
499

A Parallel Impilementation of Evolutionary Divide and Conquer for the TSP.

#C L Valenzuela, A. J Jones

#University of Teeside, UK Imperial College London, UK

Abstract.

Evolutionary divide and conquer (EDAC)
applied to the geometric: travelling salesman
problem uses a genetic algorithm to explore the
space of problem subdivisions. The underlying
techniques for subdivision and patching are
based on the cellular dissection algorithms of
Richard Karp, but the addition of new repair
heuristics as well as the genetic algorithm,
appears to have succeeded in lifting tlhe quality
of solution way above Karp’s algorithms, whilst
maintaining almost linear scaling of the
algorithm with increased problem size. In this
paper we outline a parallel implementation of
EDAC and present some preliminary results of
this work.

Introduction.

Experiments with genetic algorithms using
permutation operators applied to the ‘Travelling
Salesman Problem (TSP) tend to suggest that
these algorithms fail in two respects when
applied to very large problems: they scale very
poorly as the number of cities n increases, and
with all except the most sophisticated
implementations, the solution quality degrades
rapidly (see [Valenzuela 1995al for an account).
In an earlier paper [Valenzuela 119941 we
suggested an alternative approach for genetic
algorithms applied to hard combinatoric search
which we called Evolutionary Divide and
Conqurr (EDAC). This technique has potential
for any search problem in which knowledge of
good solutions for subproblems can be exploited
to improve the solution of the problem itselff.
The idea is to use the genetic algorithm to
explore the space of problem subdivisions rather
than the space of solutions themselves.

The first step in realising an approach along
these lines is to examine heuristic TSP
algorithms based on the obvious intuitive
principal of breaking the problem into
subproblems, solving the subproblems and
patching the subsolutions (subtours) together to
provide a global solution to the original
problem. Although several approaches were
considered, the cellular dissection algorithms of
Richard Karp [Karp 19771 seemed to hold the

most promise and were therefore chosen as a
starting point. Not only do these algorithms
possess an attractively simple geometrical
approach to dissection, but they also offer
reasonaible g~~arantees of performance. The main
challenge is to incorporate these heuristics into
a successful reproductive plan.

Two pzlrticularly novel ideas are incorporated
into the EDAC approach, the f i s t and most
obvious of which being rhe application of
genetic algorithms to the (exploration of the
space of TSP problem subdivisions already
discussed.

The other principal novel idea is an alternative
approach to the construction of Karp-like tours,
viewing them as being recursive, rather than
patching globally, as Karp does. This new
approach has allowed the incorporation of
additional heuristics at a law cost in terms of
execution time. Patching in EDAC is done whilst
threading back up through the recursive
subdivisions, and each application of recursive
patching is followed by a procedure which we
have called repair. Repair is essentially a
combinatoric local tour improvement routine.
When n l m m e s large there is a strong need to
reduce any global procedures and the idea that
patching should be done recursively yields
sigdicaxtt dividends in limiting the combinatoric
explosion of cases to be considered for repair.

A particular benefit of EDAC is that the model
is intrinsically parallel. The overall design lends
itself to parallelisation at several levels and in a
number of different ways depending upon the
parallell architecture. A parallel version of EDAC
running on the APlooO supercomputer is
presented in this paper.

The Cellular Dissection Algorithm.

Subdivision.

Let rectangle R contain m cities. Let y be the
y-coordinate of the centre of R . A horizontal cut
through y subdivides R into two equal
rectangles, an upper rectrlmgle and a lower
rectangle. With uniform rand’om points the effect
is to place about half the cities either side of the
bisecting line. In a similar fashion, a vertical cut
could be applied to bisect the cities through x,

Genetic Algorithms in Engineering Systems: Innovations and Applications
12-1 4 September 1995, Conference Publication No. 41 4,O IEE, 1995

500

which is the x-coordinate of the centre of R.
In cellular dissection algorithms based on

Karp’s approach, the bisection process is called
repeatedly in a recursive fashion in order to
subdivide all the new rectangles as they are
formed until the number of cities within a
particular rectangle falls below a certain
threshold, when tbe subproblems in each
rectangle are solved.
Pn EDAC the above bisection technique is

modified slightly to make the process of
patching the solutions to the subproblems easier.

