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Abstract. Geo-referenced information is characterised by the fact that it may be 
represented on maps at different levels of detail or generalisation. Ideally a spa-
tial database will provide access to spatial data across a continuous range of 
resolution and multiple levels of generalisation. Existing work on multi-
resolution databases has treated generalisation control as one-dimensional. Here 
we extend the concept of multi-resolution spatial databases to provide support 
for multiple representations with variable resolution. Therefore the controls on 
generalisation become multi-dimensional with spatial resolution as one dimen-
sion and various types of generalisation style metrics as the other dimensions. 
We present a multi-representation spatial data model based on this approach 
and illustrate the implementation of multi-representation geometry in associa-
tion with an online web demonstration.  

1   Introduction 

1.1   Multiple Representations of Geographical Phenomena 

Geometric objects in spatial databases and GIS are representations of real world geo-
graphical phenomena. A single phenomenon may have multiple representations re-
flecting different perspectives of the observer. The observer’s perspective has an as-
pect of scale, which is linked to resolution and introduces a limit on the maximum 
geometric information that may be represented for a particular phenomenon, as well 
as an aspect of generalisation criteria (GC) mainly reflecting the purposes of map 
compilation. Generalisation criteria may be adapted for example to map specifications 
for topographical maps or for different types of thematic map. They can be associated 
with generalisation metrics (GM) in the respective compilation and generalisation 
procedures, and may be interpreted as the degree of reduction relating to the maxi-
mum information that may be represented. Scale and generalisation criteria together 
control the form of the geometric objects representing a phenomenon as well as the 
nature of non-spatial properties associated with the phenomenon. In addition, there is 
also the issue of temporal multiplicity of representations that reflect change of geo-
graphical phenomena over time. While fully acknowledging the importance of this is-
sue, we confine our focus here to the problems associated with space.  



Fig.1 presents an example of multiple geometric representations of a single geo-
graphical phenomenon (Isle of Wight, UK). Representation A preserves maximum in-
formation, as may be found in a topographical map. The series A, B and C are three 
representations at the same scale/resolution but under different generalisation criteria. 
B is generalised from A assuming criteria for thematic maps in which small details 
are removed. C is further generalised from B for use for example in a newspaper 
illustration, with only large details retained. The other series, of A, D and E, demon-
strates the impact of scale/resolution change while the same generalisation criteria 
(i.e. criteria for a topographical map) remain in effect. As scale decreases, maximum 
information at a certain scale is preserved in the corresponding representations with 
only redundant data being removed. 
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Fig. 1. Multiple geometric representations for a single geographical phenomenon (source 
dataset derived from original Ordnance Survey map, Crown copyright 2002) 

Beyond a single phenomenon, scale/resolution and generalisation criteria will also 
determine what types of phenomena and which particular phenomena will be repre-
sented. This results in another level of representational multiplicity corresponding to 
object selection. Furthermore, the multiplicity of representations is reflected in differ-
ences in a phenomenon’s non-spatial attributes and the values of these attributes. 

1.2   From MV-SDB and MS-SDB to MRep-SDB 

As different representations of geographical phenomena reflect different perspectives 
and serve different purposes, the efficacy of a spatial database will be increased sig-
nificantly if multi-representation of geographical phenomena is supported. For exam-
ple, a web map server could provide “active” maps that are adaptive to users’ diverse 
interests as well as to the varying presentation characteristics of different browsing 
devices (e.g. printers, desktop CRTs, PDAs and WAP mobile phones). 

To an extent, the functionality of multi-representation may be supported in current 
GIS and spatial databases by simply storing a collection of maps each of which re-
flects a pre-defined perspective. This approach, which we term simple multi-version 
spatial database or MV-SDB, may provide simple and efficient solutions to some 
applications. However, for many other applications it has severe problems such as po-
tential inconsistency among different maps, high storage/update overhead, and most 
significantly, lack of flexibility in control over the user’s perspective. 



In recent years, multi-scale/resolution spatial databases (MS-SDB) have attracted 
increasing interest. On the theoretical side, for example, [1] described a formal model 
which represents the multi-resolution nature of map features through continuous func-
tions over abstract cell complexes that model the combinational structure of maps. A 
model for a scale-based space partition hierarchy is described in [2]. “Stratified map 
spaces” are proposed in [3] as a formal basis for multi-resolution spatial databases. 
Graphs are used in [4] to describe amalgamation and selection operations caused by 
resolution change. Examples of experimental implementation include the PR-file [5] 
for multi-resolution access, and multi-scale geometry [6]. 

Although MS-SDB support representational multiplicity on the scale/resolution 
dimension, they do not provide support for variations in generalisation criteria as 
would be expected of a genuine multi-representation spatial database (MRep-SDB). 
The ideal MRep-SDB will be like every cartographer’s dream: given a query 
scale/resolution value drawn from a continuous range and an arbitrary set of gener-
alisation criteria reflecting the purpose of the query, a map that exactly meets the re-
quirements is retrieved automatically (and efficiently) with a quality matching (or at 
least close to) the quality of one generalised by an expert cartographer from a master 
map. In short, an ideal MRep-SDB should support on-demand, on-the-fly and high 
quality spatial data retrieval. 

Progress (mainly on theoretical aspects) has been made in providing better support 
in spatial databases for multi-representations involving semantic criteria. For exam-
ple, [7] discussed the issues of value and entity hierarchies relevant to multi-
representation. [8] described a “VUEL” (View Element) model to handle multiple 
representations for applications such as spatial OLAP. In [9] a multiple representation 
schema language was introduced for modeling multiple representations, matching ob-
jects and maintaining consistency. An extensive survey on a wide range of issues re-
lating to multi-representation was carried out by the MurMur project team[10].  

