

Caching 162,574 3,253,920 Zoom-out

Non-caching 212,483

76.67%

4,227,900

76.96%

Caching 23,044 482,640 Panning
Non-caching 32,998

69.83%
684,720

70.49%

9 Conclusions

The need to access spatial data at multiple scales provides a strong motivation to
develop efficient strategies for implementation of and access to multi-scale spatial
objects. In this paper we have addressed several practical issues in implementing
multi-scale data access schemes in which vertices of geometric objects are associated
with scale-priority values and explicit sequence numbers. In the context of scale
range-coding of geometry, we have shown that, because of the discrete nature of scale
ranges attached to vertices, scale-specific layers of vertices can be used to maintain
scale-range attributes of the vertices, and hence support queries on arbitrary scale
values. The implemented multi-scale storage schemes were based on blob storage of
scale-specific layers, in which only the entire geometric object was spatially indexed,
and on extended relational storage of spatially-indexed vertex blocks (in the manner
of the PR-File) respectively. These were compared with a conventional multi-version
approach to storage of geometry in blobs at multiple levels of detail. In our implemen-
tation, the multi-version storage scheme had significant storage overheads compared
to the multi-scale geometric object schemes, while providing no more than about 10%
improvement in timings for reconstruction of scale-specific geometric objects. In a
comparison of the spatially-indexed vertex block based scheme with the blob multi-
scale scheme, the former was found to be clearly superior, demonstrating the merits of
spatial indexing of subsets of vertices. Varying the resolution of this spatial indexing

383Design and Implementation of Multi-scale Databases

(with different block sizes), the results confirm the expectation that larger block sizes
combine faster retrieval with greater redundancy of retrieved data.

Following on from the work of [17] we have compared R-tree spatial indexing, B-
tree scale-indexing and a 3D generic R-tree that integrates space and scale. The
integrated method was found to outperform the other two methods.

Two approaches to client-side reconstruction of linear features from cached
geometry have been presented. The advantages in object reconstruction of both multi-
resolution caching strategies were demonstrated relative to a non-caching scheme.
The best performance was obtained with client-side maintenance of geometry in the
form of vertex blocks, as opposed to insertion into an index list of scale-coded
vertices.

References

1. Ballard, D., Strip trees: a hierarchical representation for curves. Communications of the
ACM, 24, 1981, 310-321.

2. Gunther, O., Efficient Structures for Geometric data Management. Lecture Notes in
Computer Science, Vol. 337, 1988, Berlin, Springer-Verlag.

3. van Oosterom, P., Reactive Data Structures for Geographic Information Systems, 1994,
Oxford, OUP.

4. Cromley, R.G., Hierarchical methods of line simplification. Cartography and Geographic
Information Systems, 18(2), 1991, 125-131.

5. Jones, C.B. and I.M. Abraham. Design considerations for a scale-independent database. In
Second International Symposium on Spatial Data Handling, 1986, Seattle, 384-398.

6. Jones C.B., D.B. Kidner and J.M. Ware. The Implicit TIN and multiscale spatial databases,
The Computer Journal 37(1), 1994, 43-57.

7. Becker, B., H.-W. Six, and P. Widmayer. Spatial priority search: an access technique for
scaleless maps. In ACM SIGMOD, 1991, Denver, Colorado, 128-137.

8. van Putten, J. and P. van Oosterom. New results with generalised area partitionings. In 8th
International Symposium on Spatial Data Handling, 1998, Vancouver, 485-495.

9. Bertolotto, M. and M.J. Egenhofer. Progressive vector transmission. in 7th ACM
Symposium on Advances in Geographic Information Systems, 1999, Kansas City, ACM
Press, 152-157.

10. de Berg, M., M. van Kreveld, and S. Schirra, Topologically correct subdivision
simplification using the bandwidth criterion. Cartography and Geographic Information
Systems, 25(4), 1998, 243-257.

11. van der Poorten, P. and C.B. Jones. Customisable line generalisation using Delaunay
triangulation. In 19th Conf. of Int. Cartographic Association, 1999, Ottawa, CDROM.

12. Saalfield, A., Topologically consistent line simplification with the Douglas-Peucker
algorithm. Cartography and Geographic Information Science, 26(1), 1999, 7-18.

13. Buttenfield, B.P. Sharing Vector Geospatial Data on the Internet. in 19th Conference of
International Cartographic Association, 1999, Vancouver, CDROM.

14. Jones, C.B., et al. Multi-Scale Spatial Database Design for Online Generalisation. in 9th
International Symposium on Spatial Data Handling, 2000, Beijing, IGU, 7b.34-44.

15. Ware, J.M. and C.B. Jones Conflict Reduction in Map Generalisation Using Iterative
Improvement. GeoInformatica, 2(4), 1998, 383-407.

16. Harrie L. and T. Sarjakoski. Simultaneous Graphic Generalisation of Vector Data Sets,
submitted to GeoInformatica.

17. Horhammer, M. and M. Freeston. Spatial indexing with a scale dimension. In 6th
International Symposium on Spatial Databases, SSD'99, 1999, Hong Kong, Springer, 52-
71.

384 S. Zhou and C.B. Jones

	1 Introduction
	2 Spatial Objects and Scale
	2.1 The Scope of an Observation
	2.2 The Scale Range of a Spatial Object
	2.3 Continuous, Subsetting, and Non-subsetting Vertices

	3 Scale Coding
	4 Database Access Schemes for Multi-scale Geometry Objects
	4.1 Vertex Layer
	4.2 Grouping Vertices in Geometry
	4.3 Storage Schemes with Explicit Vertex Sequence Numbers
	4.3.1 Single Entity Geometry (BLOBSN)
	4.3.2 Multi-segment Geometry (VBSN)

	5 Dynamic MBR and Object Clipping
	5.1 Dynamic MBR of a Vertex
	5.2 Dynamic MBR of a Vertex-Block and Object Clipping

	6 Object Caching for Zoom-In, Zoom-Out, and Panning
	6.1 An Enlarged Query Window
	6.2 Object Reconstruction with Cached Geometry

	7 Indexing the Scale Ranges
	8 Implementation and Experimental Results
	8.1 Database Schemas
	8.1.1 BLOBSN and BLOBMV
	8.1.2 VBSN_NONCLIP and VBSN

	8.2 Spatial-Scale Indexing
	8.2.1 Indexing on Scale
	8.2.2 Spatial Indexing
	8.2.3 Integrated Spatial-Scale Indexing

	8.3 Generation of Sample Datasets
	8.4 Test Environment and Query Generation
	8.5 Results
	8.5.1 Multi-version vs. Multi-scale
	8.5.2 BLOB vs. Vertex-Block
	8.5.3 Non-clipping vs. Clipping
	8.5.4 Scale Indexing, Spatial Indexing, and Integrated Indexing
	8.5.5 Client-Side Object Caching

	9 Conclusions

