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Abstract

The single vehicle pickup and delivery problem with time windows
is an important practical problem, yet only a few researchers have tack-
led it. In this research, we compare three different approaches to the
problem: a genetic algorithm, a simulated annealing approach, and a
hill climbing algorithm. In all cases, we adopt a solution representa-
tion that depends on a duplicate code for both the pickup request and
its delivery. We also present an intelligent neighborhood move, that is
guided by the time window, aiming to overcome the difficult problem
constraints efficiently. Results presented herein beat those that have
been previously published.
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1 Introduction

The pickup and delivery problem with time windows (PDPTW) is an im-
portant practical problem that is likely to assume even greater prominence
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in the future. Current concerns over global warming, resource depletion and
the social impact of traffic congestion and pollution (and resulting legisla-
tion, increase in cost, and changes in public perceptions) are driving com-
panies, government organizations and researchers to improve the efficiency
of logistics and distribution operations. In addition, the rapid growth in
parcel transportation as a result of e-commerce is likely to have an increas-
ing impact. More cooperation between manufacturers, shippers and carriers
in supply chains could greatly reduce the environmental impact of trans-
port (the number of “empty running” journeys undertaken by heavy goods
vehicles, for example, is currently recorded at 27.4% by UK government
statistics (Transport-Statistics, 2006)). In addition, an important variant
of the PDPTW, known as dial-a-ride, can provide an effective and efficient
means of transport for delivering people from door to door. This model is
frequently adopted for the disabled, but could provide a greener alternative
to the private car and traditional taxi cab for the wider community.

The single vehicle PDPTW deals with a number of customer requests
that must be satisfied by one vehicle with a known capacity. The route of
the vehicle usually starts and ends with a central depot. A request must be
collected from a pickup location before being dropped off at a corresponding
delivery location, and every pickup and delivery request is associated with a
specific time window during which it must be served. If the vehicle arrives
earlier than the beginning of the designated time window interval, it must
wait until the service time begins. All requests must be served in a way that
minimizes the total travel cost of the vehicle, without violating precedence,
capacity and time windows constraints (Savelsbergh and Sol, 1995).

In addition to being a sub-problem in the general pickup and delivery
problem, the single vehicle PDPTW has also practical applications, where
small scale companies or individuals may operate one vehicle to serve a set
of clients, as for example in a dial-a-ride service. In other applications,
the underlying vehicle could be a helicopter or a small ship. Also, in some
multiple vehicle applications, the assignment of requests to vehicles may be
restricted by some commodity, vehicle, driver or client conditions. In such
cases, certain requests must be assigned to a specific vehicle, making the
optimization of a single vehicle route necessary for reducing the overall cost
of the logistic operation.

As a constrained version of the traveling salesman problem (TSP), the
single vehicle PDPTW is known to be NP-Hard (Landrieu et al., 2001), with
the presence of time windows making the problem particularly complicated.
Since exact algorithms are too slow for large problem sizes, heuristic and
metaheuristic approaches seem to be good alternatives.
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The main goals of our research are, first of all to devise a good repre-
sentation for the PDPTW, and secondly to develop effective operators and
intelligent neighborhood moves capable of directing a heuristic or a meta-
heuristic search towards high quality solutions. A major challenge is to
avoid inefficiencies that can too easily result if large numbers of infeasible
solutions (that violate one or more of the hard constraints) are generated.

Several heuristics and metaheuristics are potentially suitable for this
problem. Amongst metaheuristics, genetic algorithms (GAs) are well known
for their robustness, parallelism, and their ability to perform reasonably well
on a wide variety of problems, including ordering and grouping problems,
as well as highly constrained problems (Goldberg, 1989; Man et al., 1996).
Thus, exploring GAs to solve the PDPTW would seem to be a justified
option.

Another alternative metaheuristic approach that could be suitable for
this problem is simulated annealing, whose technique is analogous to the an-
nealing of solids. This approach has been widely applied to many optimiza-
tion problems, successfully transforming “random”, low quality solutions to
stable high quality optimized solutions (Rutenbar, 1989). One appealing
feature of simulated annealing is that it is very easy to implement, since it
only requires a method for generating a move in the neighborhood of the
current solution, and an appropriate annealing schedule.

A third solution alternative is simple hill climbing that first creates a
candidate solution and then iteratively tries to perturb this solution to im-
prove it.

Our research investigates all three approaches to the single vehicle pickup
and delivery problem. The challenge is to design a simple, yet intelligent,
solution methodology that can handle all problem constraints efficiently. Ul-
timately we aim to obtain feasible and high quality solutions in an acceptable
amount of time.

The rest of this paper is organized as follows: Section 2 provides a brief
literature review. Section 3 formally defines the single vehicle pickup and
delivery problem with time windows. Section 4 is an overview of our cur-
rent research, its adopted representation, neighborhood strategy, and the
underlying objective function. Section 5 is a description of our first solu-
tion methodology, the genetic algorithm and its operators. Section 6 is a
description of our second solution approach, simulated annealing. Section
7 describes our final solution approach, hill climbing. Section 8 explains
the creation of test cases for the problem, and the computational results
obtained when all approaches are compared, and finally Section 9 concludes
with our future plans.
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2 Literature Review

There are many variations of the pickup and delivery problem (PDP) in
the literature, and approaches developed to handle them tend to be rather
variation-dependent. One classification distinguishes static from dynamic

problems: static problems requiring that all requests are determined in ad-
vance of the route construction process, with dynamic problems allowing
some requests to arrive during the execution of the route(s) (Savelsbergh
and Sol, 1995).

Some PDP problems have neither capacity nor time window constraints,
for example (Renaud et al., 2000). Some researchers, as will be detailed
shortly, deal with only a single vehicle, while others deal with a more gen-
eral multiple vehicle case (Nanry and Barnes, 2000; Lau and Liang, 2001; Li
and Lim, 2001; Tam and Tseng, 2003; Lu and Dessouky, 2006). An impor-
tant variant of the PDP is the dial-a-ride problem, in which people instead
of goods are transferred, giving rise to customer inconvenience issues that
should be taken into consideration during the construction of a solution
(Healy and Moll, 1995; Diana and Dessouky, 2004; Jørgensen et al., 2007).

