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Abstract. 

Evolutionary divide and conquer (EDAC) 
applied to the geometric: travelling salesman 
problem uses a genetic algorithm to explore the 
space of problem subdivisions. The underlying 
techniques for subdivision and patching are 
based on the cellular dissection algorithms of 
Richard Karp, but the addition of new repair 
heuristics as well as the genetic algorithm, 
appears to have succeeded in lifting tlhe quality 
of solution way above Karp’s algorithms, whilst 
maintaining almost linear scaling of the 
algorithm with increased problem size. In this 
paper we outline a parallel implementation of 
EDAC and present some preliminary results of 
this work. 

Introduction. 

Experiments with genetic algorithms using 
permutation operators applied to the ‘Travelling 
Salesman Problem (TSP) tend to suggest that 
these algorithms fail in two respects when 
applied to very large problems: they scale very 
poorly as the number of cities n increases, and 
with all except the most sophisticated 
implementations, the solution quality degrades 
rapidly (see [Valenzuela 1995al for an account). 
In an earlier paper [Valenzuela 119941 we 
suggested an alternative approach for genetic 
algorithms applied to hard combinatoric search 
which we called Evolutionary Divide and 
Conqurr (EDAC). This technique has potential 
for any search problem in which knowledge of 
good solutions for subproblems can be exploited 
to improve the solution of the problem itselff. 
The idea is to use the genetic algorithm to 
explore the space of problem subdivisions rather 
than the space of solutions themselves. 

The first step in realising an approach along 
these lines is to examine heuristic TSP 
algorithms based on the obvious intuitive 
principal of breaking the problem into 
subproblems, solving the subproblems and 
patching the subsolutions (subtours) together to 
provide a global solution to the original 
problem. Although several approaches were 
considered, the cellular dissection algorithms of 
Richard Karp [Karp 19771 seemed to hold the 

most promise and were therefore chosen as a 
starting point. Not only do these algorithms 
possess an attractively simple geometrical 
approach to dissection, but they also offer 
reasonaible g~~arantees of performance. The main 
challenge is to incorporate these heuristics into 
a successful reproductive plan. 

Two pzlrticularly novel ideas are incorporated 
into the EDAC approach, the f i s t  and most 
obvious of which being rhe application of 
genetic algorithms to the (exploration of the 
space of TSP problem subdivisions already 
discussed. 

The other principal novel idea is an alternative 
approach to the construction of Karp-like tours, 
viewing them as being recursive, rather than 
patching globally, as Karp does. This new 
approach has allowed the incorporation of 
additional heuristics at a law cost in terms of 
execution time. Patching in EDAC is done whilst 
threading back up through the recursive 
subdivisions, and each application of recursive 
patching is followed by a procedure which we 
have called repair. Repair is essentially a 
combinatoric local tour improvement routine. 
When n l m m e s  large there is a strong need to 
reduce any global procedures and the idea that 
patching should be done recursively yields 
sigdicaxtt dividends in limiting the combinatoric 
explosion of cases to be considered for repair. 

A particular benefit of EDAC is that the model 
is intrinsically parallel. The overall design lends 
itself to parallelisation at several levels and in a 
number of different ways depending upon the 
parallell architecture. A parallel version of EDAC 
running on the APlooO supercomputer is 
presented in this paper. 

The Cellular Dissection Algorithm. 

Subdivision. 

Let rectangle R contain m cities. Let y be the 
y-coordinate of the centre of R .  A horizontal cut 
through y subdivides R into two equal 
rectangles, an upper rectrlmgle and a lower 
rectangle. With uniform rand’om points the effect 
is to place about half the cities either side of the 
bisecting line. In a similar fashion, a vertical cut 
could be applied to bisect the cities through x, 
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which is the x-coordinate of the centre of R. 
In cellular dissection algorithms based on 

Karp’s approach, the bisection process is called 
repeatedly in a recursive fashion in order to 
subdivide all the new rectangles as they are 
formed until the number of cities within a 
particular rectangle falls below a certain 
threshold, when tbe subproblems in each 
rectangle are solved. 
Pn EDAC the above bisection technique is 

modified slightly to make the process of 
patching the solutions to the subproblems easier. 

Rwtangles are bisected through the city 
nearest to the true area bisection line. 

In K q ’ s  algorithms the direction of the cut is 
always parallel to the shorter side of the 
rectangle. Karp showed that by minimizing the 
lengths of the perimeters of the rectangles he 
was able to minimise the expected lengths of the 
tours. In EDAC the direction of cut is 
determined at each stage by the genetic 
algorithm. 

