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Abstract. This paper explores some simple evolutionary strategies for
an elitist, steady-state Pareto-based multi-objective evolutionary algo-
rithm. The experimental framework is based on the SEAMO algorithm
which differs from other approaches in its reliance on simple population
replacement strategies, rather than sophisticated selection mechanisms.
The paper demonstrates that excellent results can be obtained without
the need for dominance rankings or global fitness calculations. Further-
more, the experimental results clearly indicate which of the population
replacement techniques are the most effective, and these are then com-
bined to produce an improved version of the SEAMO algorithm. Further
experiments indicate the approach is competitive with other state-of-the-
art multi-objective evolutionary algorithms.

1 Introduction

Multi-objective optimization problems are common in the real world and in-
volve the simultaneous optimization of several (often competing) objectives. Such
problems are characterized by optimum sets of alternative solutions, known as
Pareto sets, rather than by a single optimum. Pareto-optimal solutions are non-
dominated solutions in the sense that it is not possible to improve the value of
any one of the objectives, in such a solution, without simultaneously degrading
the quality of one or more of the other objectives in the vector.

Evolutionary algorithms (EAs) are ideally suited to multi-objective optimiza-
tion problems because they produce many solutions in parallel. However, tradi-
tional approaches to EAs require scalar fitness information and converge on a
single compromise solution, so need to be adapted if a set of viable alternatives
is required for multi-objective optimization. Like their single objective counter-
parts however, most multi-objective EAs focus the genetic search on the selection
stage, and use a fitness function to bias the choice of parents for breeding, fa-
voring the ‘better individuals’. In a multi-objective context, fitness functions are
usually based either on a count of how many contemporaries in the population
are dominated by a particular individual, or alternatively, on a count of by how
many contemporaries the individual is itself dominated. This technique, known



as Pareto-based selection, was first proposed by Goldberg [3], and is favored,
in one form or another, by most researchers (for example see [1,2,10,11]). In
contrast, SEAMO (a Simple Evolutionary Algorithm for Multi-objective Opti-
mization, [7,9]) uses uniform selection and thus does not need any fitness func-
tions to bias the selection of parents. Instead progression of the genetic search
relies entirely on a few simple rules for replacing individuals with newly gener-
ated offspring in a steady-state environment. The implementation of these rules
usually requires nothing more complicated than a simple ‘who shall live and who
shall die’ decision, based on the outcome of a straight comparison between the
solution generated by an offspring with those produced by its parents (or other
population members). Despite its simplicity, SEAMO has produced some very
good results in earlier studies [7,9].

The present study explores a range of simple population replacement strate-
gies for a steady-state multi-objective EA, based on the SEAMO framework. Its
purpose is twofold:

— to discover the best strategies
— and use them to improve the original SEAMO algorithm.

The evolutionary strategies are developed and compared using the multiple
knapsack problem (MKP) as a testbed. The instances chosen are kn500.2 and
kn750.2 of [10], consisting of 500 and 750 items, respectively, in two knapsacks.
The best strategies are finally combined to produce an improved version of the
SEAMO algorithm, and its performance is compared to other state-of-the-art
multi-objective EAs, on various multi-objective functions.

2 A Basic Framework for the SEAMO Algorithm

The SEAMO framework, outlined in Figure 1, illustrates a simple steady-state
approach, which sequentially selects every individual in the population to serve
as the first parent once, and pairs it with a second parent that is selected at
random (uniformly). A single crossover is then applied to produce one offspring,
and this is followed by a single mutation. Each new offspring will either replace
an existing population member, or it will die, depending on the outcome of the
chosen replacement strategy. This paper will investigate different replacement
strategies for lines 10 — 13 in Figure 1.