A fundamental issue in designing an MRep-SDB is how to integrate (potentially 
very large numbers of) multiple representations of the same phenomenon at different 
levels of detail and under various criteria. The approach currently adopted by most 
schemes may best be described as a linked multi-version approach. Here links are 
provided between different fixed representations, while intermediate representations, 
which may be required by services such as intelligent zooming, are interpolated or ex-
trapolated from existing representations [11] by online generalisation procedures.  

Because the status quo of automatic map generalisation is far from meeting the 
quality and performance demands to online (or even off-line) generalisation, while 
acknowledging that map generalisation procedures are the proper tools for generating 
multi-representations of spatial phenomena, we argue that as much generalisation 
workload as possible should be moved to a pre-processing stage in order to achieve 
good performance and maximum flexibility simultaneously. Results of generalisation 
can then be stored explicitly inside an MRep-SDB to facilitate retrieval and minimize 
requirements for any post-query generalisation.  

In the remainder of this paper, we present a multi-representation spatial data model 
based on multi-representation geometry. Experimental results of a method to generate 
multi-representation geometry using a new line generalisation metric are reported and 
an on-line web demo has been set up. An approach to modelling multiplicity among a 



set of objects is also presented. Some issues relevant to the design of MRep-SDB de-
sign are also addressed briefly. 

2   Cartographic Semantics and Multi-Representation 

Cartographic semantics describe the relation between geographical phenomena and 
their database representations. In this section, we will discuss those aspects of carto-
graphic semantics relating to our multi-representation spatial data model.  

2.1   Scale and Spatial Resolution 

Scale (Srep) is the ratio of the physical extent of the presentation medium (ME) and the 
real world extent (FE) of the presented contents. Resolution usually refers to the 
minimum dimension of a feature in a dataset (database resolution, Rdb) or on the 
presentation medium (presentation resolution, Rrep). Normally when spatial data are 
collected for certain purposes, a Rrep will be specified. Rdb is then related to Rrep as: 

Srep  = ME/FE = Rrep/Rdb ⇒   Rdb = Rrep / Srep = (Rrep ∗ FE)/ME (1) 

Unlike paper maps, in a GIS/SDB environment, both ME and Rrep may have differ-
ent values on different or the same presentation devices. For a fixed Srep, different Rrep 
corresponds to different Rdb. This is the reason why (spatial) resolution instead of 
scale should be used in the context of a spatial database [12]. In discussions below, 
“resolution” refers to database resolution unless stated otherwise. 

2.2   Resolution, Generalisation Criteria and Multiple Representation 

Increase in resolution value (i.e. coarsening) will result in simplification of a repre-
sentation’s geometric form. In this context simplification refers to processes that 
normally remove only those elements (e.g. vertices) that are redundant from a resolu-
tion point of view while original information is preserved to a maximum. The well-
known RDP algorithm [13] when used appropriately may be regarded as an example 
of such a process. Note that simplification may cause topological change in the origi-
nal geometric form. In addition, two representations at different resolutions may have 
different values for a non-spatial attribute (e.g. Landuse). This would typically be due 
to the level of detail at which a classification hierarchy is applied (for example, corn 
could be generalised to cereals) [7]. 

On the other hand, generalisation refers to those processes that remove “details” 
from the geometric form (which may be the result of previous resolution-driven sim-
plification) or eliminate entire objects in order to highlight the major geometric char-
acteristics of phenomena or maintain a balance of information among different object 
types according to the criteria imposed. 

For a single phenomenon, different GC may be associated with different metrics 
and/or metric values and will generate different representations at a fixed resolution. 
Details contained in the geometric form of each representation will vary, as illustrated 



in Fig. 1. Furthermore, different GC may result in retrieval of representations of dif-
ferent phenomena in the same type hierarchy. For example, at the same resolution, if 
more details are required, individual buildings could be retrieved; otherwise, the same 
location may be represented as a built-up area that is the aggregation of a group of 
buildings. 

Two representations of the same phenomenon, such as a land parcel, under differ-
ent GC may also vary in their attribute values. In this case, attribute values may be 
drawn from two different value hierarchies. For example, a parcel may be a cornfield 
under the criterion of current land-use but a residential area under the criterion of 
planned land-use in urban planning practice. 

From a map-wide point of view, coarsening spatial resolution will generally cause 
a selection of geographical phenomena to be presented, as discrete objects fall below 
the resolution threshold. For a fixed resolution, variation of GC will affect the way 
phenomena are selected.  In addition, change of either resolution or GC may cause 
aggregation of phenomena into new phenomena. 

2.3   Incompatibility of Representations 

Two representations are said to be incompatible if they should not present simultane-
ously. Representation incompatibility refers to incompatibility among multiple rep-
resentations of a particular phenomenon or phenomena in the same perception hierar-
chy (e.g. a group of buildings aggregate to a built-up area). Topological /proximal 
incompatibility may exist between two representations of two different phenomena 
due to topological or proximal consistency constraints. For example, a generalised 
representation of a road may leave the initial location of a village on the wrong side of 
it and, therefore, these two representations are incompatible and a displaced new rep-
resentation for the village should be retrieved along with this road representation. 

3   Multi-Representation Geometry and Spatial Object 

In this section we introduce the concept of multi-representation geometry (MRep-
Geometry) which we regard as the basic unit for representing spatial objects in a 
multi-representation context.  

3.1   Generalisation Criteria, Generalisation Metrics and Presentation Space 

As previously mentioned, a geometric representation of a spatial phenomenon is de-
fined at a given resolution and under a certain set of GC which describe the purposes 
of query or map compilation. Generalisation procedures with numerical GM are ap-
plied to source data to generate results to meet these purposes. Therefore, a represen-
tation may be associated with certain GM values at a given resolution.  

