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Abstract- Simple constructive heuristic techniques of-
ten product poor solutions when applied to the capac-
itated vehicle routing problem (CVRP). In this paper
we present a hybrid genetic algorithm that lightly per-
turbs the customer coordinate sets, and “fools” a sim-
ple Clarke and Wright heuristic (CW) into produc-
ing much better solutions than is the case when CW
is applied to the original customer locations. Further-
more, we demonstrate that the new approach compares
favourably with other state-of-the-art methods when
tested on a set of instances derived from the literature.

1 Introduction

The Vehicle Routing Problem (VRP) is NP-Hard and can be
viewed as an amalgamation of two other well known com-
binatorial optimization problems: the Bin Packing Problem
(BPP) and the Travelling Salesman Problem (TSP). The
VRP deals with the distribution of products to a group of
customers, all of whom must be serviced within a given
time frame. This must be achieved using a quantity of vehi-
cles, located at one or more depots and driven by a group of
drivers using the road network infrastructure.

Essentially, the solution to this problem requires the de-
termination of a set of routes that fulfil all given constraints
and minimise overall tranportation costs. Each route must
be undertaken by only one vehicle, which itself must start
and return to its allocated depot.

The simplest version of the VRP is known as the Capac-
itated Vehicle Routing Problem (CVRP) and involves find-
ing a set of routes for a homogenous fleet of vehicles, which
must service a set of customers from a central depot. In this
paper, assumptions are made that all vehicles depart from
and return to the same depot and an unlimited number of
vehicles are available, all of which are capable of holding
an identical fixed capacity. The quantity demanded by each
customer must be less than the capacity of a single vehicle
and known in advance. The objective is to minimize the cost
of making the customer deliveries.

The CVRP can be formally defined as a graphG =
(V, E) with a customer setV = {0, 1, ...., n} (customer0
respresenting the depot) and an edge setE. Each customer
Vi > 0 has an associated demandqi > 0 and each edge[i, j]
a distancecij > 0, with cij = cji for the undirected graph.

All vehicles are capable of holding capacityQ.
A plethora of algorithms have been proposed to solve the

CVRP. In comparison to the simplest heuristics available,
such as the Clark & Wright (CW) algorithm, many of the
more successful techniques such as Tabu Search (TS), Sim-
ulated Annealing (SA) and Parallel Iterative Search meth-
ods are rather more complicated. To be truly effective, some
even require the use of very powerful computers not avail-
able to the average user. Our technique is based around the
CW algorithm, is able to be run on standard computer hard-
ware and is very easy to implement.

In this paper we describe a hybridized approach, which
uses the CW algorithm within a Genetic Algorithm (GA)
framework to breed perturbed coordinate sets and produce
high quality solutions to the CVRP.

2 Clarke and Wright

The well known algorithm of Clarke and Wright [3] is based
upon the principle of savings and can be applied in a se-
quential or parallel form. The algorithm begins with each
customer assigned to their own distinct route and then com-
bines these routes using a savings criterion, until a solution
can be obtained. Two feasible routes can be merged into a
single route as long as no constraints are violated in doing
so. It is often the case in problems with a limited number
of vehicles, that a solution will require more vehicles than
those available. This will then result in an infeasible solu-
tion.

At the start of the procedure there aren routes, where
each route contains exactly one customer. The over-
all travelling distance for a symmetrical VRP problem is
2

∑n
j=1 c0j . As any two routes (containing customersi and

j respectively) are merged into a feasible single route, a new
route with distancec0i + cij + cj0 is produced. The saving
to the overall travelling distance by merging the two routes
is :

sij = 2(c0i + c0j)− (c0i + cij + cj0)
= c0i + c0j − cij (1)

Thereafter, any two routes (each containing more than
one customer) with customeri at one end of the first route
and customerj at one end of the second route can be merged



Figure 1: CW solution for a CVRP instance based upon original coordinate data.

to produce an identical savingsij . The algorithm works as
follows:

StepI (Calculate the savings)

a. Calculate the savingsij = c0i + c0j− cij for all
customer pairsi andj, wherei = 1, ...., n and
i 6= j.

b. Order the savings in descending order.

c. Initialise n vehicle routes(0, i, 0) for i =
1, ...., n and0 = depot.

StepII (Sequential Version)

a. Select route(0, i, ...., j, 0) in turn and for each
route locate the first feasible savingsgi or sjh

which connects the currently selected route to
another with edge(g, 0) or (0, h). Join the two
routes and continue down the savings list locat-
ing any additional feasible savings for the cur-
rent route.

b. When no more feasible savings are found for the
current route, continue selecting the next route
and repeating the feasible savings location pro-
cess (step IIa) from the top of the list until no
more feasible savings can be found.

