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Abstract- Simple constructive heuristic techniques of- All vehicles are capable of holding capacity
ten product poor solutions when applied to the capac- A plethora of algorithms have been proposed to solve the
itated vehicle routing problem (CVRP). In this paper CVRP. In comparison to the simplest heuristics available,
we present a hybrid genetic algorithm that lightly per-  such as the Clark & Wright (CW) algorithm, many of the
turbs the customer coordinate sets, and “fools” a sim- more successful techniques such as Tabu Search (TS), Sim-
ple Clarke and Wright heuristic (CW) into produc-  ulated Annealing (SA) and Parallel Iterative Search meth-
ing much better solutions than is the case when CW ods are rather more complicated. To be truly effective, some
is applied to the original customer locations. Further- even require the use of very powerful computers not avail-
more, we demonstrate that the new approach compares able to the average user. Our technique is based around the
favourably with other state-of-the-art methods when CW algorithm, is able to be run on standard computer hard-
tested on a set of instances derived from the literature.  ware and is very easy to implement.
In this paper we describe a hybridized approach, which
1 Introduction uses the CW algorithm within a Genetic Algorithm (GA)
framework to breed perturbed coordinate sets and produce
The Vehicle Routing Problem (VRP) is NP-Hard and can bbigh quality solutions to the CVRP.
viewed as an amalgamation of two other well known com-
binatorial optimization problems: the Bin Packing Problenp Clarke and Wright
(BPP) and the Travelling Salesman Problem (TSP). The
VRP deals with the distribution of products to a group offhe well known algorithm of Clarke and Wright [3] is based
customers, all of whom must be serviced within a givemipon the principle of savings and can be applied in a se-
time frame. This must be achieved using a quantity of vehiguential or parallel form. The algorithm begins with each
cles, located at one or more depots and driven by a group afistomer assigned to their own distinct route and then com-
drivers using the road network infrastructure. bines these routes using a savings criterion, until a solution
Essentially, the solution to this problem requires the desan be obtained. Two feasible routes can be merged into a
termination of a set of routes that fulfil all given constraintssingle route as long as no constraints are violated in doing
and minimise overall tranportation costs. Each route musbp. It is often the case in problems with a limited number
be undertaken by only one vehicle, which itself must starf vehicles, that a solution will require more vehicles than
and return to its allocated depot. those available. This will then result in an infeasible solu-
The simplest version of the VRP is known as the Capadion.
itated Vehicle Routing Problem (CVRP) and involves find- At the start of the procedure there atgoutes, where
ing a set of routes for a homogenous fleet of vehicles, whigkach route contains exactly one customer. The over-
must service a set of customers from a central depot. In thédl travelling distance for a symmetrical VRP problem is
paper, assumptions are made that all vehicles depart frdhE;.‘:1 co;. As any two routes (containing customeiasnd
and return to the same depot and an unlimited number gfrespectively) are merged into a feasible single route, a new
vehicles are available, all of which are capable of holdingoute with distanceo; + ¢;; + c;o is produced. The saving
an identical fixed capacity. The quantity demanded by each the overall travelling distance by merging the two routes
customer must be less than the capacity of a single vehidke:
and known in advance. The objective is to minimize the cost
of making the customer deliveries.
The CVRP can be formally defined as a graph= sij = 2(coi +¢oj) = (coi + cij + ¢jo)
(V, E) with a customer se¥’ = {0, 1, ....,n} (customer) = co; +Coj — Cij (1)
respresenting the depot) and an edgefseEach customer
V; > 0 has an associated demapd> 0 and each edgg, j]
a distance:;; > 0, with ¢;; = ¢;; for the undirected graph.