As previously mentioned, there are various approaches to handle the
PDP problems: some are exact and guarantee to solve the problem to op-
timality, while others are approximation and attempt to find an acceptable
solution in a reasonable amount of time (Savelsbergh and Sol, 1995).

For the single vehicle case, an exact algorithm is the dynamic program-
ming approach of (Psaraftis, 1983). However this technique has a time
complexity of O(n23n) (where n is the number of locations) and for this
reason is limited to solving small problems of up to about 10 requests (20
locations). The authors in (Desrosiers et al., 1986) are also able to provide
exact solutions to the single vehicle dial-a-ride problem, with precedence,
capacity and time windows constraints, using dynamic programming. This
algorithm can solve instances with up to 40 requests (80 locations), where
the capacity and time windows constraints are rather tight. Narrowing the
constraints seems to transform the exponential running time of dynamic
programming to a linear running time. On the other hand, approximation
algorithms, in which a heuristic or a metaheuristic is developed to deal with
the problem, make it possible to cope with much larger instances even than
this.

For the single vehicle PDPTW, the heuristic in (Bruggen et al., 1993)
involves a 2-phase approach. In the initial phase a feasible solution is con-
structed, and in the second phase this solution is improved. In both phases
a variable depth arc exchange procedure is performed, as a neighborhood
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move, in which the number of arcs to be exchanged is not determined in
advance, but calculated dynamically during the search. In the route con-
struction phase, the time constraint may be violated as long as the prece-
dence and capacity constraints are satisfied. In the improvement phase,
however, only feasible solutions are permitted and route duration is used as
an objective function. During the improvement phase, the feasibility of a
tour (in terms of precedence and capacity) is verified using a set of global
variables and an algorithm of O(n2). To check the feasibility of the time
constraint and determine the promising arc exchanges, a forward time slack
is computed at each node to identify the permissible shift in departure time
that can be introduced without causing violations of time windows for other
nodes in the route. As indicated by (Landrieu et al., 2001), the algorithm
of (Bruggen et al., 1993) can reach near optimal solutions for problem sizes
up to 38 customers, in less than 150 seconds. Unfortunately, success is
not guaranteed, and low quality or even infeasible solutions can result, if
the 2-phase approach gets trapped in poor local optima. To handle this
possible situation, the authors present an alternative approach, which uses
simulated annealing. This algorithm accepts time window violations in the
early stages, but penalizes them more severely as the search progresses. The
simulated annealing approach is able to obtain good quality solutions, albeit
with a relatively high processing time.

The work reported in (Jih and Hsu, 1999) also deals with a single ve-
hicle PDPTW. This time, however, a hybrid strategy is proposed which
combines an exact method with a genetic algorithm and both static and
dynamic cases are considered. The approach consists of three consecutive
stages: a pre-planned module, a dynamic programming module, and a ge-
netic algorithm module (GA). The pre-planned module arranges requests
and prepares information for the dynamic programming module. The role
of the dynamic programming module is to create a set of sub-routes, which
it will eventually pass on to a temporary result pool, where the genetic al-
gorithm module will pick them up, installing these unfinished sub-routes to
establish its initial population. In the GA module, a solution is encoded
as a permutation of locations, and four crossover operators are compared:
two traditional order-based crossover operators, and two merge crossover
operators, MX1 and MX2, that use a global precedence vector to guide the
inheritance process, as explained in (Blanton and Wainwright, 1993). The
mutation operator is applied only when the offspring is identical to one of its
parents. Three mutation operators are used: one swaps two genes selected
at random, the second selects two random sites in the chromosome and re-
verses the sub-route between the selected sites, finally the third mutation
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shuffles the genes that precede a location for which a violation of constraints
is observed. If an infeasible solution, violating the precedence constraint, is
generated as a result of any genetic operator, this solution is repaired by
swapping the corresponding pickup and delivery pair. The experimental re-
sults on data sets ranging from 10 to 50 tasks indicate the merge crossover
operator MX1 generally performed better than the other crossover operators
tested. The first two mutation operators also achieved better results than
the third mutation operator.

In a more recent work (Jih and Hsu, 2004), similar genetic operators
to the ones used in (Jih and Hsu, 1999) are examined in the context of a
family competition genetic algorithm (FCGA). Here again, an order-based
representation is adopted. The idea is to allow each individual of the popu-
lation to play the role of a family father in turn. Another randomly selected
individual plays the role of mate for the family father. The two individuals
are combined to produce an offspring in a regular GA fashion. The selection
of the mate and the reproduction is repeated for a chosen number of itera-
tions to produce a family of offsprings. Only the best offspring in the family
survives and is added to a temporary population of champions. The new
generation is chosen from among the best individuals in both the original
population and the champions of the families. Comparing the performance
of the FCGA and a traditional GA on data sets created by the authors (rang-
ing from 10 to 100 requests), the results indicate that the merge crossover
operators MX1 and MX2 generally worked better in the context of a tra-
ditional GA than a FCGA, possibly due to premature convergence in the
latter case. On the other hand, a traditional uniform order-based crossover
(UOX) worked better within the framework of a FCGA than a traditional
GA, possibly due to its uniform, non greedy, nature of exploring the search
space.