The original algorithm proposed by CW has been shown
to have a number of shortcomings, including a tendency to

produce circumferential routes and worsening quality routes
as it progresses [12]. Many generalised savings definitions
have been proposed in the literature to overcome these prob-
lems, such as those by Gaskell [7] and Yellow [13].

3 The Perturbation Approach

The first method to incorporate a perturbation model as
a means of escaping local optima was an iterated Lo-
cal Search technique for the TSP, described by Codenitti,
Mazini, Margara and Resta [4, 5]. This was extended by
Bradwell et al.[1] to take the primary focus away from the
original set of coordinates and use a GA to breed perturbed
coordinate sets, utilising simple heuristic algorithms as a so-
lution mechanism to solve them.

3.1 The Method Of Perturbed Coordinates

The principle of this method is to lightly perturb (move) all
customer coordinates, and use the resulting perturbed coor-
dinates to produce a set of routes using a simple heuristic
technique. This set of routes is then used to calculate the
total distance travelled based on the original set of customer
coordinates.

All coordinates are perturbed within a predefined region
around each customer location.The resulting coordinate sets
form the ‘chromosomes’ in the population and the CW al-
gorithm is used to produce a solution for each of the per-



Figure 2: CW solution for CVRP instance of perturbed data (represented by the dotted lines) and the corresponding decoded
solution using the original coordinate set. The final solution shows a marked improvement over Figure 1.

turbed coordinate sets in the population at any point in time.
The ‘true solution’ distances calculated using original coor-
dinate data then form the basis for the fitness function in
the GA. See figures 1 & 2 for a visual explanation of this
method.

3.2 The Perturbation Formula

All x and y coordinates in the initial population are per-
turbed using the following formula:

x′ = (int)(x + (r − 0.5) ∗ f ∗X)
y′ = (int)(y + (r − 0.5) ∗ f ∗ Y ) (2)

where:

r = random number0 ≤ r ≤ 1

f = perturbation factor

X = |Xmax −Xmin|, range ofX coordinate values

Y = |Ymax − Ymin|, range ofY coordinate values

The same formula is further applied for all mutations
throughout the algorithm. The accentuated perturbation
achieved from these mutations, together with a crossover
operator, provides the mechanism to fool the CW algorithm
into producing superior solutions.

4 A New Hybridized Approach

The new approach combines a GA, a method of perturbing
customer coordinates and a CW algorithm (see Figure 3).

Figure 3: Outline structure of the new hybridized approach.

The GA is responsible for evolving new offspring from



the population of chromosomes. Each member of the popu-
lation contains a perturbed coordinate set of customer coor-
dinate pairs from which solutions are then attained using the
CW algorithm. A decoding procedure is then used to recal-
culate the solution using the original customer coordinates.
The following sections describe the approach in detail.

Figure 4: Chromosome representation.

4.1 Population Structure and Initialisation

Chromosomes are encoded as an ordered list of perturbedx
andy coordinate pairs (see Figure 4). By using perturbed
coordinate sets and employing the CW algorithm as the so-
lution mechanism, the need for a complex representation is
negated.

The process for generating the initial population is based
upon the techniques described by Bradwell, Williams and
Valenzuela [1] for the TSP, where city coordinates are per-
turbed within a rectangular region around each city. For the
CVRP, we use a preset rectangular region around each pair
of customer coordinates, sizing the region based upon the
results of initial experimentation (see section 6.1).

The initial population consists ofp chromsomes, where
p equals the chosen size of the population. For each chro-
mosome, customers are selected in order and theirx and
y coordinates are randomly perturbed using equation 2 de-
scribed in the section 3.2. This process is then repeated for
each required chromosome. An outline of the new approach
in the form of pseudocode is detailed in Figure 5.

Initial experimentation suggested a population size of
100 to be sufficient to maintain solution quality and allow
efficient running times. This population size is used for all
results presented within this paper. However, indications are
that solution quality can be maintained with substantially
smaller populations. Further work will need to be under-
taken to fully substantiate this.

4.2 Crossover

A number of experimental runs were carried out to evaluate
the effect of using different crossover operators. The three
operators chosen for this purpose were single point (SPX),
uniform (UX) and 2-Point (2PX). 30 replicate runs of the
GA were made for a range of problems instances from 50
to 150 customers. As expected, all the crossover operators
provided different rates of convergance, however it was UX
that consistently provided better quality solutions.