2.1 The Original SEAMO Algorithm

In the original SEAMO algorithm, an offspring is evaluated using the following
criteria:

1. Does offspring dominate either parent?
2. Does offspring produce any global improvements on any Pareto components?



Procedure SEAMO
1. Begin

2. Generate N random individuals {N is the population size}

3. Evaluate the objective vector for each population member and store it
4. Repeat

5. For each member of the population

6. This individual becomes the first parent

7. Select a second parent at random

8. Apply crossover to produce single offspring

9. Apply a single mutation to the offspring

10. Evaluate the objective vector produced by the offspring

11. if offspring qualifies

12. Then the offspring replaces a member of the population
13. else it dies

14. Endfor

15.  Until stopping condition satisfied

16. Print all non-dominated solutions in the final population
17.End

Fig. 1. Algorithm 1 A basic framework for SEAMO

On the basis of this ‘superiority test’, the offspring will replace one or other of
its parents, if it is deemed to be better.

On average an offspring will have 50 % genetic material in common with
each parent, and, for this reason, parental replacement is favored in SEAMO
in the hope that it will encourage the maintenance of genetic diversity within
the population and thus help avoid premature convergence. One purpose of the
current study is to put assumptions like this to the test, and also try some
alternative strategies.

In more detail, the superiority test applied in the original SEAMO algorithm
progresses as follow. To start with, a new offspring is compared with its first par-
ent, and replaces that parent in the population if it dominates it, provided that
the offspring is not a duplicate, in which case it dies immediately (the deletion of
duplicates is explained see later in the present section). Any offspring that fails
the first test, and thus does not dominate its first parent, is next compared with
its second parent. Similar to before, a non-duplicate, dominating offspring will
replace its second parent in this situation. If an offspring fails to dominate either
parent, however, it will usually die at this stage. The replacement of population
members by dominating offspring ensures that the solution vectors move closer
to the Pareto front as the search progresses. To additionally ensure an improved
range of coverage, the dominance condition is relaxed whenever a new global
best value is discovered for any of the individual components of the solution
vector (i.e. for improved maximum profits in individual knapsacks). Care has to
be taken, however, to ensure that global best values for other components (i.e.
maximum profits in other knapsacks) are not lost when a dominance condition



is relaxed. Ensuring that global best components are not lost is straightforward
if multi-objective optimization is restricted to two components in the solution
vector, as is the case in this paper: whenever an offspring produces an improved
global best for either of the components, if the global best for the second compo-
nent happens to occur in one of the parents, the offspring will simply replace the
other parent. One weakness with the replacement strategies applied in the origi-
nal SEAMO algorithm is that offspring that neither dominate nor are dominated
by their parents will usually die immediately and their potential is wasted.

To complete the description of the original SEAMO algorithm, an explana-
tion of the ‘deletion of duplicates’ policy is now given. A simple way to help
promote genetic diversity is avoid the propagation of genetic duplicates through
the population. Thus, before a final decision is made on replacement of a parent,
a dominating offspring is compared with every individual in the current popula-
tion, and if the offspring is duplicated elsewhere in the population, the offspring
dies and does not replace its parent. For speed and simplicity it is the phenotypic
values of the offspring that are compared to those of other population members
(i.e. the values of the Pareto vectors) rather than the genotypic values (i.e. the
permutation lists of items). Ideally, the genotypes should be compared, but due
to the lengths of the permutation lists, this would be very time consuming.

3 Experimental Design

An order-based representation with a first fit decoder is used for the MKP, and
Cycle Crossover (CX) [8] is used as the recombination operator. A simple muta-
tion operator swaps two arbitrarily selected objects within a single permutation
list. The representational scheme was chosen because it produced the best results
in a recent comparative study, [5]. The reader is referred to the earlier work for
full details.

In all the experiments that follow, each strategy is tested by 30 replicate
runs, initialized with different random seeds. 2D plots are obtained by combin-
ing all 30 results files, for each experiment, and extracting the non-dominated
solutions from the combined results. 2D plots give a good fast visual indication
the solution quality, spread and range of the approximate Pareto sets produced
by the competing strategies. Additionally, some performance metrics are used
to compare the improved SEAMO approach with other state-of-the-art EAs.