The authors in (Landrieu et al., 2001) present a tabu search based heuris-
tic to solve the single vehicle PDPTW. The algorithm first creates a route
respecting precedence and capacity constraints, using a simple insertion
heuristic. The generated route may be infeasible in terms of the time win-
dow constraint, however. Then, two tabu search methods are conducted to
transform the initial route to a feasible route with minimum total distance.
The two tabu search methods presented are: a regular deterministic tabu
search, and a probabilistic tabu search. The probabilistic search is based on
the same principals as the deterministic one with the addition of a buffered
memory of potential moves and introducing some probabilistic criteria for
the selection of next move. The creation of a neighboring solution in both
tabu searches is based on classical neighborhood moves, a swap operation
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and an insertion operation, both of which respect the precedence and the ca-
pacity constraints. Test results on problem instances created by the authors
(from 10 to 40 customers) indicate that for these problem sizes, a feasible
solution could be reached in a reasonable amount of time. However, for
larger problem sizes (more than 60 locations), reaching a feasible solution
could possibly take more than one hour. According to the authors, an im-
provement in processing time could be achieved by adapting the parameters
of the method.

In a previous work (Hosny and Mumford, 2007), we investigated the
potential of using genetic algorithms to solve the single vehicle PDPTW.
We experimented with a duplicate gene encoding that guarantees the sat-
isfaction of the precedence constraint, between the pickup and the delivery
during the genetic search. In addition, several problem-specific genetic op-
erators were tested and compared. We experimented with a merge crossover
operator (MX1) guided by two time window precedence criteria, which we
adopted, with a slight modification, from (Blanton and Wainwright, 1993)
and (Jih and Hsu, 2004). In addition we also introduced a new crossover op-
erator that depends on the order of pickup and delivery locations appearing
in parent solutions. Two mutation operators were tested: a simple gene swap
mutation, and a new time window directed swap mutation. Test results, on
a number of data sets ranging from 10 to 200 requests, indicated that due to
the difficulty in satisfying the time window constraint, the most successful
operators are the ones that take into account the time window precedence
order while manipulating genes, namely the merge crossover, MX1, and the
directed mutation. These operators were able to obtain feasible solutions
even for large data sets tested in our research. For some test cases, these
operators were able to beat the best known results reported in (Jih and Hsu,
2004) in terms of both quality and processing speed.

For the interested reader (Savelsbergh and Sol, 1995) provides an excel-
lent and detailed survey on the general pickup and delivery problem and the
main techniques to handle it in the literature.

3 The Single Vehicle PDPTW

Assume we have a set of nodes N = {n0, n1, n2, ..., nm}, where n0 denotes
the depot, and each ni, i = 1, 2, ...m denote a customer location. The last
index m is an even number. Since for each customer request we have a
pair of pickup and delivery locations, we can assume, without loss of gen-
erality, that the set {n1, ..., nm/2} represents pickup locations, and the set
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{n(m/2)+1, ..., nm} represents delivery locations, such that the pickup loca-
tion ni has the corresponding delivery location ni+(m/2). Each location
ni, i 6= 0 is associated with:

• A customer demand qi, such that qi > 0 for a pickup location, qi < 0
for a delivery location and qi + qj = 0 for the same customer’s pickup
and delivery locations.

• A time window (TW) [ei, li] during which the location must be served,
and li ≥ ei.

For each possible edge < ni, nj > a travel time tij is specified, and we
assume that tij = tji.

The vehicle has a limited capacity C. The capacity constraint ensures
that the total load carried by the vehicle at any given time does not exceed
its capacity.

The vehicle’s journey should start from the depot and could end at any
of the delivery locations1, while each location should be visited exactly once.

A location must be serviced within the specified time window, i.e., if the
vehicle reaches the location before the earliest service time ei, it must wait
until ei. The precedence constraint requires that each pickup location must
precede the corresponding delivery location.

The objective function varies depending on the application. In general,
one or more of the following parameters are included: the total traveling
distance, the total route duration, or the driver’s total waiting time.

4 The Research

The main challenge that we are faced with in this research is the development
of a good solution representation, reflecting the problem and its constraints
in a simple way to avoid complicating our algorithms. Represented solu-
tions should also be fast to evaluate and easy to interpret. In addition, the
representation should be coupled with intelligent neighborhood operators
that are capable of directing the search towards high quality and feasible
solutions. Taking these challenges into consideration, we investigate and
compare three approaches to the single vehicle PDPTW:

1It is assumed here that the vehicle’s journey is open path, to enable a comparison with
the results reported in (Jih and Hsu, 2004) that follow this assumption. An alternative
would be for the vehicle to return to the depot after servicing all requests.
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The first approach is a genetic algorithm approach (GA), first introduced
in (Hosny and Mumford, 2007), which adopts a solution representation hav-
ing the same code for both the pickup and its associated delivery, and using
duplicated entries in the representation to guarantee the precedence feasibil-
ity throughout the search. During the evolutionary process, we apply some
problem-oriented operators. These operators are: a 2-child merge crossover
operator guided by both time window bounds, a simple gene swap muta-
tion, and an intelligent time window directed swap mutation. Details are
presented in Section 5.

The second solution methodology applied is a simulated annealing ap-
proach (SA), which adopts the same solution representation as the one used
in the GA. Also inspired by the GA mutations, two SA neighborhood strate-
gies are tested: a random blind move, and an intelligent move that is directed
by the time window. Details are presented in Section 6.

The third approach is a simple hill climbing heuristic (HC) that creates
a starting solution and then tries to improve it, replacing the current solu-
tion with better solutions generated during the search. The same solution
representation and the directed neighborhood move used in both the GA
and SA are also adopted in the HC. Details are presented in Section 7.

4.1 The Solution Representation

A good solution representation for this kind of problem is not as obvious
as it seems. The pickup and delivery problem (PDP) is an ordering prob-
lem in which a solution could be represented as a permutation of locations,
representing an order in which these locations will be visited. In the PDP
problem, however, the issue of precedence must be addressed in the represen-
tation of the solution, because no delivery location is allowed to precede its
corresponding pickup location. Nevertheless, this precedence order may not
be maintained following the application of any neighborhood move to a so-
lution. For example, a simple swap of locations could disturb the precedence
order and result in an infeasible solution. Consequently, a repair method
would be needed to restore the feasibility of the solution, as done, for ex-
ample, in (Jih and Hsu, 1999) and (Jih and Hsu, 2004). Inevitably, such
approach would increase the processing time and complicate the algorithm.