Rwtangles are bisected through the city
nearest to the true area bisection line.

In K q ’ s algorithms the direction of the cut is
always parallel to the shorter side of the
rectangle. Karp showed that by minimizing the
lengths of the perimeters of the rectangles he
was able to minimise the expected lengths of the
tours. In EDAC the direction of cut is
determined at each stage by the genetic
algorithm.

Solving the subproblems.

a

Before A&€

2-move is illustrated in Figure 1. For any fixed
value d k, the corresponding k-opt algorithm
always keep on running until a situation is
reached where no further improvements are
possible by a single k-move.

Figure 2. Subproblems solved.

Patching the subtoiirs together.

After the subproblems have been solved, as in
E g x e 2, the four incident edges to the shared
city must be reduced to two. This is achieved by
the removal of two of the incident edges, one
from each subproblem, and the creation of a
new edge between the two “stranded” cities. As
there are only four possible ways this patching
can be done, they are all tried and one that
results in the shortest patched tour is selected.
For later purposes the new edge can be added to
an edge list L as a candidate for repair.

Figure 1. A 2-move on edge E involving a
neighbour a.

I I

The Lin k-opt heuristics Lin 19651 are used
for solving the subproblems, Lirz 2-opt being
used in the earliest versions of EDAC and
Lilz 3-opt for some of the later versions. In our
experiments the average subproblem size was
only about 8 cities, and the method of solution
proved not to be critical.

The k-opt algorithms are examples of local
tour improvement procedures. They operate on
some current tour by exchanging edges that are
in the current tour for better edges that are not
in the current tour. In the case of 2-opt, for
example, edges are considered for exchange in
pairs. In 3-opt edges are considered in triples.
When any such exchange produces a shorter
tour length it is made permanent. A single
exchange is called a k-move. A successful

Figure 3. Patched solution.

Recursive fast-repair.

The recursive fast-repair heuristics developed
for EDAC are based on fast versions of the k-opt
algorithms briefly described above. Various
shortcuts have been employed in an attempt to
speed dungs up, several of which were first
suggested by [Martin 19921, the most important

50 1

Procedure Fast-2-repair(T, L, Neighbourhood lists)
{T is the current tour, L := L(T) is list of edges of ‘r to be considered. Max is the
maximum edge length of tlhe current tour, Min is the estimated minimum edge length
of all edges. I is the length of the neighbour lists (I =: 1.0 in these experiments). SCE> is
start city of edge E, f(E) is final city of edge E. next(a) and prev(a), for city a, are next
city and previous city, respectively of current tour T}

begin

while L $- 0 do
select edge E =: (s(E), f(E>> E L
m := 1: improvement := false

while m I; I and (improvement = false) do {check neighbours of s(E) & f@)}
a := neigh(s(E),m):
b := neigh(f(E),m)
if (d(s(E),a) + Min :> d(s(E),f(E)) + Max) and

{check neighbour of SO}
if d(s(E1,a) + d(f(E),next(a)) < d(s(E)f(E)) + d(a,next(a)) then

{mth neighbour of s(E) on list}
{mth neighbour of f(E) on list}

(d(f(E),b) + Min > d(s(E)f(E)) + Max) then break inner while loop

L := L - {E.(a,next(a>)} + I (s(E).a>,(f(E),ne:~t(a)) 1
make 2-move on T
update Max
improvement := true

{check neighbour of f(E)}
if d(sW),prev(b)) + d(f(E),b) < d(s(E),f(E)) + d(prev(b),b) then