Thereafter, any two routes (each containing more than
one customer) with customeéiat one end of the first route
and customey at one end of the second route can be merged



Figure 1: CW solution for a CVRP instance based upon original coordinate data.

to produce an identical saving;. The algorithm works as produce circumferential routes and worsening quality routes
follows: as it progresses [12]. Many generalised savings definitions
have been proposed in the literature to overcome these prob-

Stepl (Calculate the savings) lems, such as those by Gaskell [7] and Yellow [13].

a. Calculate the saving;; = co; + coj — ¢;; for all
customer pairg andj, wherei = 1,....,n and 3 The Perturbation Approach
P # ] _ _ _
b. Order the savings in descending order. The first method tq mcorporate_a perturbatlo_n model as
a means of escaping local optima was an iterated Lo-

c. Initialise n vehicle routes(0,i,0) for i = ca| Search technique for the TSP, described by Codenitti,
1,....,nand0 = depot. Mazini, Margara and Resta [4, 5]. This was extended by
Stepll (Sequential Version) Bradwell et al.[1] to take the primary focus away from the

original set of coordinates and use a GA to breed perturbed
a. Select routg0, ¢, ...., 7,0) in turn and for each coordinate sets, utilising simple heuristic algorithms as a so-
route locate the first feasible saving; or s;;  lution mechanism to solve them.
which connects the currently selected route to

another with edgég, 0) or (0, k). Join the two 3.1 The Method Of Perturbed Coordinates

routes and continue down the savings list locat- . ) ) )
ing any additional feasible savings for the Cur_The principle of_thls method is to lightly p(_arturb (move) all

rent route. customer coordinates, and use the resulting perturbed coor-

. _ dinates to produce a set of routes using a simple heuristic

b. When no more feasible savings are found for th¢gchnique. This set of routes is then used to calculate the

current route, continue selecting the next routgq) gistance travelled based on the original set of customer
and repeating the feasible savings location prozgqrginates.

cess (step lla) from the top of the list until no

g s All coordinates are perturbed within a predefined region
more feasible savings can be found.

around each customer location.The resulting coordinate sets

The original algorithm proposed by CW has been showfpr™m the ‘chromosomes' in the population and the CW al-
to have a number of shortcomings, including a tendency @Prithm is used to produce a solution for each of the per-



Figure 2: CW solution for CVRP instance of perturbed data (represented by the dotted lines) and the corresponding decoded
solution using the original coordinate set. The final solution shows a marked improvement over Figure 1.

turbed coordinate sets in the population at any point in timé& A New Hybridized Approach

The ‘true solution’ distances calculated using original coor- . )
dinate data then form the basis for the fitness function ihh€ New approach combines a GA, a method of perturbing

the GA. See figures 1 & 2 for a visual explanation of thiscustomer coordinates and a CW algorithm (see Figure 3).
method.

CHROMOSOME
—————— > PERTURBED

3.2 The Perturbation Formula COORDINATES

All 2z andy coordinates in the initial population are per- 5
turbed using the following formula: V
CLARKE & WRIGHT
¥ = (int)(x+ (r—05)* f*X) HEURISTIC
y = (int)(y+(r—05)%fxY) 7

v
DECODE SOLUTION
USING ORIGINAL
COORDINATES

where:

r =random numbed < r <1

f = perturbation factor

GENETIC ALGORITHM

X =|Xmaz — Xmin|, range ofX coordinate values v

. FEEDBACK SOLUTION
Y =|Yinae — Ymin|, range ofY” coordinate values — QUALITY ('TRUE'

SOLUTION DISTANCE)

The same formula is further applied for all mutations
throughout the algorithm. The accentuated perturbation
achieved from these mutations, together with a crossoveigure 3: Outline structure of the new hybridized approach.
operator, provides the mechanism to fool the CW algorithm
into producing superior solutions. The GA is responsible for evolving new offspring from




the population of chromosomes. Each member of the popu// initialise population of chromosomes
lation contains a perturbed coordinate set of customer coorWhilei <p
dinate pairs from which solutions are then attained using thel

CW algorithm. A decoding procedure is then used to recal- for(intj = 0; j < noCustomerj++)

. ; - . {
culate the .solut|on. using the .orlglnal customer_ coord!nates. chromosome][j] = perturb(Coords)
The following sections describe the approach in detail. }
I evaluate fitness of chromosome using C&W heuristic
CHROMOSOME | (x1y1) [(x2,y2) | (x3y3) | (x4,y4) | (<5.y5) | ... [oxnym)| distance(] = evaluateCW(chromosomg]