Assuming there are n > 0 generalisation metrics applied to a dataset (there may be 
multiple GMs applied to one type of phenomenon and different GMs for different 
phenomena), we may associate the resolution dimension RES with these n metrics to 



define an n+1-dimensional space (RES, GM1, GM2, …, GMn) as the presentation 
space (PS) of  the dataset. Consequently, any representation of the dataset (or a phe-
nomenon in it) may be mapped to a point in this abstract space. 

For the sake of simplicity, in the following discussion we will use a dataset con-
taining one open polyline with one GM applied as an example. Therefore, the PS for 
this dataset is a 2-D space (RES, GM). 

3.2   Multi-Representation Geometry 

Assuming at resolution res and with GM value gm, the geometric form of a spatial 
phenomenon is represented by an instance (G) of one of the well-known geometric 
types (point, open or closed polyline, chain, polygon, … or collections of various 
types), we may denote this representation of the phenomenon as Rep = (G, PR={(res, 
gm)}). We regard such a geometry instance G as a single-representation geometry 
(SRep-geometry) and PR as Rep’s presentation range, which is a point set in the 
dataset’s PS and in this case contains a single point (res, gm). 
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Fig. 2.  A-Two Representations of the same phenomenon  B- Multi-resolution retrieval on G1 

As an example an open polyline is denoted as either an n-tuple <p1, p2, …, pn> or a 
partial ordering <P, ≤ > on a vertex set P={pi|i= 1, n} where ≤ reflects the vertex 
precedence in the polyline. Fig.2-A illustrates two simple representations of the same 
phenomenon as Rep1= (G1, {(res1, gm1)}) and Rep2 = (G2, {(res2, gm2)}) where 
G1=<P1, ≤ > (P1={p1_1, p1_2, p1_3, p1_4, p1_5}) and G2=<P2, ≤ > (P2={p2_1, p2_2, p2_3, 
p2_4, p2_5}).  

If we follow the multi-version approach, Rep1 and Rep2 are two distinct versions of 
the phenomenon and G1 and G2 will be stored separately. Alternatively, we may 
merge G1 and G2 into a single linear structure. Firstly a single graph may be generated 
from G1 and G2 by merging two vertices in G1 and G2 into one single vertex if their 
coordinates are identical and the resulting graph is a DAG. By applying topological 
sorting on the resulting DAG, we will obtain a linear vertex sequence MG=<p1, p2, p3, 
p6, p4, p5>. Geometrically, pi = p1_i = p2_i except that p3 = p1_3 and p6 = p2_3. A vertex 
pi in MG has the form of (xi, yi, PRi). PRi is the vertex’s presentation range, which is 
the union of the presentation ranges of all representations containing this vertex. In 
our example, PRi = {(res1, gm1), (res2, gm2)} except that PR3 = {(res1, gm1)}, as p3 is 
in G1 only, and PR6 = {(res2, gm2)} as p6 is in G2 only. We regard MG as a multi-
representation geometry (MRep-geometry). Obviously, an SRep-geometry corre-
sponding to a query point (resq, gmq) in PS may be easily retrieved from an MRep-
geometry by selecting those vertices pi satisfying (resq, gmq)∈ PRi. 

Specifically, if there exists a query that may retrieve all vertices in an MRep-
geometry, we regard such an MRep-geometry as subsetting (vertices retrieved by any 



other queries will be a sub-set of that retrieved by this query); otherwise, it is non-
subsetting (e.g. p3 and p6 in MG will never be retrieved simultaneously).  

Several different representations of a spatial phenomenon may be merged into one 
multiple-representation (MRep) containing one MRep-geometry merged from 
geometries of these representations. Consequently, all representations of the 
phenomenon may be merged into one or several MReps and a single entity (Multi-
representation spatial object, or MRO) may be used to represent this phenomenon 
as MRO={MRepi|i=1, n}. 

Note that although some representations of a phenomenon are geometrically 
merge-able, for practical reasons, concerning for example the maintenance of non-
spatial attributes that may vary between representations, we may choose not to merge 
them into a single MRep. In addition, we cannot normally expect to have all the rep-
resentations of a phenomenon immediately available to merge into MReps. Thus we 
may need to compute the multiple representations from one or a few detailed repre-
sentations of a phenomenon.  

3.3   Realisation of Simplification and Generalisation Metrics 

3.3.1   Geometric Details and Metrics Values 
The constituent details in a geometry can be defined in many application-dependent 
ways, e.g. through their correspondence with inflexion points or skeleton branches 
[14]. In general we may regard any three or more consecutive vertices in a geometry 
as a detail. For example, given an open polyline pl =<p1, p2, …, pn>, any sub-tuple 
<pi, …, pj, …, pk> (i < j < k; 1 ≤ i ≤ n-2; 2 ≤ j ≤ n-1; 3 ≤ k ≤ n) of pl is a detail on pl, 
denoted as dtl(pi, pk). In particular, points pi and pk are base points of the detail and 
points pj are detail points of the detail. A detail should contain two base points and at 
least one detail point. A detail is simplified if some of its detail points are removed. If 
new detail points are inserted, the detail is modified. Normally we may regard a detail 
as removed if at least one of its base points or all its detail points are removed. 

Various relations, such as separate, adjacent, identical, inclusive and nesting, may 
be defined between two details dtl(pa, pb) and dtl(pc, pd) on the same polyline. As 
these relations are not used in the current study, we omit their definitions here. 

With the above definition, both simplification and generalisation may be viewed as 
processes of detail simplification and/or removal (detail modification may also be in-
volved in some algorithms) although the intention of simplification and generalisation 
are very different. Simplification removes some details while retaining most “critical” 
points. On the other hand, generalisation normally removes some “critical” points to 
smooth an object. If we process a detailed representation of a phenomenon with dif-
ferent simplification (normally associated with resolution) and generalisation metric 
values, different less-detailed representations may be generated, with different verti-
ces/details removed from the original representation (and possibly with some verti-
ces/details added as well). By associating these metric values with the vertices/details 
removed (or added) and storing these values along with geometric data, different rep-
resentations of a phenomenon may be retrieved directly without complicated simplifi-
cation/generalisation processing at query time. 