{see Figure 1 }

L := L - IE,(prev(b),b)J + {(s(E>,prev(b>>,(f(E)~b)}
make 2-move on T
update Max
improvement := true

m : = m + l {no 2-moves, check next neighbour}
[take next edge in L}
{delete edge from the active list}

end while
L = L - {E}

end while

end

Algorithm 1. Fast 2-repair.

probably being the restriction off cases of
k-moves to be considered. For the geometric
TSP, when using k-opt it is silly to consider sets
of edges which are far apart in the physical
space of the problem. One way in which fast-k-
opt makes this idea precise is by maintaining,
for each city, a list of the 10 nearest neighbours
(say), and restricting k-moves to these edges.
Algorithm 1 outlines fast-2-repair. We refer the
reader to [Jones 19951 and [Valenzuela 1995al
for implementation details of fast-3-repair.

Recursive fast-k-repair succeeds each simple
patching operation in the recursive construction
of the global tour, expending most of its efforts
repairing small subproblems, where accepted
k-moves require only short subtour
manipulations. In addition each call to recursive

fast-k-repair is initiated with an edge list L
containiig just one edge, the rogue edge
produced by a single simple patching operation.

Far-repair

With a view to further improving the solution
quality a low-cost tour improvement heuristic
has been employed. The ideas used here are
similar to those embedded in the Or-opt
algorithm [Or 19761. In essence the scheme
deletes single cities, or small groups of cities,
from tlzeir positions in tlhe current tour and
inserts them in new positions whenever this
move produces a reduction in the tour length.
The d,gorithm, which we call far-repair, is
applied globally following the construction of

502

I Before I I - O V

Possible far-moves

0- M
I

A O A
I I
Figure 4 Potential Far-moves.

the initial tour by simple patching and recursive
fast- k-repair.

The lists of nearest neighbours accumulated
for the k-move procedures are employed by far-
repair to ensure that the algorithm does not
waste valuable time evaluating potential moves
that have little chance of success. Figure 4
shows how a single city is tested as a candidate
for a fur-move. It is tried first one side of a near
neighbour, then the other. The term 'far' repair
refers to the fact that individual cities can be
moved to new positions in the current tour that
are "far away" from their present positions in
terms of where they are on the permutation list
defining the tour. Far-repair involves
exchanging three edges (a 3-move) and, because
it is applied globally, it will repair defects which
are beyond the scope of recursive fast-k-repair.
Further details of far-repair, which obviously
has time complexity O(n>, can be found in
[Valenzuela 19941.

The Parallel Genetic Algorithm.

A parallel supercomputer, the Fujitsu APlOOO,
was chosen as an implementation environment
on which to conduct experiments on very large
problems. This is an MlMD configuration with
one processor, the host, coordinating the
activities of up to 1024 other processors, the
cells. The machine we use in this study has only
128 cells.

Grefenstette's master-slave synchronous model
[Grefenstette 19811 was chosen as a framework
for the parallel implementation of EDAC. In the
algorithm each of the 128 cells is responsible for
evaluating a tour for an "individual" member of
the current population. This entails the
application of a complete divide-and-conquer
procedure on the TSP problem given to the
EDAC algorithm. The host computer is
responsible for computing every other aspect of

the genetic algorithm, including selection,
reproduction and implementation of the genetic
operators crossover and mutation. The master-
slave model is appropriate because most of the
time during execution of EDAC is taken up with
evaluating the divide-and-conquer procedure on
the various members of the population, and very
little time is spent on all other aspects of the
genetic algorithm. For example when applying
EDAC (with h e p a i r) to an 100 city problem
Sun serial computers spend more than 99.9% of
their execution time on divide-and-conquer
evaluations and less than 0.01% on all other
aspects of the genetic algorithm. When EDAC is
applied to a loo0 city problem the proportion of
time spent on divide-and-conquer evaluations
rises to 99.99%.