/I Test termination criteria
while not done do

{
/I Selection
4.1 Population Structure and Initialisation P1 = getChromosome@ndom Num)

. P2 = getChromosome@ndomN
Chromosomes are encoded as an ordered list of perturbed /l Crogsover Gndom Num)

andy coordinate pairs (see Figure 4). By using perturbed ()1 = crossp1, P2)
coordinate sets and employing the CW algorithm as the so-  j/ mutation
lution mechanism, the need for a complex representationis 02 = mutateQ1)
negated. Il Evaluate mutated chromosome
The process for generating the initial population is based  routeSolution = evaluateCW(chromoson@p])
upon the techniques described by Bradwell, Williams and  // Decode solution using original coordinate set
Valenzuela [1] for the TSP, where city coordinates are per-  "outeDistance = decode(routeSolution)
turbed within a rectangular region around each city. Forthe !/ Write back to population if better than weaker parent
CVRP, we use a preset rectangular region around each pair [ "outeDistance < distanceP’1] || distancef’2])
of customer coordinates, sizing the region based upon the {
results of initial experimentation (see section 6.1). }
The initial population consists gf chromsomes, where
p equals the chosen size of the population. For each chro-
mosome, customers are selected in order and theind Figure 5: Pseudocode for new hybridized approach
y coordinates are randomly perturbed using equation 2 de-

scribed in the section 3.2. This process is then repeated for

each required chromosome. An outline of the new approaéﬂ“tation and varying mutation rates were carried out. Each
in the form of pseudocode is detailed in Figure 5. experiment consisted of 15 replicate runs of the GA with

Initial experimentation suggested a population size diifferent values off and different rates of mutation on 50,

100 to be sufficient to maintain solution quality and allowl00 and 200 customer problem instances. .
efficient running times. This population size is used for all The experlmen;[atlon established that a high mutation
results presented within this paper. However, indications afgt€ of around 10% of total customers and a perturbation

that solution quality can be maintained with substantialljactor of double the rate used for the initial population is
smaller populations. Further work will need to be underPreferred. This has the effect of exaggerating the movement
taken to fully substantiate this. of the mutated customers and further fools the CW heuristic

into producing even better results.

Figure 4: Chromosome representation.

distance[weaker]| = routeDistance

4.2 Crossover . . .
4.4 Solution Mechanism/Decoding Procedure

A number of experimental runs were carried out to evaluate ] ) i )
the effect of using different crossover operators. The thrdeP!lowing selection, crossover and mutation, the resulting

operators chosen for this purpose were single point (SPXJffSPring chromosome contains a perturbed coordinate set
uniform (UX) and 2-Point (2PX). 30 replicate runs of theWhich is decoded using a CW algorithm. This template so-

GA were made for a range of problems instances from ggtion is stored in a separgte array gncoded as a list of cus-
to 150 customers. As expected, all the crossover operatéPénerS from each route with a delimiter between each route

provided different rates of convergance, however it was USE€€ Figure 6). _ , _
that consistently provided better quality solutions. “Using the template solution, a decoding sequence is ap-
plied to produce a ‘true solution’ to the CVRP. The first

route in the list is extracted and a depot node inserted at
the beginning and end of the route. The distance from the
A simple mutation procedure is used which consists of rartepot through each of the customers in the route and back to
domly selectingn (mutation rate), customers from the off-the depot is calculated using the original set of coordinates.
spring chromosome, and further perturbing the selected cuBhis procedure is then repeated for the remaining routes un-
tomers coordinates using the perturbation formula. A set @ the ‘true’ distances of all routes in the list has been cal-

experiments using a range of perturbation factor values feulated. The overall solution to the CVRP is derived from

4.3 Mutation



OFFSPRING CHROMOSOME
lxl,ylIx2,y2|x3,y3|x4,y4|x5,y5|x6,y6 x7,y7|x8,y8Ix9,y9|xA,yA|xB,yB|XC,yC|