4 Simple Strategies: Replacing a Population Member
with a Dominating Offspring

When using a steady-state evolutionary algorithm, a decision has to be made
each time that a new offspring is created, whether that offspring will live or
die. If it is allowed to live, one has to determine, which population member to
replace. In the SEAMO framework no selective pressure is applied when choosing
parents, so if the population is to improve over time, new individuals entering
the population need to be generally superior to those individuals that they are



replacing. In the first set of experiments we shall compare three simple strategies
that replace a current population member with an offspring that dominates that
individual:

1. offspring replaces a population member that it dominates at random

2. offspring replaces a parent that it dominates

3. offspring replaces a parent if it dominates either parent, otherwise it replaces a
population member that it dominates at random.

To implement the first strategy, and part of the third, the population is sampled
without replacement until a suitable candidate for replacement is found, or until
the whole population has been exhausted. In the latter case the offspring will be
allowed to die. The pseudocode is given below.

11. Repeat

12a. Select population member at random without replacement
12b. If offspring dominates selected individual

12c. Then offspring replaces it in the population; **quitloop**
12d. Until all members of population are tried

13. {offspring dies if it does not replace any member of the population}

The second strategy is implemented by testing the offspring with the first parent
and then the second parent, in the way described in the earlier section for the
original SEAMO algorithm. An offspring will replace a parent that it dominates.

The third strategy is a combination of the first two. A new offspring will
replace a parent if it dominates either of them. When this is not the case the
offspring will replace a population member that it dominates at random. If it
fails to dominate any individual, it dies. For each strategy, we assess the effect
that deleting duplicates has on the results. We use population sizes of 200 and
250 for kn500.2 and kn750.2 respectively, and stop the runs after 500 generations
have elapsed.

4.1 Results for the Simple Strategies

Table 1. Average run times of experiments in seconds

lProblem‘1a‘1b‘2a‘2b‘3a‘3b‘
kn500.2 1919/ 9| 9 |19]19
kn750.2 |31|32(15|15[31{32

Figure 2 summarizes the results for replacement strategies 1, 2 and 3 on
kn500.2 and kn750.2. For each trace the non-dominated solutions are extracted
from the combined results of 30 replicated experiments. Clearly strategy 3 ap-
pears to be the most successful. Figure 3 indicates that failing to delete duplicates
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Fig. 3. Examining the effect the deleting duplicates has on the results

strategy 3

produced by

has a serious deleterious effect on the results for strategy 3. (A similar pattern
was observed for strategies 1 and 2.)

Table 1 compares the average run times, on a 1.5 GHz PC laptop for the three

strategies. For experiments la, 2a and 3a phenotypic duplicates are allowed, but
in 1b, 2b and 3b, the duplicates are deleted. From table 1 it would appear that
including a routine to test and exclude phenotypic duplicates, does not add
to the run time of the EA. Although this may seem counter-intuitive, closer
examination reveals that, as a direct result of deleting the duplicates, fewer new
offspring genotypes are copied into the population, and copying permutation
lists 500 or 750 item long is indeed a lengthy business. In the next section we
will try improving on strategy 3. Phenotypic duplicates will be deleted in all
future experiments.



5 Further Strategies

As discussed in Section 2.1, replacing parents with their offspring is likely to
more successfully preserve genetic diversity than replacing arbitrary members of
the population with the offspring of other individuals. Nevertheless, replacement
strategy 3 will frequently maintain offspring that are dominated by both of their
parents. Perhaps it would make better sense if such individuals were allowed to
die? Strategy 4 will investigate the following:

Replacement Strategy 4

1. if offspring dominates either parent it replaces it

2. else if offspring is neither dominated by nor dominates either parent it replaces
another individual that it dominates at random

3. otherwise it dies

Strategy 4 differs from strategy 3 by killing off offspring that are dominated
by both parents. Unlike the simpler strategy 2, though, strategy 4 will maintain
offspring that are neither dominated by nor dominate their parents, provided
a weaker candidate can be found elsewhere in the population. The loss of such
offspring is a weakness of the original SEAMO algorithm. Unfortunately, occa-
sional loss of a non-dominated individual will occur, even applying stategy 4,
if a weaker individual cannot be found. This is inevitable when maintaining a
constant population size.