3.3.2   Spatial Resolution, RDP Tolerance and Simplification Metrics 
RDP tolerance has been previously adopted in multi-resolution access schemes [5, 6] 
for representing the spatial resolution dimension. In this study, we will also use the 
extended RDP tolerance for this purpose, i.e. with tolerance promotion during the 
process to form a monotonically decreasing tolerance value hierarchy [6].  

Several observations may be made on the process of calculating RDP tolerance 
values (denoted as TOL in the following discussions) of vertices in an open polyline 
pl= <p1, p2, …, pn> (see example vertex subscripts in Fig.1-A). For an internal vertex 
pj (1<j<n) whose TOL value dj is calculated relative to vertices pi and pk (i.e. distance 
from pj to line pi-pk and i < j < k): 
• A detail dtl(pi, pk) may be defined and measured by dj which only depends on pi, pj 

and pk and is irrelevant to other (if any) detail points pm (i<m< k and m ≠j); 
• dj ≤ di and dj ≤ dk (for end-points p1 and pn in an open polyline, ad hoc TOL defini-

tions are required); 
• If there is any other detail point pm in the detail, dm ≤dj; 
• In a vertex filtering process to select any vertex pj satisfying dj > dq (dq is a query 

tolerance value), pm will never be selected if pj is not selected; pj will never be se-
lected if pi and pk are not selected; in addition, assuming dj >0, pj will be selected 
for any dq falling in the range [0, dj); for the whole polyline, some of its vertices 
will be selected for dq ∈[0, dmax) where dmax is its vertices’ maximum tolerance 
value; 

• Consequently, the above detail dtl(pi, pk) may be represented by the internal vertex 
pj and its tolerance value dj; 

• Each internal vertex corresponds to one and only one detail that is recognised and 
hence effective in a vertex filtering process. 

• If there are m (≤ n if no vertices added) distinct tolerance values {d1, d2, …, dm} 
generated from the polyline, for any query tolerance value dq ∈[dk, dk+1) (k<m), the 
same set of vertices (hence the same geometrical representation) will be selected 
(Fig.2-B).  
A mapping mechanism may be defined between tolerance value d and resolution 

value res (e.g. simply let res = d). Therefore, the above tolerance range of a vertex [0, 
dj) may be mapped to a resolution range RR=[rf, rc) (rf≤rc) where rf and rc are the 
finest and coarsest resolution bounds of the vertex. If the base resolution of a dataset 
is r0 (which conceptually speaking should be greater than 0) and the polyline presents 
in the initial dataset, we have rf = r0. Note that for vertices newly added during some 
other simplification processes or for vertices representing a phenomenon not present 
in the initial dataset, we have rf>r0. In addition, under other different simplification 
algorithms, a resolution range may well possess a more complicated form (such as the 
union of a few non-overlapping intervals [rf_1, rc_1)∪[rf_2, rc_2) ∪…).  

Similarly, we may also say that in the above discussion the representation retrieved 
by dq ∈[dk, dk+1) corresponds to a resolution range [rk, rk+1). This fact implies that a 
limited (but perhaps large) number of representations (or versions) of a phenomenon 
are sufficient to support continuous change of query resolution within the resolution 
range [rf, rc_max) which is the resolution range of the polyline. 

From a multi-representation point of view, the above resolution ranges may be re-
garded as presentation ranges for vertices and representations on the resolution di-



mension and the polyline can thus be converted to a polyline which is multi-
representational on the resolution dimension. 

3.3.3   Generalisation Metrics and Weighted Effective Area 
An example of the many available line generalisation metrics is the so-called “effec-
tive area” (EA) introduced in the Visvalingam-Whyatt (VW) algorithm [15]. The EA 
of a point pi (1 < i < n) in an open polyline pl =<p1, p2, …, pn> is the area of the trian-
gle formed by pi and the two points pi-1, and pi+1 (EA of endpoints p1 and pn requires 
ad hoc definition). Unlike the top-down RDP algorithm, the generalisation process of 
the VW algorithm works bottom-up to iteratively remove the point with smallest EA 
from the polyline until a predefined EA threshold is reached. When a point is re-
moved, the EA of the two points adjacent to the removed point will be recalculated. 
Thus if pi with EA value eai is removed, EA of pi-1 and pi+1 become the areas of trian-
gles (pi-2, pi-1, pi+1) and (pi-1, pi+1, pi+2) respectively if the new values are greater than 
eai. Without setting a fixed EA threshold, we may repeat the process until there are 
only two (or three for closed polylines) points left.  

Like the RDP tolerance, each internal vertex also represents one and only one de-
tail effective in a vertex filtering process based on EA values and this detail may be 
measured by the final EA value of the vertex (i.e. prior to its removal). Consequently, 
each vertex pi may be labeled with an EA range [0, eai) and the polyline is converted 
to a polyline which is multi-representational on the EA dimension. 

In our current experiment, we have used weighted effective area (WEA), a new 
metric based on EA. Instead of using the area value of the triangle (pi-1, pi, pi+1) di-
rectly, we also take the shape characteristics of the triangle into consideration. A 
group of weight factors is used to adjust the initial area value to generate a WEA 
value. These factors are based on measures reflecting flatness, skewness and orienta-
tion of the triangle. This new metric (or indeed a family of metrics) provides much 
more control on detail removal by using different weights and/or weight mapping 
functions. As it is not directly relevant to the present study, we will not present the de-
tails of the WEA metrics here, but the effect of WEA-based generalisation is shown in 
our experimental results. 