CW ALGORITHM OUTPUT
I 0 |x3,y3|x1,y1|x2,y2| 0 |x4,y4|x5,yslx7,y7| 0 |xA,yA|xC,yCIxB,yB| 0 |x9,y9|x8,y8|x6,y6| 0 |

ROUTE 1 ROUTE 2 ROUTE 3 ROUTE 4
[ofs[1f2]o] [ofJa]s[7]o] [ofswofi2[uaJo] [of9]s8]efo]

Figure 6: Outline of solution and decoding process.

the sum of all calculated route distances. 5.1 Scaling the Perturbation Zone

The overall distance calculated from the offspring is the[f‘he size of the perturbation region around each customer

compared to the solution distance of the parent chromosorpo%ation confines the movement of each customer to that

used to create it. If the distance is better than the weaker . .
. . . .area. But just how far should the customer coordinates be
parent, that chromosome is replaced in the population wi

the generated offsping. Offspring weaker than their paren?slo.wed to be perturbed? Itis f easible th.at the area of the

are discarded. optimal perturbation region varies according tg the number
of customers: and the overall rectangular regidty com-

. prising all customers within a problem instance.

5 Experimental Results For each problem we carry out 8 sets of 15 experimental

rlins for differentf settings, in order to analyse the effect

In this section we present the results obtained from a s¢ using different perturbation rates. All runs are made with

of experiments to evaluate the performance of the hybr@ population size of 100, UX crossover, a mutation rate of

algorithm presented in this paper. The algorithm is |mpleioo/0 of the number of customers in a given problem, and

mented_in \_]ava and the_ experiments carried out on a COM: 1+ d after 1500 generations,
puter with in Iptel Pentlum 4, 2.8GHz processor and us- Although a value off = 0.05 appears to give marginally

ng the GNU/Linux Operat|r_lg System. Experiments are.deBetter results than other settings overall, the results from
S|gqed o evaluate the r.e""?“"e performance of our algonthrt?]ese pilot studies are far from clear cut, and indicate that
against other metaheuristic approaches. the approach is remarkably robust across a wide range of

different values off, between 0.01 and 0.2. Clearly, more

Table 1: Summary of cvrp dataset instances. work needs to be done in future to clarify the situation. For
Prob. | Size | Type Problem Source the time being, however, we have extracted the best overall
1 50 | Uniform | Christofides et al. (1979 result for each set of runs and used it as a basis for com-
2 75 | Uniform | Christofides et al. (1979 parison in Tables 2 and 3. The full set of results have been
3 100 | Uniform | Christofides et al. (1979 included in the Appendix.
4 150 | Uniform | Christofides et al. (1979
5 199 | Uniform | Christofides et al. (1979
6 120 | Cluster | Christofides etal. (1979 Table 2: Comparison of CW algorithm with new hybridized
7 75a | Cluster | Rochat et al. (1995) approach.
8 75b | Cluster | Rochat et al. (1995) Standard| Hybridized Approach|  f
9 75c | Cluster | Rochat etal. (1995) Prob. | Size CWwW Best Result Value
10 | 75d | Cluster | Rochatetal. (1995) 1 50 585.00 524.61 0.05
11 | 100a| Cluster | Rochatetal. (1995) 2 75 900.00 838.60 0.05
12 | 100b | Cluster | Rochatetal. (1995) 3 100 | 886.00 831.25 0.08
13 | 100c | Cluster | Rochatetal. (1995) 4 150 | 1204.00 1046.72 0.02
14 | 100d | Cluster | Rochatetal. (1995) 5 199 | 1504.00 1319.11 0.03
6 120 | 1079.00 1042.11 0.03
The datasets chosen as the basis for the experiments are ! /53 | 164550 1618.36 0.05
those presented in [2, 10] and shown in the Table 1. Th 8 /5b | 1356.56 1344.62 0.05
A 9 75c | 1334.84 1291.01 0.05
initial instances correspond to problems 1-5 and 11. These
. 10 75d | 1428.53 1365.42 0.05
have been re-numbered 1-6 respectively for the purposes ef 11 | 100a | 2166.04 505462 01
this paper. Problem.s 1-5 are all problem instances of ran 12 T 100b | 203431 1940 36 0.05
doml_y generated umform points. In contras_:t problems 6-_1 *—3 [ 100c | 1434.89 1406.20 0.05
consist of customers which are generated in clusters, to IM="72 | 100d | 1682.25 1591.32 0.05

itate real world problems.



solutions and matched other state-of-the-art algorithms for

. : - many of the other problem instances.