Solving the subproblems. 

a 

Before A&€ 

2-move is illustrated in Figure 1. For any fixed 
value d k, the corresponding k-opt algorithm 
always keep on running until a situation is 
reached where no further improvements are 
possible by a single k-move. 

Figure 2. Subproblems solved. 

Patching the subtoiirs together. 

After the subproblems have been solved, as in 
E g x e  2, the four incident edges to the shared 
city must be reduced to two. This is achieved by 
the removal of two of the incident edges, one 
from each subproblem, and the creation of a 
new edge between the two “stranded” cities. As 
there are only four possible ways this patching 
can be done, they are all tried and one that 
results in the shortest patched tour is selected. 
For later purposes the new edge can be added to 
an edge list L as a candidate for repair. 

Figure 1. A 2-move on edge E involving a 
neighbour a. 

I I 

The Lin k-opt heuristics Lin 19651 are used 
for solving the subproblems, Lirz 2-opt being 
used in the earliest versions of EDAC and 
Lilz 3-opt for some of the later versions. In our 
experiments the average subproblem size was 
only about 8 cities, and the method of solution 
proved not to be critical. 

The k-opt algorithms are examples of local 
tour improvement procedures. They operate on 
some current tour by exchanging edges that are 
in the current tour for better edges that are not 
in the current tour. In the case of 2-opt, for 
example, edges are considered for exchange in 
pairs. In 3-opt edges are considered in triples. 
When any such exchange produces a shorter 
tour length it is made permanent. A single 
exchange is called a k-move. A successful 

Figure 3. Patched solution. 

Recursive fast-repair. 

The recursive fast-repair heuristics developed 
for EDAC are based on fast versions of the k-opt 
algorithms briefly described above. Various 
shortcuts have been employed in an attempt to 
speed dungs up, several of which were first 
suggested by [Martin 19921, the most important 
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Procedure Fast-2-repair(T, L, Neighbourhood lists) 
{T is the current tour, L := L(T) is list of edges of ‘r to be considered. Max is the 
maximum edge length of tlhe current tour, Min is the estimated minimum edge length 
of all edges. I is the length of the neighbour lists (I =: 1.0 in these experiments). SCE> is 
start city of edge E, f(E) is final city of edge E. next(a) and prev(a), for city a, are next 
city and previous city, respectively of current tour T} 

begin 

while L $- 0 do 
select edge E =: (s(E), f(E>> E L 
m := 1: improvement := false 

while m I; I and (improvement = false) do {check neighbours of s(E) & f@)} 
a := neigh(s(E),m): 
b := neigh(f(E),m) 
if (d(s(E),a) + Min :> d(s(E),f(E)) + Max) and 

{check neighbour of SO} 
if d(s(E1,a) + d(f(E),next(a)) < d(s(E)f(E)) + d(a,next(a)) then 

{mth neighbour of s(E) on list} 
{mth neighbour of f(E) on list} 

(d(f(E),b) + Min > d(s(E)f(E)) + Max) then break inner while loop 

L := L - {E.(a,next(a>)} + I (s(E).a>,(f(E),ne:~t(a)) 1 
make 2-move on T 
update Max 
improvement := true 

{check neighbour of f(E)} 
if d(sW),prev(b)) + d(f(E),b) < d(s(E),f(E)) + d(prev(b),b) then 

{see Figure 1 } 

L := L - IE,(prev(b),b)J + {(s(E>,prev(b>>,(f(E)~b)} 
make 2-move on T 
update Max 
improvement := true 

m : = m + l  {no 2-moves, check next neighbour} 
[take next edge in L} 
{delete edge from the active list} 

end while 
L = L - {E} 

end while 

end 

Algorithm 1. Fast 2-repair. 

probably being the restriction off cases of 
k-moves to be considered. For the geometric 
TSP, when using k-opt it is silly to consider sets 
of edges which are far apart in the physical 
space of the problem. One way in which fast-k- 
opt makes this idea precise is by maintaining, 
for each city, a list of the 10 nearest neighbours 
(say), and restricting k-moves to these edges. 
Algorithm 1 outlines fast-2-repair. We refer the 
reader to [Jones 19951 and [Valenzuela 1995al 
for implementation details of fast-3-repair. 