3.4   A Method to Compute MRep-Geometry 

In the previous sub-section, we have treated resolution and generalisation metric 
(WEA) dimensions separately. In this sub-section we will demonstrate a method to in-
tegrate the two dimensions to compute vertex presentation ranges in the RES-EA 
space. A single detailed open polyline pl (i.e. G1 in Fig.2-A) is used as an example. 
For the sake of simplicity, we use EA as a generalisation metric in the following ex-
planation, while WEA is used in our experiment on a real dataset. In addition, we fo-
cus on the states of the three internal points (p2, p3 and p4) in pl. We also assume that 
the base dataset resolution is rb=0.5 and the maximum resolution and EA values for 
the polyline (and the two endpoints p1 and p5) are MaxRes and MaxEA whose values 
may change but are always equal to or greater than those of the internal vertices. 



3.4.1 Initial Presentation Ranges 
Initial vertex RES and EA values computed from the original polyline are shown in 
Fig.3-A (labeled on each internal vertex as EA/RES). Therefore the RES value se-
quence < rb = 0.5, 16, 19, 48, MaxRes> and EA value sequence <0, 593, 940, 2096, 
MaxEA> form two partitions on RES and EA dimensions and the polyline should oc-
cupy the region of PRpl={(res, ea)| 0.5 ≤ res < MaxRes ∧0≤ ea < MaxEA }in the RES-
EA space. 

For each vertex pi, it is natural to think its presentation range is PRi={(res, ea)| 0.5 
≤ res < ri ∧ 0 ≤ ea < eai }. However, because RES and EA dimensions are not inde-
pendent and different vertices are selected/removed according to RES and EA criteria, 
it is possible, for example, that a vertex is selected due to the RES criterion while one 
or both of the base points of the detail represented by this vertex are not selected due 
to the EA criterion. Consequently, the detail represented by this vertex under RES 
criterion will not be presented properly from a cartographic point of view. 

For the reasons stated above, the initial valid presentation range of the polyline is 
PRpl_0 = PR0∪PRres∪PRea, where PR0 = {(res, ea)| rb ≤ res < MinRes ∧ 0 ≤ ea < 
MinEA}, PRres = {(res, ea)| MinRes ≤ res < MaxRes ∧ 0 ≤ ea < MinEA}and PRea = 
{(res, ea)| rb ≤ res < MinRes ∧ MinEA ≤ ea < MaxEA}. Here MinRes and MinEA are 
smallest vertex RES and EA values in the polyline (16 and 593 in this example). PR0 
is the region without simplification or generalisation effect, PRres is the region with 
RDP-simplification effect only and PRea is the region with EA-generalisation only. 
The initial valid presentation range of each vertex may be defined similarly by replac-
ing MaxRes and MaxEA with respectively vertex RES and EA bounds ri and eai. 
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Fig. 3. Computing Mrep-polyline with RDP priority. Vertex labels are AE(final) /RDP values. 

3.4.2 Expansion of Presentation Ranges 
A simple way to expand initial vertex presentation ranges into the region of {(res, ea)| 
MinRes ≤ res < MaxRes ∧ MinEA ≤ ea < MaxEA} is to give priority to one dimension 
(e.g. RES) and recalculate metric values on the other dimension (e.g. EA) for vertices 
in representations (Fig.2-B) derived from the initial metric values on this dimension 
(i.e. RES). In other words, this is a process of “generalisation after simplification” (or 
“simplification after generalisation” if priority is given to the EA dimension). 

Fig.3. illustrates this process while results are shown in Table 1 (which is a PR-
Table, or presentation-range table, representing the Resolution-Generalisation metric 
plane). In Table 1, each cell represents a rectangular region (cell-PR) on the RES-EA 
plane as {(res, ea)| min_res ≤ res < max_res ∧ min_ea ≤ ea < max_ea}, e.g. the first 
(top-left) cell in Table 1 represents {(res, ea) | 0.5 ≤ res < 16 ∧ 0 ≤ ea < 593}. If a 
representation (or point, detail, etc.) occupies a cell, its presentation range should con-



tain the cell-PR of this cell. Cells in Table 1 present representations in Fig.3 and la-
bels of any internal points (p2, p3, p4) in these representations, e.g. the first cell con-
tains the original polyline (Fig.3-A) which has three internal points indicated in the 
form of (2/3/4). The PR of a vertex has a more complicated form. In the case of  p2 it  
is   {(res, ea)|(0.5≤ res <16 ∧ 0≤ ea <2096)∨(16≤ res <19 ∧ 0 ≤ ea <1168)} 

A consequence of this process is that in some vertices the value of the recalculated 
metric (EA in this case) is increased while the metric value on the other dimension 
(RES in this case) increases (e.g. p3 has an EA value of 593 in representation Fig.3-A 
and the value is increased to 5259 in Fig.3-E). This may generate some odd query re-
sults. For example, for a query (rq, eaq) (593 ≤ eaq < 940), when the value of rq in-
creases, we will retrieve representations B, E, H or J in Fig.3. Vertex p3 does not pre-
sent in B but is present in the simplified representations E and H. To solve this 
problem, a constraint may be applied to the process to make sure that recalculated 
metric values should never increase. 

Table 1. PR-Table with RDP priority 

0 \ 0.5       16 19      48 MaxTol 
A(2/3/4) E(2/3) H(3) J 593 
B(2/4) E(2/3) H(3) J 940 
C(2) E(2/3) H(3) J 1168 
C(2) F(3) H(3) J 2096 D F(3) H(3) J 5259 D G I J Max

It is also possible to simultaneously recalculate metric values on both dimensions 
with priority assigned to one dimension in order to create more sub-division of cells 
and generate more representations. However, due to the inter-dependency of the two 
dimensions, the process will be much more elaborate in order to maintain consistency 
of metric values. 