The be;t results .ach|eved using t'he new'hybr|d|zed aP” \We have shown that it is possible to produce high qual-
proach in comparison to those achieved using the standall{d solutions to the CVRP using a verv simple hvbridized
CW algorithm are shown in Table 2. It can be clearly seel}. g Y pie ny

; ) ) . . ) Igorithm. Harnessing a basic GA as a container to breed
that using perturbed coordinates in conjunction with the C : .
: . . : erturbed customer coordinate sets has clearly succeeded in
algorithm allow vastly superior solutions to be attained tha

is possible with the standard CW algorithm. _oollng the CW algorithm into generating far superior qual-

The best overall results are further compared to resul({? solutions when compared to those attained using stan-
P ard coordinate sets. Indeed, our method generally lifts the

achieved with other metaheuristic techniques applied to thseolution quality by about 8%.

same data instances in Table 3. Most notably, the new hy- ; .
- : In comparison to some of the best published results
bridized approach produces 2 new best-known solutions for hieved for th d . | . h
roblems 75b and 100b. For all other problem instanceg.. oo O these datasets using alternative approaches,
P ) imost notably the TS [8], SA [9] and a Parallel Iterative

: . L . 0
solutions elther_eq_ual or lie \.N'th!n approxmately 1% of theSearch Method [11], our algorithm performs formidably.
other metaheuristics. Considering the ceiling of 1500 gens _, .. o

. . . . olutions from our approach are within about 1% of these
erations applied to each run, it would seem feasible that tIﬁr'ﬁore complicated implementations and we believe that the

initial results achieved from this preliminary study may berelative guality attained in conjunction with simplicity of

further improved by running the algorithm for more 9eNeTour approach allows great scope for the use of this method

ations. In some cases, further investigation will need to be .
undertaken to establish this with anv certaint on both small and large problem instances. Although the

y Y- validity of our method needs to be properly established
through formal comparative studies with other state-of-the-

art methods.

5.2 Comparisons with Other Methods

Table 3: Results of hybridized approach.

Hybridized Work is currently underway to incorporate alternative
Approach Avg Best Solution construction based heuristics for solving the CVRP into the
Prob. | Size | BestResult| Time Value GA framework. This work will include an empirical study
1 50 524.61 | 1Im20s| 524.61[11,8, 9] of the strengths and weaknesses of different heuristics when
2 75 838.60 | 2m15s|  835.26[11] applied to perturbed coordinate sets, including a full statis-
3 | 100 | 83125 sm 826.14 [11] tical analysis of dataset solutions and a thorough evaluation
4 150 1046.72 12m 1028.42 [11] of the effect of different crossover operators. A further de-
> 199 1319.11 15m 1298.79 [11] tailed investigation into the related size of the perturbation
? %gg igi;éé 2r3n1155 10;’5'1%13[;}'1;’ 9] zone and prob!em gize, in conjunction with an analysis (_)f
3 7Eh 1344:62 > 155 1344:64 [10] the effect of using different sha}ped pgrtgrbatlon zones, will
9 750 129101 | 2m 18s 129101 [10] then be carried qut. The glgorlthm will f!nally be egtended
10 754 136542 | 2m 15s 1365.42 [10] to solve the Vehicle Routing Problem with Time Windows
11 | 100a| 2054.62 | 5m 2041.34 [0] (VRPTW).
12 100b 1940.36 5m 1940.61 [10]
13 | 100c | 1406.20 5m 1406.20 [6] Bibliography
14 100d 1591.32 5m 1581.25 [6]
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Appendix