The fact that the APloo0 implementation of
EDAC is controlled by a sequential genetic
algorithm meant that the GA previously used on
the serial platform required very little
modification. The only difficulty encountered
with its implementation was due to the "steady
state" nature of the population inherent in the
weaker parent replacement scheme used
previously. In this scheme, based on an
algorithm by [Cavicchio 19701, offspring are
generated one at a time and a decision made
either to replace one or other parent or let the
new individual die before the next parental pair
are selected for mating. On the APlOOO although
the offspring are generated sequentially on the
host, they are evaluated in parallel by the cells.

Each parent and offspring consists of a two
dimensional lookup table which when
superimposed on the TSP represents decisions to
make either vertical or horizontal cuts; the
component selected from the lookup table in
each case being the one most closely
corresponding to the geometric centre of the
candidate rectangle. The crossover and mutation
of these two dimensional binary arrays are fairly
straightforward to implement. (For more details
of the genotype and genetic operators see
[Valemela 19941).

The main task executed by the cells is, on
receipt of a genotype from the host, for each to
carry out a divide-and-conquer procedure and
return a tour length to the host as a measure of
fitness. Thus following the execution of the
divide-and-conquer routine by all the cells, the
host temporarily possesses two populations, one
of parental genomes and the other of their
offspring. It is not possible to implement the
conventional weaker parent replacement model
to merge these two groups of individuals,

503

Procedure Parallel GA
begin

Generate N random structures {N is the population size}
host sends N stmctures, one to each of N cells
cells evaluate tour length produced by each structure
host collects N tours and N tour lengths, one form each cell
host evaluates and stores best-so-far
for generation = 1 to nosenerations

repeat for each population structure
select next (first) structure
select a second structure stochastically from a ranked distribution
apply crossover to produce offspring
apply mutation to offspring

until no more population structures
host sends IV structures., one to each of N cells
cells evaluate tour length produced by each offspring
host collects N tours and N tour lengths, one form each cell
repeat for each offspring structure

if offspring better than occupant of weaker parent slot

if offspring better than best-so-far then it replaces best-so-far
then it replaces it in population

until no more offspring structures
endfor { generation loop }
print best-so-far

end.

Algoritlini 2

because a potential conflict arises each time
individual parents produce multiple offspring.
Assuming the new offspring are processed
sequentially, once a particular parent has been
replaced by a stronger fist offspring, the parent
is not then available for replacement should the
algorithm encounter a second offspring from that
parent.

Fortunately, the matter is easily resolved.
Stronger offspring are simply allowed to occupy
the fitness slots vacated by their weaker parents.
Thus subsequent offspring are assessed
according to the parental fitness slots occupied
at the time and the strong elitist strategy
inherent in the earlier serial GA is maintained
(see Algorithm 2).

Some Results.

Quality of solution.

Early studies demonstrated that all the EDAC
algorithms reliably produced much better
solutions than comparable random search on a
trial for trial basis. These control trials were set
up using divide, conquer and repair heuristics

that were identical to the tarresponding EDAC
algorithm, the only difference being that the
direction of bisection for each rectangle that
arose was selected at random instead of readmg
it from a genome lookup table. In fact these
experiments not only established that the genetic
algorithm had an important role to play, but they
also demonstrated that the sigillficance of this
role increased with increasing problem size. For
example on a 500 city problems an EDAC
algorithm with 3 repair (population of 128 for
100 generations) yielded a solution only 0.63
standard deviations better tlkan the best obtained
in the comparable random search, whilst for
2000 cities the same EDAC algorithm
(population of 128 for 300 generations)
produced a solution 2.8 1 standard deviations
better than random search. The fact that the
results yielded by the genetic algorithm were
superior to those produced by the original Karp
algorithms was also established early on.

Table 1 summarises the results obtained so far
for parallel EDAC on uniform random points
each with expected solutions of 100 "Stein
units" explained in [Valenzuela 19941.