We have developed a solution representation which avoids the precedence
issue: we simply assign the same code to both the pickup and its associated
delivery location, and rely on a simple decoder to identify its first occurrence
as the pickup and the second as the delivery. While processing a certain
solution, the decoder simply retrieves the information of the pickup location,
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if this is the first time the location code is encountered, and retrieves the
information of the delivery location if this is the second occurrence of the
location code. This straightforward representation eliminates the problem
of backtracking to repair an infeasible solution, and solves the precedence
constraint issue in an effective way. As a result, more effort can be directed
towards harder constraints such as the vehicle capacity and time windows.
An example of a solution with 4 requests following this representation is: (2
1 1 3 4 2 3 4 ), where pickups are shown in boldface and deliveries in italics.

4.2 The Neighborhood Move

While creating a neighboring solution during the search process, we are
faced with a major challenge: the possible violation of one or more of the
problem constraints that may follow such move. A neighborhood move
should be intelligent enough to direct the search towards high quality and
feasible solutions, and thus avoid valuable time being wasted evaluating vast
quantities of infeasible solutions. When designing such a move, all problem
constraints should be considered. Nevertheless, in our research we found
the time window constraint the most difficult to deal with. Recall that
our duplicate encoding scheme renders the precedence constraint trivial.
Furthermore, the capacity constraint tends to be easy to satisfy in most
problem instances, because half of the locations visited in any route involve
delivery requests which reduce the load on the vehicle.

In our research we adopt neighborhood search operators that apply “ran-
domness”, yet at the same time take account of the time windows, and bring
the more “urgent” locations earlier in the visiting order, where this is pos-
sible. This neighborhood idea is adopted in all our search algorithms, with
slight variations depending on the context in which it is applied. Details are
presented in Sections 5, 6 and 7.

4.3 The Objective Function

The objective function will try to minimize the total route duration as well
as the degree of infeasibility in capacity and time windows constraints. In
our objective function, we treat the constraints as soft constraints, mean-
ing that an infeasible solution that violates either the capacity and/or the
time windows constraints will be penalized by an added term in the ob-
jective function. We slightly modified the objective function used in (Jih
and Hsu, 2004) and (Hosny and Mumford, 2007), by additionally penalizing
the amount of time delay together with the number of time window and
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capacity violations. Adding a penalty for the extent of total tardiness in
the route could possibly direct the search towards better quality and feasi-
ble solutions. Thus, the objective function of a route r is described by the
following equation:

F (r) = w1 ×D(r) + w2 × TWV (r) + w3 × CV (r) + w4 × TD(r) (1)

Where D(r) is the total route duration including the waiting time, if the
vehicles arrives at a location before the start of its service time, TWV (r) is
the total number of time window violations in the route, CV (r) is the total
number of locations that after being served result in overloading the vehicle
in the current route. Finally, TD(r) is the total amount of delay if the vehicle
arrives at a location later than the specified deadline; w1, w2, w3 andw4 are
weights in the range [0, 1] assigned to each term in the objective function,
and w1 + w2 + w3 + w4 = 1.0 .

The choice of appropriate weights depends on the importance of each
term in the objective function. In this research we found that in order to
get feasible solutions, more penalty should be imposed on the time window
violations and the total delay than the capacity violations or the total route
duration.

5 The Genetic Algorithm

Several problem-specific genetic operators were considered potentially suit-
able for this kind of problem. The first genetic operator we tried follows the
merge crossover operators suggested in (Blanton and Wainwright, 1993) for
the vehicle routing with time window problems, and used in (Jih and Hsu,
1999, 2004) for the PDPTW. Unlike traditional crossover operators for or-
dering problems, which depend only on the order of genes in a chromosome,
the merge crossover operators depend on a global precedence among genes,
such as the time window or distance ordering.

Traditional order-based crossover operators are not very effective for
highly constrained problems like the PDPTW problem, since they frequently
produce infeasible solutions. Merge crossover operators, however, were shown
to be superior to the traditional ones for these types of problems (Blanton
and Wainwright, 1993; Jih and Hsu, 1999, 2004).

In the current research we have slightly modified the MX1 operator
used by (Jih and Hsu, 1999, 2004). Instead of creating just one child, giving
priority to the parent’s gene having an earlier time window lower bound,
we have created two children: the first child favoring genes that have an
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earlier lower bound, while the second child favors genes that have an earlier
upper bound. The idea is that visiting a location just before its deadline
could be more beneficial than visiting it as early as possible in its allowed
interval. This may help to reduce the waiting time that would result if the
vehicle arrives too early at a location, and, as a consequence, could reduce
the total route duration. Creating two children instead of one was suggested
in (Blanton and Wainwright, 1993) and may also improve the quality of the
new generation and speedup the optimization process.

To illustrate how the MX1 operator works, assume that the following
vector defines the precedence order, in terms of the lower bound of the time
window, among all pickup and delivery locations, (for clarity, pickups are
followed by a + and deliveries are followed by a - )
(2+ 1- 3+ 1+ 4- 2- 3- 4+)
Now, assume we have the following two parent solutions:
P1: 2+ 1+ 3+ 3- 1- 2- 4+ 4-
P2: 3+ 1+ 1- 2+ 2- 4+ 4- 3-
Since 2+ has a higher precedence than 3+, the child will inherit 2+ as the
first gene.
C1: 2+ - - - - - - -

To maintain feasibility, 2+ in P2 will be swapped to the first location.
P1: 2+ 1+ 3+ 3- 1- 2- 4+ 4-
P2: 2+ 1+ 1- 3+ 2- 4+ 4- 3-
The second gene in both parents is identical, so it is copied to the child and
we move on to the next gene in order.
C1: 2+ 1+ - - - - - -

1- has a higher precedence than 3+, so 1- is copied to the child, and 1- is
swapped with 3+ in P1.
P1: 2+ 1+ 1- 3- 3+ 2- 4+ 4-
P2: 2+ 1+ 1- 3+ 2- 4+ 4- 3-
C1: 2+ 1+ 1- - - - - -

Continuing in the same manner, we obtain the child:
C1: 2+ 1+ 1- 3+ 2- 3- 4- 4+

The last 2 genes are out of order, but this is of no concern since the first
one is automatically considered as the pickup. So, the child in its final form
will be:
C1: 2 1 1 3 2 3 4 4

The second child is created in a similar manner but with the precedence
vector defined by the upper bound of time window intervals instead.