In the original SEAMO algorithm, dominance rules are relaxed when new
global best components appear in the objective vectors, and an offspring is then
allowed to replace one of its parents (or occasionally another individual) whether
it dominates that parent or not. This approach tends to increase the range of
values in the solution set. Strategy 5 extends strategy 4 to incorporate new global
best components. The precise mechanism is outlined below:

Replacement Strategy 5

1. if offspring harbors a new best-so-far Pareto component

(a) it replaces a parent, if possible

(b) else it replaces another individual at random

else if offspring dominates either parent it replaces it

3. else if offspring is neither dominated by nor dominates either parent it replaces
another individual that it dominates at random

4. otherwise it dies

o

(Note: Condition 1 (b) in strategy 5 is not needed for problems with only
two objectives, but is required for three or more.) The parameters for population
sizes and the number of generations are the same as set previously in section 4

5.1 Results for Strategies 4 and 5

Strategies 3, 4 and 5 are compared in Figure 4. Clearly, strategy 5 produces the
best results, as they are much more widely spread. An additional set of exper-
iments confirmed that SEAMO using strategy 5 (SEAMO?2) is able to produce
better results than the original SEAMO algorithm (see Figure 5).
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Fig.5. Comparing SEAMO with strategy 5 (SEAMO2) with the original SEAMO
(SEAMO1)

6 Comparing SEAMO Using Strategy 5 with Other
State-of-the-art EAs

A final set of experiments compares the performance of SEAMO using strat-
egy 5 (i.e.SEAMO2) with NGSA2 (a fast elitist non-dominated sorting genetic
algorithm) [2], PESA (the Pareto envelope-based seletion algorithm) [1], and
SPEA2 an improved version of SPEA (the strength Pareto evolutionary algo-
rithm) [10]. The test problems used are kn750.2, plus four continuous functions,
SPH-2, ZDT6, QV, and KUR, [11]. The results for PESA, NSGA2 and SPEA2,
were obtained from [11].

For kn750.2 a population of 250 is used and 30 replicate runs collected for
SEAMO?2, as previously. However, the experiments in this section are allowed
to run for 1920 generations, to make results comparable with those in [11]. The
parameters for the continuous function experiments (domain size, population
size, and number of evaluations etc.) are as given in [11]. For each algorithm
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on each function, 30 replicate runs are collected, each run consisting of 10,000
generations on populations of 100. The continuous test problems are all specially
contrived minimization problem of two objectives and 100 variables. For all of
the continuous functions the solutions are coded as real vectors of length 100
for SEAMO?2, and one-point crossover acts as the recombination operator. The
mutation operator is based on the non-uniform mutation described on page
111 of [4]. For full details of the implementation of non-uniform mutation, the
interested reader is referred to [7].

An important feature of SEAMO algorithms is their deletion of duplicates,
designed to help maintain diversity and prevent premature convergence. For the
knapsack problem and other combinatorial problems, where the objective func-
tions can take on only limited number of discrete values, phenotypic duplicates
are easily identified as individuals with matching solution vectors. With contin-
uous functions, however, exact duplicates are likely to be rare. For this reason,
values for component objective functions z; and x} of x and x’, respectively, are
deemed to be equal if and only if x; — e <z < z; + €, where € is an error term,
which is set at 0.00001 x z; for the purpose of these experiments.

SEAMO?2 is compared with its competitors using the two metrics, S and C,
described in [10]. For the purpose of the & metric, the minimization problems,
SPH-2,ZDT6, QV and KUR, have been transformed into maximization problems
by replacing the Pareto values with their reciprocals. Furthermore, all the &
hypervolumes have been scaled as percentages of suitable reference values for
ease of tabulation. The reference values are 1.649e+009, 40, 500, 1 and 0.002 for
kn750.2, SPH-2, ZDT6, QV and KUR respectively.