4.3 Mutation

A simple mutation procedure is used which consists of ran-
domly selectingm (mutation rate), customers from the off-
spring chromosome, and further perturbing the selected cus-
tomers coordinates using the perturbation formula. A set of
experiments using a range of perturbation factor values for

// initialise population of chromosomes
while i < p
{

for( int j = 0; j < noCustomer;j++)
{

chromosome[i][j] = perturb(Coords)
}
// evaluate fitness of chromosome using C&W heuristic
distance[i] = evaluateCW(chromosome[i])

}
// Test termination criteria
while not done do
{

// Selection
P1 = getChromosome(randomNum)
P2 = getChromosome(randomNum)
// Crossover
O1 = cross(P1, P2)
// Mutation
O2 = mutate(O1)
// Evaluate mutated chromosome
routeSolution = evaluateCW(chromosome[O2])
// Decode solution using original coordinate set
routeDistance = decode(routeSolution)
// Write back to population if better than weaker parent
if( routeDistance < distance[P1] || distance[P2] )
{

distance[weaker] = routeDistance
}

}

Figure 5: Pseudocode for new hybridized approach

mutation and varying mutation rates were carried out. Each
experiment consisted of 15 replicate runs of the GA with
different values off and different rates of mutation on 50,
100 and 200 customer problem instances.

The experimentation established that a high mutation
rate of around 10% of total customers and a perturbation
factor of double the rate used for the initial population is
preferred. This has the effect of exaggerating the movement
of the mutated customers and further fools the CW heuristic
into producing even better results.

4.4 Solution Mechanism/Decoding Procedure

Following selection, crossover and mutation, the resulting
offspring chromosome contains a perturbed coordinate set
which is decoded using a CW algorithm. This template so-
lution is stored in a separate array encoded as a list of cus-
tomers from each route with a delimiter between each route
(see Figure 6).

Using the template solution, a decoding sequence is ap-
plied to produce a ‘true solution’ to the CVRP. The first
route in the list is extracted and a depot node inserted at
the beginning and end of the route. The distance from the
depot through each of the customers in the route and back to
the depot is calculated using the original set of coordinates.
This procedure is then repeated for the remaining routes un-
til the ‘true’ distances of all routes in the list has been cal-
culated. The overall solution to the CVRP is derived from



Figure 6: Outline of solution and decoding process.

the sum of all calculated route distances.
The overall distance calculated from the offspring is then

compared to the solution distance of the parent chromosome
used to create it. If the distance is better than the weaker
parent, that chromosome is replaced in the population with
the generated offsping. Offspring weaker than their parents
are discarded.

5 Experimental Results

In this section we present the results obtained from a set
of experiments to evaluate the performance of the hybrid
algorithm presented in this paper. The algorithm is imple-
mented in Java and the experiments carried out on a com-
puter with in Intel Pentium 4, 2.8GHz processor and us-
ing the GNU/Linux Operating System. Experiments are de-
signed to evaluate the relative performance of our algorithm
against other metaheuristic approaches.

Table 1: Summary of cvrp dataset instances.
Prob. Size Type Problem Source

1 50 Uniform Christofides et al. (1979)
2 75 Uniform Christofides et al. (1979)
3 100 Uniform Christofides et al. (1979)
4 150 Uniform Christofides et al. (1979)
5 199 Uniform Christofides et al. (1979)
6 120 Cluster Christofides et al. (1979)
7 75a Cluster Rochat et al. (1995)
8 75b Cluster Rochat et al. (1995)
9 75c Cluster Rochat et al. (1995)
10 75d Cluster Rochat et al. (1995)
11 100a Cluster Rochat et al. (1995)
12 100b Cluster Rochat et al. (1995)
13 100c Cluster Rochat et al. (1995)
14 100d Cluster Rochat et al. (1995)

The datasets chosen as the basis for the experiments are
those presented in [2, 10] and shown in the Table 1. The
initial instances correspond to problems 1-5 and 11. These
have been re-numbered 1-6 respectively for the purposes of
this paper. Problems 1-5 are all problem instances of ran-
domly generated uniform points. In contrast problems 6-14
consist of customers which are generated in clusters, to im-
itate real world problems.

5.1 Scaling the Perturbation Zone

The size of the perturbation region around each customer
location confines the movement of each customer to that
area. But just how far should the customer coordinates be
allowed to be perturbed? It is feasible that the area of the
optimal perturbation region varies according to the number
of customersn and the overall rectangular regionR, com-
prising all customers within a problem instance.

For each problem we carry out 8 sets of 15 experimental
runs for differentf settings, in order to analyse the effect
of using different perturbation rates. All runs are made with
a population size of 100, UX crossover, a mutation rate of
10% of the number of customers in a given problem, and
halted after 1500 generations.

Although a value off = 0.05 appears to give marginally
better results than other settings overall, the results from
these pilot studies are far from clear cut, and indicate that
the approach is remarkably robust across a wide range of
different values off , between 0.01 and 0.2. Clearly, more
work needs to be done in future to clarify the situation. For
the time being, however, we have extracted the best overall
result for each set of runs and used it as a basis for com-
parison in Tables 2 and 3. The full set of results have been
included in the Appendix.

Table 2: Comparison of CW algorithm with new hybridized
approach.