3.4.3 Discussion 
The above method is presented here only for the purpose of demonstrating the general 
procedure of generating MRep-geometry from detailed single-representation geomet-
ric objects. It is simple but the results are not of the highest quality. Some other gen-
eralisation metrics associated with other detail definitions may provide better support 
to handle metric inter-dependency and generate better results. It is also worth noting 
that results of different metrics may be stored together inside one MRep-geometry to 
support different generalisation requirements from a single source. 

A characteristic of our current method is that there is a one-to-one correspondence 
between vertices and effective details. Consequently, we attach information relevant 
to the presentation of a detail to its corresponding vertex and do not need to define de-
tails explicitly. For other metrics in which details are defined differently (e.g. [14]), 
explicit detail definition and storage may be required and references to these details 
may be stored with vertices affected by these details in the form of constraints. At 
query time, these constraints can be tested to decide whether a vertex should be re-



trieved. Such constraints may also be used to resolve incompatibility among multiple 
representations of different objects. 

4   Generalisation Metrics for Multiple Objects 

The previous sub-section focuses on a single phenomenon. In this section we use a 
simple model for point object selection to demonstrate how generalisation metrics for 
selection can be integrated with spatial resolution to support representational multi-
plicity among a group of objects. 

4.1   A Simple Model for Point Object Selection 

Assume in a region with a real world extent of fe0
2 (constant), there are NFLD point 

phenomena of a certain type (e.g. residential site) and various other phenomena. The 
initial task is to construct a spatial dataset at a base dataset resolution of r0 (derived 
from the pre-defined initial presentation extent me0

2 and presentation resolution rrep_0 
using equation (1) in 2.1).  

From a presentation point of view, if we focus on these point phenomena only, r0 
imposes a restriction on the maximum number of phenomena (Nmax_0) that may be 
represented in the dataset in order to maintain a reasonable presentation object den-
sity which may be defined as: WD(N) = Nk/Adisp. Here N is the number of retrieved 
objects, k is a weight factor and Adisp is the area of the presentation device (me2 in this 
case, where me is normalized according to scale to fit fe0). Therefore we may define 
Nmax(r) (r≥r0) as the dataset capacity for this type of phenomena at r and maximum 
WD as (using (1)): 

WDMax(r) = Nmax(r)k/Adisp = Nmax(r)k / me2 = (Nmax(r)k
* r2) / (fe0

2 
* rrep

2) (2) 

Clearly, Nmax_0=Nmax(r0). Larger r corresponds to decrease of scale or increase of 
presentation resolution value and will result in smaller Nmax to maintain the object 
density at an acceptable level. Therefore, Nmax(r) represents a resolution-oriented as-
pect of multiplicity in the process of object selection.  

At a given resolution r and assuming that there are sufficient candidates for selec-
tion, we may select Nr ≤ Nmax(r) phenomena of this type. This is because, when other 
types of phenomena are taken into consideration, the space for presenting each type of 
phenomenon is further restricted and a fine balance among the various types has to be 
maintained. Consequently, the selection rate (used as a general term here) assigned to 
a particular type may result in an under-capacity (Nr<Nmax(r)) selection. As the selec-
tion rate is affected by the generalisation criteria used to make the dataset, different 
GC will result in different selection rates for the same resolution r, which represents a 
semantic aspect of multiplicity of object selection. 

Note that the theoretical value of Nmax(r0) may exceed the value NFLD. We may ei-
ther use a universal Nmax(r0) for different datasets of the same size under the same GC 
set, or make Nmax(r0) adaptive to the nature of a particular dataset. At present we sim-



ply assume that for Nmax_0 ≤ NFLD then N0 ≤ Nmax_0 phenomena are selected and pre-
sented in the initial dataset at r0.  

It is natural to think that objects are selected by their relative importance. When 
resolution value r increases, at r = ri, the number of objects currently in the dataset 
will exceed Nmax(ri) and the least important object Oi should be removed, leaving Nc 
objects remaining. Consequently, if the order of selection is fixed, we may say that Oi 
will present in the dataset within the range of PRi={(r, Nsel)| r0≤ r <ri ∧ Nc< Nsel}, i.e. 
Oi will be selected only if there are Nsel > Nc objects to be selected. PRi is Oi’s presen-
tation range for selection in the 2D RES-NUM space (NUM represents object num-
bers). 

To decide the resolution bound ri at which Oi is removed with Nc objects left, by 
making a provision that maximum presentation density should remain constant at dif-
ferent resolutions (i.e. WDMax(r0) = WDMax(r)), we have:  

Nmax(r) = Nmax_0*(r0 / r)2/k ⇔ r = r0 * (Nmax_0 / Nmax(r))k/2 (3) 

Nmax(ri) = Nc  ⇒  ri = r0*(Nmax_0/(Nc))k/2 (4) 

For the most important object in the dataset, we have Nc = 0 so that ad hoc defini-
tion is required to decide its coarsest resolution bound. We also assume rrep is not 
changed in the process. Otherwise, (3) and (4) will possess more complicated forms. 

Note that the above derivation has its roots in the so-called “radical law” for fea-
ture selection in cartography. From (3) we can also derive r0/r = (Nmax(r)/Nmax_0)k/2. 
For k = 4, we have r0/r = N2

max(r)/N2
max_0, which is exactly the basic “radical law” ex-

pression for object selection [16]. 
Number of objects to be selected is certainly not a user-friend query parameter in 

the process of querying a multi-representation object set described above. Instead we 
may use degree of selection (DoS) which is defined as: 

DoS(r) = Nsel / Nmax(r)  ⇒  Nsel = DoS(r)*Nmax(r) = DoS(r) * Nmax_0*(r0 / r)2/k (5) 

Thus DoS(r) ∈ [0, 1] as Nsel should not exceed Nmax(r). Under the above provision 
of a constant maximum presentation object density, it is easy to prove that for the 
same DoS value, the retrieved presentation object density is also approximately     
constant (since Nsel is a discrete integer) at different query resolutions. On the other 
hand, at the same resolution and for different purposes, a user may use different DoS 
values to control the proportion of objects retrieved relative to the maximum number 
of objects that may retrieve at the resolution. Note that we have assumed the order of 
object selection is the same under resolution-driven selection and semantics-driven 
selection. Otherwise, an additional selection metric will be needed. 