Figure 6 compares the performance of the various algorithms on kn750.2
The boxplots on the left show the spread of dominated space produced by the 30
replicate runs collected for each algorithm, and the 2D plot on the right compares
the non-dominated solutions produced by SEAMO2 and SPEA2 directly. From
the boxplots it is clear that SPEA2 and SEAMO2 are the leaders with SPEA2
performing a little better than SEAMO?2. However, the 2D plots suggest that the
solution quality produced by SEAMO?2 is slightly better than that of SPEA2.
(Further evidence for is provided by the coverage metric). Figure 7 gives the
boxplots showing the dominated space obtained from the experiments with the
continuous functions. Clearly SEAMO2 performs extremely well, with respect
to this metric, on SPH-2 and KUR, not so well in QV and very poorly indeed
on ZDT6. (Note: a high average of 5907 was obtained for SEAMO2 on SPH-
2, distorting the plots for SPH-2 in Figure 7. This distortion seems to be an
unfortunate feature of the transformation process used to convert functions from
a minimization to maximization, and does not reflect superiority on a scale
suggested by this result.)

Table 2 gives the average values for C = Coverage (A > B) (the number of
points in set B that are weakly dominated by points in set A). The standard
deviations are given in brackets. Table 2 shows a very strong performance for
SEAMO?2 on kn750.2, SPH-2, and KUR, and a performance comparable with



Table 2. Average values (and standard deviations) for Coverage (A > B)

Coverage (A = B)
Algorithm Test problems
A | B kn750.2 [ SPH-2 [ ZDT6 | QV | KUR

SEAMO2[NSGA2 [[73.5 (20.0)[85.5 (14.1] 0 (0) [36.9 (11.8)[93.1 (8.9)

) )
PESA  [69.4 (19.4)[ 88.0 (9.5)| 0 (0) [52.1 (11.5)[89.6 (16.8)
SPEA2 |72.5 (13.1)[81.4 (13.4)| 0 (0) [35.0 (11.7)] 93.4 (7.4)
NSGA2 [SEAMO2[[11.7 (15.5)] 0 (0) |97.7 (0.3)[35.5 (15.7)] 0.2 (0.8)
PESA 10.8 (11.8)] 0 (0) {96.9 (1.4)| 0.23 (0.6) | 0.15 (0.8)
SPEA2 9.7 (9.4) | 0(0) |97.7(0.3)|33.6 (19.7)|  0(0)

NSGA2 and SPEA2 on QV. Notably, SEAMO2 performs very poorly on ZDT6
for coverage as well as for hypervolume.

To summarize, Figures 6 and 7 and Table 2 show that SEAMO2 outperforms
its competitors on SPH-2 and KUR for both metrics and additionally outper-
forms the other EAs on kn750.2 and QV (marginally) for Coverage (A = B).
SEAMO?2 performs very poorly on ZDT6, however.

Some caution is required in interpreting the results in this section. For the
knapsack problems SEAMO?2 uses a different representation scheme to that of
its competitors, and slightly different mutation and recombination operators are
used by SEAMO2 on the continuous problems. The results for SEAMO2 are,
nevertheless, encouraging. Perhaps the performance of the other EAs could be
improved with some changes to the representations and operators.

7 Conclusions and Future Work

This paper explores some simple evolutionary strategies for an elitist, steady-
state Pareto-based multi-objective evolutionary algorithm. It validates the ap-
proach developed earlier for the SEAMO algorithm and also produces some
improvements. The paper demonstrates experimentally that simple population
replacement strategies coupled with the deletion of duplicates can produce ex-
cellent results, without the need for dominance ranking or global fitness cal-
culations. Furthermore, the results clearly indicate that, despite its simplicity,
the SEAMO approach is competitive with other state-of-the-art multi-objective
evolutionary algorithms. Since the original submission of the present paper, fur-
ther work has produced encouraging results for some hierarchical versions of the
SEAMO?2 algorithm, [6]. However, even these improvements have failed to lift
performance on the ZDT6 continuous function. Work in progress is focussed on
parallel implementations and also on improving the performance of the algorithm
on non-uniformly spread functions, such as ZDT6.
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