Two mutation operators were tested in our genetic algorithm. The first
is a random gene swap mutation, which selects 2 genes at random and
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swaps them. The use of duplicate gene encoding eliminates the possibility
of infeasible solutions, in terms of precedence order, that may result following
such a swap.

We also implemented a new problem-oriented mutation operator, named
directed mutation. As mentioned above, to deal with the hard time
window constraint, a mutation operator could attempt to bring a location
that may be more urgent earlier in the visiting order. Instead of a traditional
random swap of two genes, this new mutation operator only swaps genes if
they are out of order in terms of their late time window bounds, i.e., if
the later one has a deadline that precedes the earlier one. We chose the
upper bound of the time window as our mutation guidance to minimize the
infeasibility that could result if the vehicle arrives at a location after its
deadline.

The genetic algorithm was implemented in C++ with the aid of an MIT
genetic algorithm library GALIB (Wall, 1996). A steady state GA was
selected, with a replacement percentage of 100%, a population size of 1000,
crossover rate of 1.0, and a chromosome mutation rate of 0.42.

6 The Simulated Annealing

The theoretical foundation of simulated annealing (SA) was established in
(Kirkpatrick et al., 1983), and the theory is based on the statistical mechan-
ics of physical systems. The term simulated annealing is adopted from the
annealing of solids where we try to minimize the energy of the system using
slow cooling until the atoms reach a stable state. The initial temperature
and the rate at which the temperature is reduced together make up the
annealing schedule. In solving a combinatorial optimization problem using
an SA, we start with an arbitrary solution to the problem. We then try to
optimize this solution using a method analogous to the annealing of solids.
A neighbor of this solution is generated using an appropriate method, and
the cost (or the fitness) of the new solution is calculated. If the new solution
is better than the current solution in terms of reducing cost (or increasing
fitness) the new solution is accepted. However, if the new solution is not
better than the current solution, the new solution is accepted with a cer-
tain probability which is usually set to exp(−∆/T ), where ∆ is the change
in cost between the new and the old solution and T is the current temper-

2A higher than usual mutation rate was found necessary to avoid being trapped in a
local optimum. One reason could be the duplicate encoding, a side effect of which is that
mutation may swap identical genes producing the same offspring.
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ature. Thus, the procedure is less likely to get stuck in a local optimum
since bad moves still have a chance of being accepted. The annealing tem-
perature is first chosen to be high so that the probability of acceptance will
also be high, and almost all new solutions are accepted. The temperature
is then gradually reduced so that the probability of acceptance will be very
low and the algorithm works more or less like hill climbing. The process is
repeated until the temperature approaches zero or no further improvement
can be achieved, which is analogous to the atoms of the solid reaching a
crystallized state (Rutenbar, 1989).

To construct an initial solution for the PDPTW, some researchers choose
to apply different heuristic techniques to create a route with minimum con-
straint violations, for example (Bruggen et al., 1993; Landrieu et al., 2001),
and then try to improve this solution using a heuristic or a metaheuristic
technique. In our research, we construct an initial solution s by simply
generating a large number of random routes and selecting the route with
minimum cost as our starting solution3. This technique is straightforward
to implement and also computationally inexpensive. Although the quality of
the initial solution may be very poor, the main focus of the algorithm is on
the route improvement phase, accomplished during the SA search. A good
neighborhood move should be capable of producing a high quality solution
at the end of the SA search, irrespective of the starting solution.

The choice of an appropriate annealing schedule is critical to the per-
formance of SA. Ideally it is desirable to devise a scheme that is adaptable
for all test cases and problem sizes, eliminating the need for (arbitrary) pa-
rameter tuning, which can be very time consuming. Following (Dorband
et al., 2004), we created the annealing parameters for each test case indi-
vidually as shown in Algorithm 1. To generate a neighboring solution s′ in
this algorithm, a simple random swap between two different locations in s
is performed.

The main SA procedure is described in Algorithm 2. The starting solu-
tion s for the main SA algorithm is the same as the starting solution used
to calculate the annealing parameters. This time, however, to get a new
state s′ from the current state s, an intelligent neighborhood move, that de-
pends on the upper bound of the time window, is used. First two locations
in the current solution are selected at random. Then, these two locations
are swapped, only if their deadlines are out of order, i.e., if the later has
a more urgent deadline than the earlier one. This is exactly the same idea
adopted in the directed mutation used in the GA, and its purpose is to

310000 random routes were initially generated.
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Algorithm 1 Calculating Annealing Parameters

1: Generate a starting solution s
{Initialize Pstart the starting acceptance probability and Pend the final
acceptance probability}

2: Let Pstart = a large value {For example 0.999}
3: Let Pend = a small value { For example 0.001}
4: ∆avg ← 0
{Generate n neighboring solutions of s}

5: for (i = 0; i < n; i++) do
6: Select two random locations in s
7: Swap the current 2 locations in s to get a new solution s′

8: ∆← |cost(s′)− cost(s)|
9: ∆avg ← ∆avg +∆

10: ∆avg ← ∆avg/n
11: T0 ← −∆avg/ log(Pstart) {T0is the initial temperature}
12: TN ← −∆avg/ log(Pend) {TN is the final temperature}
13: α ← exp(log(TN )−log(T0))/N {α is the temperature reduction factor, and