f=0.01 f=0.02 f=0.03 f=0.04
Prob. | Size Best Avg Best Avg Best Avg Best Avg
1 50 | 524.93 | 526.74 | 525.93 | 526.82 | 524.93 | 525.72 | 524.61 | 524.97
2 75 | 838.60 | 840.16 | 838.60 | 839.72 | 839.10 | 843.67 | 846.40 | 852.16
3 100 | 836.38 | 837.14 | 836.89 | 837.38 | 839.87 | 840.24 | 836.85 | 838.32
4 150 | 1058.48| 1059.03 | 1046.72| 1052.27 | 1058.19| 1059.43 | 1064.54| 1066.92
5 199 | 1335.82| 1340.13| 1332.68| 1336.25| 1319.11| 1326.48| 1345.16| 1349.57
6 120 | 1045.62| 1045.97 | 1046.35| 1046.32| 1042.11| 1043.87 | 1046.62| 1047.44
7 75 | 1622.24| 1622.24| 1620.70| 1621.63| 1618.36| 1619.56 | 1618.36| 1620.26
8 75 | 1344.62| 1344.63| 1344.62| 1344.66| 1344.62| 1344.62| 1344.62| 1344.62
9 75 | 1291.01| 1291.01| 1291.01| 1291.01| 1291.01| 1291.01| 1291.01| 1291.01
10 75 | 1389.32| 1393.00| 1389.32| 1390.43| 1386.70| 1387.57 | 1383.99| 1386.87
11 100 | 2072.64 | 2074.83| 2073.06 | 2075.03 | 2067.57 | 2071.38| 2072.43| 2074.89
12 100 | 1948.56| 1951.43| 1940.97 | 1945.68 | 1942.81| 1945.15| 1940.70| 1943.55
13 100 | 1406.24| 1406.31| 1406.20 | 1406.21| 1406.20 | 1407.06| 1406.24| 1406.81
14 100 | 1598.36| 1599.06 | 1598.36| 1599.72| 1598.38| 1600.32| 1601.30| 1603.75
f=0.05 f=0.08 f=01 f=02
Prob. | Size Best Avg Best Avg Best Avg Best Avg
1 50 | 524.61 | 527.96 | 525.13 | 528.63 | 531.52 | 539.86 | 532.99 | 538.27
2 75 | 838.60 | 841.37 | 839.88 | 843.21 | 845.75 | 848.36 | 854.14 | 861.94
3 100 | 840.11 | 842.28 | 831.25 | 832.95 | 835.17 | 836.01 | 880.81 | 852.42
4 150 | 1060.75| 1064.77 | 1065.68 | 1066.45| 1072.47| 1073.69| 1096.78| 1116.39
5 199 | 1359.09| 1364.92| 1355.00| 1359.18| 1357.94| 1366.84 | 1449.38| 1453.64
6 120 | 1045.13| 1046.83 | 1046.33 | 1049.73| 1044.91| 1046.72| 1061.21| 1067.46
7 75 | 1618.36| 1618.36| 1618.36| 1618.36| 1618.36| 1618.49| 1629.12| 1631.76
8 75 | 1344.62| 1344.62| 1345.01| 1345.34| 1345.92| 1346.23| 1360.58| 1362.66
9 75 | 1291.01| 1291.01| 1291.01| 1291.01| 1291.01| 1291.01| 1298.62| 1301.92
10 75 | 1365.42| 1369.76 | 1366.48 | 1368.48 | 1370.89| 1381.56 | 1404.83| 1404.15
11 100 | 2062.90| 2063.14 | 2062.38 | 2067.81 | 2054.62| 2059.13| 2108.82| 2116.31
12 100 | 1940.36| 1940.67 | 1941.26 | 1942.20| 1947.56| 1949.39| 1976.10| 1988.58
13 100 | 1406.20| 1406.80| 1411.38| 1413.82| 1419.73 | 1422.37| 1462.49| 1468.34
14 100 | 1591.32| 1597.64 | 1599.53| 1601.97 | 1594.42| 1597.34| 1637.94| 1658.71