A single DoS may be of no great interest. However, for a dataset containing more 
than one type of object, by adjusting DoS values for different object types, we may 
“blend” the source dataset in many different ways to meet users various requirements. 

4.2  Selection and Aggregation in Feature Hierarchy 

The point object selection model presented above, albeit simplistic, illustrates a gen-
eral approach for handling representational multiplicity among a group of objects. In 



normal cartographic practice, selection processing of objects with finite size (length, 
area, etc.) also obeys some sort of mathematic relations resembling the radical law. 
Consequently, models similar to the one in 4.1 but with the size and other characteris-
tics of objects taken into consideration may be used to generate multi-representation 
datasets for these objects. 

For an MRO={MRepi|i=1, n}, its presentation range for selection is the union of 
that of its MReps (each of which could contain an MRep-geometry described in sec-
tion 3). If its MReps are defined according to different semantics, no special treatment 
will be needed as their retrieval is normally controlled by non-spatial attribute values.  

If one MRep is derived from the other while resolution decreases, initially the two 
MReps may be separated on the resolution dimension by the generalisation process. 
For example an MRO with a PR of {(r, Nsel)|rb≤ r <rmax ∧ Nc<Nsel} (number of objects 
is used as selection metric for convenience) contains two MReps as MRep1 with PR1 = 
{(r, Nsel)| rb≤ r <r1 ∧ Nc<Nsel} and MRep2 with PR2 = {(r, Nsel)|r1≤ r <rmax ∧ Nc<Nsel}. 
If this is the case, we may choose to move part of PR1 into PR2 to provide multiple 
representations with a certain resolution range [r’1, r1). Subsequently, we have PR1 = 
{(r, Nsel)| (rb≤ r <r1’ ∧ Nc<Nsel)∨(r’

1<r<r1 ∧ Nc’<Nsel)} and PR2 = {(r, Nsel)| (r’1≤ r <r1 
∧ Nc<Nsel≤Nc’)∨(r1<r<rmax ∧ Nc<Nsel)}, where Nc<Nc’. With this extension, for 
r’1≤rq<r1, a smaller Nsel (Nc<Nsel ≤Nc

’), indicating a low selection rate, will retrieve 
MRep2; otherwise, MRep1 may be retrieved. Alternatively, a new metric may be used 
solely for this purpose. This technique also applies to the situation where one MRO is        
aggregated from a few other MROs residing in the same feature hierarchy (e.g. a 
built-up area aggregated from a group of buildings).  

Finally, due to the flexible nature of an MRep-SDB, potentially there are a great 
number of incompatible cases among objects, representations of objects or even de-
tails in representations caused by topological, proximal or semantic inconsistency. 
While there is no room to address these issues in detail, we believe most of these 
cases may be detected and resolved when the multi-representation dataset is gener-
ated. Solutions may be stored along with geometric data in the form of persistent con-
straints and checked at query time to retrieve the correct objects/presentations. For 
example, in the road-village case presented in 2.3, which representation of the village 
should be retrieved depends on which road representation is retrieved. Consequently, 
a constraint recording information on the condition of road retrieval may be attached 
to the village object and tested at query time. 

5   Discussion and Experimental Results 

5.1   Experimental Implementation and Results 

The method in 4.1 to compute MRep-geometry geometry has been implemented in 
C++. The RDP tolerance criterion is used as resolution value and WEA is the gener-
alisation metric. Priority is given to RDP and the WEA values are recalculated. As 
neither of the original RDP and VW algorithms guarantees topological consistency in 
their output, we also use a fully dynamic 2-D Constrained Delaunay Triangulation 
package (MGLIB-2) to maintain a triangulation of the dataset during the whole proc-



ess for detecting topological inconsistency. Currently we do not remove a point caus-
ing inconsistency but raise its RES or WEA value and wait until the removal of other 
points makes this point delete-able. This is the simplest but certainly not the best solu-
tion. Without topological consistency checking, the time complexity of this process is 
roughly O(n3) for a polyline with n vertices. 

Currently the data structure for a vertex in an MRep-geometry is MRPoint{x, y, 
rmin, N, R[N], SRWEA[N]}. The first three data items are coordinates and the finest 
resolution bound. SRWEA[n] (n = 0, N-1) is the square root of WEA value at resolu-
tion range [R[n-1], R[n]). In particular, for n=0, the resolution range is [rmin, R[0]). 
Also, R[N-1] is the coarsest resolution bound for the vertex. Note that if the WEA 
value is identical at two adjacent resolution intervals, the two intervals are merged. In 
addition, this is the form for subsetting points with WEA-adjustment only. For other 
cases, the PR-Table for a point is in the form of a more complicated sparse matrix, for 
which more sophisticated data structures have to be used. 

The test dataset (see Fig.1, 4 and 5) is derived from several Ordnance Survey 
Land-Form PANORAMA map sheets at a field resolution of 1m. There are five 
closed objects and 2376 vertices in total while the largest object contains 2336 verti-
ces. We have computed a few statistics on the generated multi-representation dataset. 
If data items in the above structure MRPoint are stored in double precision for coordi-
nates, long integer for N and single precision for others, on average 45.42 bytes (i.e. 
29.42 bytes for MRep-data and the average of N is 3.18) are required for a multi-
representation vertex. By exhaustive enumeration scanning through all resolution and 
WEA interval bounds, we also obtain the number of distinguishable representations 
that we may retrieve from the dataset as 539,066 versions. Note that any geometri-
cally identical representations at separate presentation ranges are not counted repeat-
edly. The total number of vertices in these 539,066 versions is 556,908,339. If the 
WEA non-increasing constraint is applied (see 3.4.2), the results are 524,212 versions 
and 540,711,604 vertices. 