N is the number of iterations desired}

Algorithm 2 The Main SA Algorithm

1: Start with an initial solution s
2: T ← T0 {Initialize the current temperature}
3: repeat

4: Select two random locations in s
5: if (The later location is more urgent in its time window) then
6: Swap the current 2 locations in s to get a new solution s′

7: ∆← cost(s′)− cost(s)
8: if (∆ < 0) then
9: Replace s with s′

10: T ← α× T {Reduce the current temperature}
11: else

12: With probability exp(−∆/T )

Replace s with s′

13: until (Frozen){Stop when no improvement is achieved for a pre-specified
number of iterations}
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arrange requests in a way that will best satisfy the timing constraint.
During any iteration of the main SA algorithm, if the currently selected

locations are not out of sequence in terms of their deadlines, however, no
swap of locations will take place. As a result, the current solution s will
remain intact, and no change in cost is evaluated. The temperature value T
also remains unchanged and is carried forward to the next iteration. In fact,
as will be explained shortly, the present temperature value is only reduced
following the replacement of the current solution s with a new improved
solution s′.

Nevertheless, since the final solution obtained after the main SA proce-
dure may still be a low quality or an infeasible solution, we extended our
algorithm with two further SA stages, in order to more fully exploit all the
guidance that the time windows can give us. The second stage adopts a
neighborhood move depending on the lower bound of the time window in-
stead of the upper bound, while the third stage uses a neighborhood move
based on the center of the time window interval. Each of these different
neighborhood moves may help introduce some improvement to the fitness
of the current solution, for example by reducing the total delay or the total
waiting time, which could ultimately lead to obtaining high quality solu-
tions. Each new SA stage starts from the final solution reached by the end
of the previous stage, and its starting temperature is the final temperature
reached by the previous stage. We chose to start with a route improvement
move that is guided by the upper bound of time window, in order to reduce
the total number of time window violations in the route by visiting the more
urgent requests first. However, a different improvement order could also be
attempted.

In the first two stages of the SA procedure (in which the neighborhood
move depends on the upper and then the lower bound of the time window)
the temperature reduction schedule was slow. As shown in Algorithm 2,
we chose to reduce the temperature only when a better solution was found,
i.e, several neighboring solutions are explored for the same temperature
value. The idea is to allow the algorithm a thorough exploration of the
neighborhood by accepting a large number of worse moves during the early
stages of the search. However, during the final stage of the SA (the one
that adopts the center of the time window to perturb the solution), the
solution was approaching stability, and there was a danger of loosing the
best solution obtained if the temperature was slowly reduced. Thus, during
this final stage, the temperature reduction was made fast. This was achieved
by reducing the temperature at every iteration of the search, which will make
the chance of accepting worse solutions very slim.
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To evaluate the performance of the 3-stage SA algorithm described above,
it was compared with another simple SA algorithm in which the same an-
nealing schedule and a slow cooling is used, but the neighborhood move was
a simple random swap of locations that does not take the timing order into
consideration. The comparison results are reported in Section 8.2.

7 The Hill Climbing

The final approach we used to solve the PDPTW problem is a simple hill
climbing heuristic (HC). The algorithm basically has two phases: a route
construction phase, and a route improvement phase. As with our SA algo-
rithm, the initial solution is simply created by generating a large number of
random solutions and selecting the best generated (minimum cost) solution.
Again this procedure will avoid unnecessary complications and increased
processing time that may result if we try to generate a high quality solution
with minimum infeasibility. A guided route improvement phase, which re-
peatedly replaces the current solution with better solutions generated during
the search, should be able to transform the starting low quality and possi-
bly infeasible solution to a high quality and feasible solution. Our main hill
climbing algorithm is described in Algorithm 3.

Algorithm 3 The Main HC Algorithm

1: Start with an initial solution s
2: repeat

3: for (Each possible pair of locations in s) do
4: if (The later location is more urgent in its time window) then
5: Swap the current 2 locations in s to get a new solution s′

6: ∆← cost(s′)− cost(s)
7: if (∆ < 0) then
8: Replace s with s′

9: until (Frozen){Stop when no improvement is achieved for a pre-specified
number of iterations}

Again, in our hill climbing, we adopt the same solution representation
and neighborhood moves that were used in both the GA and the SA. Similar
to the SA algorithm, the HC algorithm was divided into three stages. The
first stage generates a neighboring solution by swapping the two locations
currently under consideration, only if their deadlines (i.e., the upper bound
of the time windows) are out of order. On the other hand, if the deadlines are

17



in sequence, the current solution remains intact, and two new locations are
considered in the next iteration. When no further improvement is possible
using this neighborhood move, the second stage starts from the final solution
achieved in the first stage and repeats the same HC procedure, but with a
neighborhood move that adopts the lower bound of the time window to
decide the swapping. Finally, the third stage starts with the final solution
obtained in the second stage, but with a neighborhood move that swaps
locations if they are out of order in terms of the center of the time window
interval.

8 Computational Experimentation

8.1 Test Data

In our previous work (Hosny and Mumford, 2007), the suggested genetic
algorithm was tested on a data set obtained from the authors of (Jih and
Hsu, 2004). This data set has a number of customer requests ranging from 10
to 100 (20 to 200 locations). In addition, for a more extensive and thorough
testing of the operators, we also created in (Hosny and Mumford, 2007) a
new data set with larger numbers of customer requests ranging from 100 to
200 (200 to 400 locations).

To create test data for the PDPTW, it is essential to ensure the existence
of at least one solution that satisfies all problem constraints. Similar to (Jih
and Hsu, 2004), our algorithm first creates a route that respects precedence
and capacity constraints, then a time window interval is generated for each
location based on the arrival time realized in the created route. Unlike (Jih
and Hsu, 2004), however, we rely on our GA to create the initial feasible
solution, while they create their starting feasible solution randomly.

The following steps were followed to create the test data:

1. Generate a random vehicle capacity within a certain predetermined
range.

2. Generate random x and y coordinates for the depot, in the range [0, 200].

3. For all pickup and delivery locations:

(a) Generate random x and y coordinates, each in the range [0, 200].