Recursive fast-k-repair succeeds each simple 
patching operation in the recursive construction 
of the global tour, expending most of its efforts 
repairing small subproblems, where accepted 
k-moves require only short subtour 
manipulations. In addition each call to recursive 

fast-k-repair is initiated with an edge list L 
containiig just one edge, the rogue edge 
produced by a single simple patching operation. 

Far-repair 

With a view to further improving the solution 
quality a low-cost tour improvement heuristic 
has been employed. The ideas used here are 
similar to those embedded in the Or-opt 
algorithm [Or 19761. In essence the scheme 
deletes single cities, or small groups of cities, 
from tlzeir positions in tlhe current tour and 
inserts them in new positions whenever this 
move produces a reduction in the tour length. 
The d,gorithm, which we call far-repair, is 
applied globally following the construction of 
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Figure 4 Potential Far-moves. 

the initial tour by simple patching and recursive 
fast- k-repair. 

The lists of nearest neighbours accumulated 
for the k-move procedures are employed by far- 
repair to ensure that the algorithm does not 
waste valuable time evaluating potential moves 
that have little chance of success. Figure 4 
shows how a single city is tested as a candidate 
for a fur-move. It is tried first one side of a near 
neighbour, then the other. The term 'far' repair 
refers to the fact that individual cities can be 
moved to new positions in the current tour that 
are "far away" from their present positions in 
terms of where they are on the permutation list 
defining the tour. Far-repair involves 
exchanging three edges (a 3-move) and, because 
it is applied globally, it will repair defects which 
are beyond the scope of recursive fast-k-repair. 
Further details of far-repair, which obviously 
has time complexity O(n>, can be found in 
[Valenzuela 19941. 

The Parallel Genetic Algorithm. 

A parallel supercomputer, the Fujitsu APlOOO, 
was chosen as an implementation environment 
on which to conduct experiments on very large 
problems. This is an MlMD configuration with 
one processor, the host, coordinating the 
activities of up to 1024 other processors, the 
cells. The machine we use in this study has only 
128 cells. 

Grefenstette's master-slave synchronous model 
[Grefenstette 19811 was chosen as a framework 
for the parallel implementation of EDAC. In the 
algorithm each of the 128 cells is responsible for 
evaluating a tour for an "individual" member of 
the current population. This entails the 
application of a complete divide-and-conquer 
procedure on the TSP problem given to the 
EDAC algorithm. The host computer is 
responsible for computing every other aspect of 

the genetic algorithm, including selection, 
reproduction and implementation of the genetic 
operators crossover and mutation. The master- 
slave model is appropriate because most of the 
time during execution of EDAC is taken up with 
evaluating the divide-and-conquer procedure on 
the various members of the population, and very 
little time is spent on all other aspects of the 
genetic algorithm. For example when applying 
EDAC (with h e p a i r )  to an 100 city problem 
Sun serial computers spend more than 99.9% of 
their execution time on divide-and-conquer 
evaluations and less than 0.01% on all other 
aspects of the genetic algorithm. When EDAC is 
applied to a loo0 city problem the proportion of 
time spent on divide-and-conquer evaluations 
rises to 99.99%. 

The fact that the APloo0 implementation of 
EDAC is controlled by a sequential genetic 
algorithm meant that the GA previously used on 
the serial platform required very little 
modification. The only difficulty encountered 
with its implementation was due to the "steady 
state" nature of the population inherent in the 
weaker parent replacement scheme used 
previously. In this scheme, based on an 
algorithm by [Cavicchio 19701, offspring are 
generated one at a time and a decision made 
either to replace one or other parent or let the 
new individual die before the next parental pair 
are selected for mating. On the APlOOO although 
the offspring are generated sequentially on the 
host, they are evaluated in parallel by the cells. 

Each parent and offspring consists of a two 
dimensional lookup table which when 
superimposed on the TSP represents decisions to 
make either vertical or horizontal cuts; the 
component selected from the lookup table in 
each case being the one most closely 
corresponding to the geometric centre of the 
candidate rectangle. The crossover and mutation 
of these two dimensional binary arrays are fairly 
straightforward to implement. (For more details 
of the genotype and genetic operators see 
[Valemela 19941). 