The v dues entered in the EDAC columns each

504

5oo0

size

1M.55 100.62

I I I

93.59 99.52 99.07

98.7 I

loo0 95.22 99.74

94.30 99.20

represent the mean best tour len,@hs obtained
from three runs, except in the case of 5000 cities
where values are recorded for single runs.

The EDAC results are compared with a
problem specific measure called the Held-Karp
lower bound [Held 19701, [Held 19711, see
[Valenzuela 1995bl for an account of this
measure. EDACII and EDACIII represent
versions with 2-repair and 3-repair respectively.

Time complexity and run-time.

For problems of in the range 500-5000 cities,
the scaling exponents, e from @ne>, for both
EDACII and EDACIII, measured by timing one
generation of the GA for each on the AP1000,
was almost linear, being 1.04 for EDACII and
1.11 for EDACIII.

Run-times on the APlOOO for 300 generations
of EDACII and EDACIII on the 5000 city
problem were approximately 12 and 28 hours
respectively .

Conclusion.

It is our opinion that EDAC algorithms show a
great deal of potential for solving large
travelling salesman problems on parallel
hardware. Although the solution quality typically
obtained by EDAC so far appears to fall slightly
short of values obtained by more standard
heuristic techniques such as iterated
Lin-Kernighan [Johnson 19901, the near linear
scaling exponent yielded by EDAC on the range
of problem sizes studied vindicates further
investigations.

References.

[Cavicchio 19701 D.J. Cavicchio. Adaptive
search using simulated evolution. Unpublished
dcctorial dissertation, University of Michigan,
Ann Arbor 1970.

[Grefenstette 19811 J.J. Grefenstette. Parallel
adaptive algorithms for function optimization.
(Technical Report No. CS-81-19). Nashville:
Vanderbilt University, Computer Science
Department.

[Held 19701 M. Held and R. M. Karp. The
Traveling Salesman Problem and Minimum
Spanning Trees. Operations Research 18: 1138-
1162, 1970.

[Held 19711 M. Held and R. M. Karp. The
Traveling Salesman Problem and Minimum
Spanning Trees: part II . Math. Programming

[Johnson 19901 David S. Johnson. Local
Optimization and the Traveling Salesman
Problem. Automata Languages and
Progratmning: 17th International Colloquium
Proceechngs. 1990.

[Jones 19951 Antonia J. Jones and Christine L.
Valenzuela. Evolutionary Divide and Conquer
[U). (In preparation).

[Karp 19771 R.M. Karp. Probabilistic analysis
of partitioning algoritlzm5 for the traveling
salesman problem in the plane. Mathematics of
Operational Research v01.2 no.3. August 1977.

&in 19651 S. Lin. Computer solutions of the
traveling salesman problem. Bell system Tech.

[Martin 19921 0. Martin, S. W. Otto, and E.
W. Felten. Lurge-Step Markov chains for the
TSP in cooperating local search heuristics.
Operations Research Letters, 11(4):219-224,
1992.

[Or 19761 I. Traveling Salesman-Type
Combinatorial Problems and their Relation to
the Logistics of Regional Blood Banking.
Unpublished Ph.D thesis, Northwestern
University, Evanston, IL, 1976.

[Valenzuela 19941 Christine L Valenzuela and
Antonia J. Jones. Evolutionary Divide and
Conquer (I): a Novel Genetic approach to the
TSP. Evolutionary Computation 1(4): 313-333.
M E Press 1994.

[Valemela 1995al Christine L. Valenzuela.
Evolutionary Divide and Conquer: a novel
genetic approach to the TSP. Ph.D
ThesisPepartment of Computing, Imperial
College of Science, Technology and Medicine,
London. (In preparation).

[Valenzuela 1995bl Christine L. Valenzuela
and Antonia J.Jones. Estimating the Held-Karp
lower bound for the geometric TSP. (Submitted
to the European Journal of Operational
Research, January 1995).

1:6-25, 1971.

209-224.

J. 44, 2245-2269.