(b) Generate a random demand (load) within a certain allowable
range, such that the demand of a delivery is the same as the
demand of the corresponding pickup but with a negative sign.
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(c) Assume a very large time window interval that could not possibly
be violated.

4. Run the genetic algorithm to obtain a feasible solution. Note that,
the precedence constraint is always satisfied in any generated solution,
thanks to our duplicate gene encoding. Moreover, due to the nature of
the problem, the satisfaction of the capacity constraint can be easily
accomplished by our genetic operators. The time window constraint
can also be easily satisfied because the TW intervals are very large at
this point.

5. Calculate the arrival time at each location in the feasible route ob-
tained.

6. Create a random time window interval for each location such that the
arrival time falls within the created time window. The width of the
permitted time window interval should be determined in advance4.

8.2 Experimental Results

To test our three algorithms, we used two data set samples. The first sample,
which we will call SET 1, is the sample obtained from (Jih and Hsu, 2004)
and includes 30, 80, 90 and 100 customer requests 5. The second sample,
which we will call SET 2, is obtained from the data set created by us
in (Hosny and Mumford, 2007), and includes 130, 170, and 200 customer
requests 6. Note that the number of locations is always double the number
of requests.
Each of the following algorithms was run 10 times on each test case:

1. The GA with MX1 crossover and random swap mutation (GA1).

2. The GA with directed mutation only (GA2) 7.

4The allowable ranges for the random values were determined empirically. Due to lack
of space, no more elaboration on the ranges can be given here. However, all the ranges
were scaled according to the number of requests currently generated, i.e., the larger the
number of requests, the larger the allowable range for the vehicle capacity, the demand
and the width of time window interval.

5This data set can be downloaded from:
http://wrjih.wordpress.com/2006/12/09/pdptw-test-data/

6This data set can be downloaded from:
http://users.cs.cf.ac.uk/M.I.Hosny/PDP.zip

7The selection of the genetic operators to be tested was based on their promising
performance in our previous work(Hosny and Mumford, 2007).
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3. The 3-stage SA (SA1).

4. The simple random-move SA (SA2).

5. The hill climbing algorithm (HC).

The results for the 10 runs are recorded in Table 1 as follows: for each
test case under each algorithm, the best result found (in terms of total route
duration only), and the percentage of feasible solutions obtained during the
10 runs. The last column of the table shows the previous best known results,
reported in (Jih and Hsu, 2004) and (Hosny and Mumford, 2007).

Table 2 shows the processing time in seconds needed to obtain the best
result in each test case under the different algorithms tested. The processor
used was a Pentium (R) 3.40 GHz processor.

The best results were achieved by the 3-stage SA (SA1) as shown in Table
1. In all test cases the best results achieved by this version of SA were better
than the previous best known results. The results were also superior to the
results achieved by all the other algorithms tested in the current research.
A very high feasibility rate and good quality solutions were obtained in all
tasks tested, and also in a very reasonable amount of time, as indicated by
Table 2. For example the best result was achieved in less than 90 seconds
for the largest task of 200 requests (400 locations).

It appears that this algorithm is able to escape the trap of local optima
and gradually find better solutions by progressing from one stage to another.
Each stage of the SA seems to contribute to the improvement process. To
illustrate this, consider the best result obtained for our largest task of 200
requests: The starting solution before the beginning of the 3-stage SA had:
total route duration = 52969.3, number of capacity violations = 64, and
number of time window violations= 387. After the first stage of the SA, the
solution obtained had: total route duration = 37768.2, number of capacity
violations = 0, and number of time window violations= 344. After the
second stage of the SA, the solution obtained had: total route duration =
23841.1, number of capacity violations = 0, and number of time window
violations= 3. After the third stage of the SA, the solution obtained had:
total route duration = 23841.1, number of capacity violations = 0, and
number of time window violations= 0.

It also appears in Table 1, that the best results obtained by both versions
of the GA were slightly worse than the results obtained by the random-move
SA and the HC in most test cases, although the GAs achieved a slightly
better feasibility ratio. Moreover, Table 2 shows that, in terms of processing
time, both GA versions were very slow in reaching their best results, which
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Table 1: Results Summary

Data Task
GA1 GA2 SA1 SA2 HC

Prev Best

Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas

SET1

30 3738.73 100 3751.21 100 3299.4 100 3684.21 100 3772.82 70 3696.51

80 7838.21 100 7867.68 100 7267 100 7852.25 80 7847.67 90 7838.21

90 8619.01 100 8619.01 100 8292.67 100 8619.01 100 8671.54 100 8618

100 10600.1 100 10600.1 90 10544.6 90 10611.1 70 10600.1 90 10600

SET2

130 14041 100 14343 100 13826 100 14081.2 90 14031.1 100 13856.2

170 20618.1 100 20333.8 100 19690.9 100 19964.8 100 20003.6 100 19861.3

200 25799.5 100 24730 100 23841.1 100 24461.6 100 24304.3 100 24512.8
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Table 2: Processing Time in Seconds

Data Set Task GA1 GA2 SA1 SA2 HC

SET 1

30 11 15 6 6 1

80 75 74 35 13 5

90 15 78 24 17 5

100 14 90 53 15 6

SET 2

130 673 570 21 25 8

170 507 970 71 49 14

200 1302 791 87 59 21

is expected due to the need to maintain a large population of individuals
throughout the search. The SA and HC algorithms, on the other hand,
progress from the focus of a single individual.

Figure 1 bears out the above observations. This graph shows the average
objective value (as calculated by Equation 1) achieved during the 10 runs, by
each of the algorithms tested. For all test cases, the graph demonstrates the
superiority of the 3-stage SA, since its average objective value is the lowest
compared to the other algorithms tested. From this graph, we can also notice
that the hill climbing algorithm seems to achieve a better average solution
quality than the SA algorithm that uses the random swaps (SA2) in some
test cases, for example tasks 100, 130 and 200. Despite this observation,
Table 1 indicates that some best results obtained by the HC were worse
than the best results obtained by the random-move SA.