Standard Hybridized Approach f
Prob. Size CW Best Result Value

1 50 585.00 524.61 0.05
2 75 900.00 838.60 0.05
3 100 886.00 831.25 0.08
4 150 1204.00 1046.72 0.02
5 199 1504.00 1319.11 0.03
6 120 1079.00 1042.11 0.03
7 75a 1645.50 1618.36 0.05
8 75b 1356.56 1344.62 0.05
9 75c 1334.84 1291.01 0.05
10 75d 1428.53 1365.42 0.05
11 100a 2166.04 2054.62 0.1
12 100b 2034.31 1940.36 0.05
13 100c 1434.89 1406.20 0.05
14 100d 1682.25 1591.32 0.05



5.2 Comparisons with Other Methods

The best results achieved using the new hybridized ap-
proach in comparison to those achieved using the standard
CW algorithm are shown in Table 2. It can be clearly seen
that using perturbed coordinates in conjunction with the CW
algorithm allow vastly superior solutions to be attained than
is possible with the standard CW algorithm.

The best overall results are further compared to results
achieved with other metaheuristic techniques applied to the
same data instances in Table 3. Most notably, the new hy-
bridized approach produces 2 new best-known solutions for
problems 75b and 100b. For all other problem instances,
solutions either equal or lie within approximately 1% of the
other metaheuristics. Considering the ceiling of 1500 gen-
erations applied to each run, it would seem feasible that the
initial results achieved from this preliminary study may be
further improved by running the algorithm for more gener-
ations. In some cases, further investigation will need to be
undertaken to establish this with any certainty.

Table 3: Results of hybridized approach.
Hybridized
Approach Avg Best Solution

Prob. Size Best Result Time Value
1 50 524.61 1m 20s 524.61 [11, 8, 9]
2 75 838.60 2m 15s 835.26 [11]
3 100 831.25 5m 826.14 [11]
4 150 1046.72 12m 1028.42 [11]
5 199 1319.11 15m 1298.79 [11]
6 120 1042.11 8m 1042.11 [11, 8, 9]
7 75a 1618.36 2m 15s 1618.36 [10]
8 75b 1344.62 2m 15s 1344.64 [10]
9 75c 1291.01 2m 15s 1291.01 [10]
10 75d 1365.42 2m 15s 1365.42 [10]
11 100a 2054.62 5m 2041.34 [6]
12 100b 1940.36 5m 1940.61 [10]
13 100c 1406.20 5m 1406.20 [6]
14 100d 1591.32 5m 1581.25 [6]

6 Conclusions and Future Work

Within this paper we present a preliminary study which out-
lines the use of a new hybridized algorithm for solving the
CVRP, competitive with current state-of-the-art methods.
The algorithm exploits a GA which breeds perturbed cus-
tomer coordinate sets and uses a simple CW algorithm as
a solution mechanism. Although a GA was chosen for this
initial investigation, it could be easily substituted for an al-
ternative optimization method such as SA or TS and would
provide an interesting point for further investigation.

In this preliminary study experimental runs are limited
to 1500 generations. Our main objective is to improve on
the standard CW algorithm and verify the potential of us-
ing perturbed coordinate sets in conjunction with other al-
gorithmic techniques. Clearly this technique has managed
to lift the solution quality above that of the standard CW al-
gorithm. In fact, the algorithm has provided 2 best-known

solutions and matched other state-of-the-art algorithms for
many of the other problem instances.

We have shown that it is possible to produce high qual-
ity solutions to the CVRP using a very simple hybridized
algorithm. Harnessing a basic GA as a container to breed
perturbed customer coordinate sets has clearly succeeded in
fooling the CW algorithm into generating far superior qual-
ity solutions when compared to those attained using stan-
dard coordinate sets. Indeed, our method generally lifts the
solution quality by about 8%.

In comparison to some of the best published results
achieved for these datasets using alternative approaches,
most notably the TS [8], SA [9] and a Parallel Iterative
Search Method [11], our algorithm performs formidably.
Solutions from our approach are within about 1% of these
more complicated implementations and we believe that the
relative quality attained in conjunction with simplicity of
our approach allows great scope for the use of this method
on both small and large problem instances. Although the
validity of our method needs to be properly established
through formal comparative studies with other state-of-the-
art methods.

Work is currently underway to incorporate alternative
construction based heuristics for solving the CVRP into the
GA framework. This work will include an empirical study
of the strengths and weaknesses of different heuristics when
applied to perturbed coordinate sets, including a full statis-
tical analysis of dataset solutions and a thorough evaluation
of the effect of different crossover operators. A further de-
tailed investigation into the related size of the perturbation
zone and problem size, in conjunction with an analysis of
the effect of using different shaped perturbation zones, will
then be carried out. The algorithm will finally be extended
to solve the Vehicle Routing Problem with Time Windows
(VRPTW).
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