Although differences between many of these versions are minimal, all these ver-
sions are required in order to claim that genuine continuous change of resolution and 
generalisation metric values is supported under the generalisation procedures we 
adopt. It is true that due to selection, an object may be deleted at a resolution much 
smaller than its original coarsest resolution bound. Therefore, many of these versions 
(i.e. at coarser resolutions and hence containing fewer vertices) would be unneces-
sary. On the other hand, the size of MRep-geometry would also be reduced as R[N] 
and WEA[N] are smaller as well. 

To demonstrate the representational multiplicity of MRep-geometry, we produced 
a JAVA applet-based web demo (http://www.cs.cf.ac.uk/user/S.Zhou/MRepDemo/ ). 

In this web demo (Fig.4.), we provide an operation mode of  “Intelligent Zoom-
ing”. Under this mode, a screen resolution value and a “degree of generalisation” 
(DoG) value is preset.  

As subsequent zooming-in/out operations are carried out, the retrieved representa-
tions will show a resemblance in generalisation style. Very similar to DoS, DoG de-
fines a mechanism to map WEA values to a real range of [0, 1). A DoG value of 0 
represents “minimum” WEA-based generalisation and 1 the “maximum” generalisa-
tion. When the required dataset resolution changes (due to zoom-in/zoom-out), the 
same DoG value will be mapped to a different WEA value accordingly to maintain 

http://www.cs.cf.ac.uk/user/S.Zhou/MRepDemo/


roughly the same generalisation effect. Therefore, a user may avoid the trouble of 
having to compute a proper WEA value in order to make an intended query. Fig.5 
represents three zooming series under different DoG values. From left to right, DoG = 
0, 0.5, 0.75 and, from top to bottom, scales are 1:106, 1:2.5×106, 1:5×106 and 1:107 re-
spectively. The screen resolution (Rrep) is 0.1mm. At each resolution r, DoG value is 
mapped to a WEA value wea = r2

*(1- DoG)-2. The number of vertices in each re-
trieved representation is marked in the figure. 

 
Fig. 4. A Web Demo for MRep-Geometry 

 

 

191 103 48

58 30 19 
28 18 11

13 11 6 Rrep= 0.1mm  
Fig. 5. MRep-Geometry and Intelligent Zooming (drawn at real scale. source dataset de-
rived from original Ordnance Survey map, Crown copyright 2002) 

5.2   MRep-SDB Design and Implementation Issues 

In this sub-section we will briefly discuss a few key issues relevant to the design and 
implementation of an MRep-SDB. In an MRep-SDB, a spatial index on a column 
containing MRO has to support at least four dimensions: the two spatial dimensions, 
resolution dimension and one or more dimensions representing object selection met-
rics. As a 3D-Rtree can be used for a multi-resolution SDB [6] with good results, it is 
natural for us to use N-D-Rtree (N>3) to index an MRO column.  



Although in this study we have demonstrated that a great deal of generalisation 
workload may be practically moved to a pre-processing stage, some type of online 
generalisation may still be required to process results retrieved from a MRep-SDB. 
One such process is so-called online graphic conflict resolution. Although we might 
be able to guarantee topological consistency (and proximal consistency to an extent) 
in the database, proximal inconsistency caused by user actions such as specifying a 
large symbol size is difficult to handle on the DBMS side and online generalisation 
procedures are consequently required. Experiments that achieve real-time perform-
ance for conflict resolution have been carried out and reported in [17]. 

Another issue is related to the importance ranking of objects for selection process-
ing. We have assumed such ranking is carried out dataset wide. However, for queries 
retrieving objects in an area small in comparison to the extent of the dataset, whether 
such a ranking is still applicable is questionable if the importance of an object de-
pends on whether some other objects are retrieved or not. We may design some more 
complex metrics to reflect this aspect of locality or use constraints to handle the issue. 
Alternatively, we may choose to use a query DoS value larger than the initially in-
tended value to retrieve some more objects and subsequently apply some online selec-
tion procedures upon this relatively small set of objects. 

6   Summary 

In this paper we have discussed various aspects of the causes of representational mul-
tiplicity of geographical phenomena from a map generalisation point of view. We in-
troduced the concept of multi-representation geometry (MRep-geometry) as the basic 
unit for representing the geometric form of multi-representational geographical phe-
nomena. A practical method has been presented for generating topologically consis-
tent MRep-geometry from a single-resolution source data using a new generalisation 
metric (weighted effective area). The resulting MRep-geometry presents representa-
tional multiplicity with continuous changes of both resolution and generalisation met-
ric. We presented an approach for handling representational multiplicity of an object 
set which contains multiple multi-representation objects with a potential object type 
hierarchy. Experiments on MRep-geometry were carried out on a real dataset and re-
sults presented in an online web demo. Finally, we discussed various important issues 
relevant to designing, implementing and using a multi-representation spatial database. 

Effective support for representational multiplicity in a spatial database will benefit 
a wide range of users. We believe the approach presented here holds a clear advantage 
over previous approaches in storage efficiency, performance and, most significantly, 
flexibility. Our implementation has (to an extent) demonstrated the practicality of this 
approach. However, we also acknowledge the huge difficulties in building such an 
MRep-SDB for even the simplest real-world applications. Predominately, these diffi-
culties concern the automated map generalization required for dataset generation. Is-
sues that will be addressed in more detail in future studies include resolution-
dependent proximal consistency, the selection process for linear and areal objects and 
incompatibility among multiple representations of different objects. 
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