It should be noted that infeasible solutions are seldom produced by most
of our algorithms. However, since an infeasible solution usually has a very
large objective value, the presence of one or more such solutions often results
in a large increase in the average objective value (as an example, notice the
average objective value produced by the random-move SA algorithm (SA2)
for tasks 100 and 130 shown in Figure 1).
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Figure 1: Average Objective Value for All Algorithms

Similar to the 3-stage SA, the three stages applied in the HC algorithm
seem to contribute to guiding the search towards better solutions. To see
this, consider again the largest task of 200 requests: The starting solution
before the beginning of the 3-stage HC had: total route duration = 55013,
number of capacity violations = 117, and number of time window viola-
tions= 387. After the first stage of the HC, the solution obtained had: total
route duration = 26462.9, number of capacity violations = 1, and number of
time window violations= 1. After the second stage of the HC, the solution
obtained had: total route duration = 24315.9, number of capacity violations
= 0, and number of time window violations= 0. After the third stage of the
HC, the solution obtained had: total route duration = 24304.3, number of
capacity violations = 0, and number of time window violations= 0.

Figure 2 shows the best run of the hill climbing algorithm (HC) vs. the
best run of 3-stage SA (SA1) algorithm for the largest task of 200 requests.
The graph demonstrates the current objective value, as calculated by Equa-
tion 1, in each iteration of the run. It seems in this graph that the 3-stage
SA was able to explore a wider area of the search space, albeit with a larger
number of iterations needed to reach convergence, and inevitably longer
processing time.
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Figure 2: Hill Climbing vs. 3-Stage SA(SA1) for Task 200

Figure 3 shows the best run of the random-move SA algorithm (SA2) vs.
the best run of the 3-stage SA (SA1), again showing the current objective
value in each iteration of the run for the 200-requests task. In this graph,
it is clear that the 3-stage SA was immediately directed towards lower cost
solutions during the early phases of the run. The random-move SA, how-
ever, spent quite a long time during these early phases investigating low
quality solutions, and only started discovering the promising areas of the
search almost halfway through the run. However, since the random move
SA algorithm seems to reach convergence earlier in the run, the processing
time of the 3-stage SA, in most test cases, was longer than the processing
time of the random-move SA, which can be seen in Table 2.

Figure 4 compares the average processing time for our fastest algorithms,
the 3-stage SA (SA1), the random-move SA (SA2) and the HC, during
the 10 runs for all tasks tested in the research. This graph shows that
the HC algorithm has the fastest average processing time among the three
algorithms in all test cases.

Figure 5 shows box plots for all our algorithms pertaining to the 200-
requests task. An analysis of variance shows that the five algorithms produce
significantly different results at p = 0.0001, and the graph indicates the
superiority of the 3-stage SA.

Moreover, a post analysis of variance was performed on our algorithms,
using a Tukey HSD test, to compare the resulting sample means for the
200-requests task. The test results indicated that the 3-stage SA produced
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Figure 3: Random-move SA(SA2) vs. 3-Stage SA(SA1) for Task 200
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Figure 5: Analysis of Variance for All Algorithms (Task 200)

a mean value that is significantly different, beyond the 0.01 level, from all
mean values produced by the other algorithms, with only one exception, the
mean produced by the HC algorithm. This can be explained by realizing
that both algorithms operated in a similar manner, adopting three stages
and employing intelligent neighborhood moves during the search. Their final
mean result, for this particular task, did not show a significant difference.
All other mean comparisons, pertaining to the 200-requests task, showed
that the mean produced by the 3-stage SA was significantly better than all
other means.

9 Conclusions and Future Work

In this research, we investigated three different approaches to the single
vehicle pickup and delivery problem with time windows. First, a genetic
algorithm approach equipped with problem-specific genetic operators was
implemented. One GA version had a time window directed merge crossover
operator working together with a random swap mutation, while the other
depended only on an intelligent directed mutation that is guided by the
time windows, without any crossover operator. Second, two versions of
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simulated annealing were tested: the first version operated in three stages
and adopted neighborhood moves that are guided by the time windows, and
a second SA version adopted a random unguided neighborhood move. The
third approach is a hill climbing heuristic which also operated in a manner
similar to the 3-stage SA, but only accepted better solutions encountered
during the search.

The experimental results on two data set samples indicated that both
GA versions had more or less comparable results in terms of both quality
and processing speed. This could only indicate that the directed mutation
operator is an intelligent operator that can guide the search towards better
solutions without the help of any crossover, which is usually the major GA
operator. However, the performance of the GA in general was considerably
inferior to the other algorithms tested in this research, in terms of the quality
of the solution in most test cases, and more so in terms of the processing
speed.

On the other hand, the 3-stage SA seems to be superior to all other
algorithms tested in this research in terms of the quality of the solutions
obtained. Moreover, its best results were also able to beat the best known
results from previous research on the problem in all test cases. However,
this SA version was slightly slower than the random-move SA version and
the hill climbing heuristic tested.

The success of the 3-stage SA is possibly due to its dependence on in-
telligent neighborhood moves that were able to transform a random low
quality starting solution to a feasible high quality solution, within a rea-
sonable amount of time. These neighborhood moves were also successful in
the context of hill climbing but with a less dramatic effect than their ef-
fect in the context of simulated annealing, possibly due to the trap of local
optima. However, using hill climbing can still give us acceptable quality
solutions in a very short processing time, which may be preferable in real
world applications.

Our future work will further examine the 3-stage SA algorithm, possibly
by attempting a different order of stages, or modifying the initial solution
strategy or the annealing schedule. We also plan to broaden our scope
and start investigating different heuristics and metaheuristics for the more
general multiple vehicle pickup and delivery problem. The work done so far
for the single vehicle case could be easily incorporated into our future plan
of study.
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