The main task executed by the cells is, on 
receipt of a genotype from the host, for each to 
carry out a divide-and-conquer procedure and 
return a tour length to the host as a measure of 
fitness. Thus following the execution of the 
divide-and-conquer routine by all the cells, the 
host temporarily possesses two populations, one 
of parental genomes and the other of their 
offspring. It is not possible to implement the 
conventional weaker parent replacement model 
to merge these two groups of individuals, 



503 

Procedure Parallel GA 
begin 

Generate N random structures {N is the population size} 
host sends N stmctures, one to each of N cells 
cells evaluate tour length produced by each structure 
host collects N tours and N tour lengths, one form each cell 
host evaluates and stores best-so-far 
for generation = 1 to nosenerations 

repeat for each population structure 
select next (first) structure 
select a second structure stochastically from a ranked distribution 
apply crossover to produce offspring 
apply mutation to offspring 

until no more population structures 
host sends IV structures., one to each of N cells 
cells evaluate tour length produced by each offspring 
host collects N tours and N tour lengths, one form each cell 
repeat for each offspring structure 

if offspring better than occupant of weaker parent slot 

if offspring better than best-so-far then it replaces best-so-far 
then it replaces it in population 

until no more offspring structures 
endfor { generation loop } 
print best-so-far 

end. 

Algoritlini 2 

because a potential conflict arises each time 
individual parents produce multiple offspring. 
Assuming the new offspring are processed 
sequentially, once a particular parent has been 
replaced by a stronger fist  offspring, the parent 
is not then available for replacement should the 
algorithm encounter a second offspring from that 
parent. 

Fortunately, the matter is easily resolved. 
Stronger offspring are simply allowed to occupy 
the fitness slots vacated by their weaker parents. 
Thus subsequent offspring are assessed 
according to the parental fitness slots occupied 
at the time and the strong elitist strategy 
inherent in the earlier serial GA is maintained 
(see Algorithm 2). 

Some Results. 

Quality of solution. 

Early studies demonstrated that all the EDAC 
algorithms reliably produced much better 
solutions than comparable random search on a 
trial for trial basis. These control trials were set 
up using divide, conquer and repair heuristics 

that were identical to the tarresponding EDAC 
algorithm, the only difference being that the 
direction of bisection for each rectangle that 
arose was selected at random instead of readmg 
it from a genome lookup table. In fact these 
experiments not only established that the genetic 
algorithm had an important role to play, but they 
also demonstrated that the sigillficance of this 
role increased with increasing problem size. For 
example on a 500 city problems an EDAC 
algorithm with 3 repair (population of 128 for 
100 generations) yielded a solution only 0.63 
standard deviations better tlkan the best obtained 
in the comparable random search, whilst for 
2000 cities the same EDAC algorithm 
(population of 128 for 300 generations) 
produced a solution 2.8 1 standard deviations 
better than random search. The fact that the 
results yielded by the genetic algorithm were 
superior to those produced by the original Karp 
algorithms was also established early on. 

Table 1 summarises the results obtained so far 
for parallel EDAC on uniform random points 
each with expected solutions of 100 "Stein 
units" explained in [Valenzuela 19941. 

The v dues entered in the EDAC columns each 
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5oo0 

size 

1M.55 100.62 

I I I 

93.59 99.52 99.07 

98.7 I 

loo0 95.22 99.74 

94.30 99.20 

represent the mean best tour len,@hs obtained 
from three runs, except in the case of 5000 cities 
where values are recorded for single runs. 

The EDAC results are compared with a 
problem specific measure called the Held-Karp 
lower bound [Held 19701, [Held 19711, see 
[Valenzuela 1995bl for an account of this 
measure. EDACII and EDACIII represent 
versions with 2-repair and 3-repair respectively. 

Time complexity and run-time. 

For problems of in the range 500-5000 cities, 
the scaling exponents, e from @ne>, for both 
EDACII and EDACIII, measured by timing one 
generation of the GA for each on the AP1000, 
was almost linear, being 1.04 for EDACII and 
1.11 for EDACIII. 

Run-times on the APlOOO for 300 generations 
of EDACII and EDACIII on the 5000 city 
problem were approximately 12 and 28 hours 
respectively . 

Conclusion. 

It is our opinion that EDAC algorithms show a 
great deal of potential for solving large 
travelling salesman problems on parallel 
hardware. Although the solution quality typically 
obtained by EDAC so far appears to fall slightly 
short of values obtained by more standard 
heuristic techniques such as iterated 
Lin-Kernighan [Johnson 19901, the near linear 
scaling exponent yielded by EDAC on the range 
of problem sizes studied vindicates further 
investigations. 
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