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This work extends our previously reported algorithms tleategate data sets containing rectangles
which can be optimally packed into rectangular regionsgisiicing layouts. The sizes and rela-
tive areas of the rectangles in the data sets can be coutimfi¢he use of two input parameters.
The new procedures described in this paper enable reseatcheontrol the generation of data
sets of rectangles which can be packed into rectangulasnisgising simpl@on-slicinglayouts.

By incorporating both slicing and non-slicing layouts, admter range of data sets may now be
generated. The characteristics of these data sets ardiesgdyi the user so that the data can be
used to benchmark any packing or layout heuristic desigaesblve rectangular cutting stock,
bin-packing, or VLSI layout problems.

(Cutting stock, Packing, Analysis of Algorithms)

1. Introduction

In our previous work (Wang and Valenzuela 2001) we introdueyred analyzed a technique that
can be used to generate a data set of rectangles which canif@lbppacked into a single larger

rectangle. The user can specify values for two input pararsethich control the shapes and
relative areas of the rectangles produced by the data gemepaocess. More precisely, the two
input parameters specify:

e the maximum and minimum height/width ratios (i.e. #spect ratioyof the pieces, and

e the ratio of the largest to the smallest piece (i.e.atea ratio) of the data set.

1This work was partially supported by the NASA Goddard SpdighFCenter (NAG-5-9781)
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Figure 1: Two slicing layouts

These data sets can then be used by researchers to evaluatigoethms for solving cutting,
packing, or layout problems.

The data generation procedure is a recursive process whishle required number of rect-
angles from a larger rectangle by making a succession af¢natal and vertical edge—to—edge (or
guillotine) cuts. The resulting set of rectangles will satisfy thedwling: (1) if aspect ratip > 2
is specified, then every rectangle = h; x w; will have the property that/p < h;/w; < p and
(2) if area ratioy > 5 is specified, then the ratio of the areas of any two rectanglemd R; in
the data set will fall in the interval /-, 7]

Using the procedure, data sets that have specific chastiderfe.g. all rectangles might be
tall and thin, or all rectangles must be “nearly” square) bargenerated i (n?) time wheren
is the size of the data set. These rectangles can be packedl lstger rectangle with zero waste
using aslicing layout pattern— the individual rectangles of the data sethmobtained from the
larger rectangle by making edge-to-edge or guillotine.chigure 1 illustrates slicing layouts for
two sets of 500 rectangles generated in (Wang and Valen208tH). The aspect and area ratios of
the rectangles in the left layout were not controlled. Intcast, the aspect ratios of all rectangles
in the right hand layout are in the rangg1.18 < p < 4.18 and the area ratio is less than 7.32 for
all this data.

The layout on the right in Figure 1 contains rectangles therevgenerated by Algorithit/
which is reproduced from (Wang and Valenzuela 2001) in FE@uUrA similar recursive process was
developed independently and used by (Hopper and Turton)28@dorithm_IV, however, obtains
the desired number of rectangles by repeatedly slicing an input rectangle ofliteifand width
W at slicing cut positions that are dictated by the theoretesults proved in our previous paper.



Algorithm _IV: Controlling the Aspect and Area Ratio
Input the parameters, {v, p > 2}, H, and theriV where2H /p < W < pH /2
while n rectangles not yet generated do
Letm be the area of the largest rectangle in the current set
Choose a rectanglg from all subrectangles whose areas are greaterzhghy
If possible, randomly choose a vertical or harizontal slicdirection; otherwise
select the vertical or horizontal direction as appropr{aee (Wang and Valenzuela 2001))
Randomly choose a cutting position within the legal rangslioing positions
(see (Wang and Valenzuela 2001))
Perform the cut orR, generating two subrectangles
ReplaceR in the list with the two subrectangles
endwhile

Figure 2: Previous Algorithm for Generating Slicing DatdsSe

The reader is referred to it for a detailed description ofttieory and application of the data set
generation technique. The method was applied extensivelyfply test problems for our work in
(Valenzuela and Wang 2001).

Much of the work on cutting, packing and placement which hesnbreported in the liter-
ature may utilize non-slicing or non-guillotine patteresg (Chazella 1983), (Coffman et al.
1984), (Hopper and Turton 2001), (Jakobs 1996), (Liu andyTEID9), (Murata and Kuh 1998),
(Nakatake et al. 1995). The purpose of our present papegerteralize our techniques to produce
a wider range of data sets and thus extend their usefulneds. d8ts which are generated by the
production of non-slicing patterns that are cut out of adaggclosing rectangle with zero waste
would provide ideal benchmarks.

In non-slicinglayouts, at least one rectangle in the layout cannot berdddy making a series
of guillotine cuts. Two non-slicing layouts shown in Figl8are reproduced from (Wu 2002) and
(Wang and Wong 1992). None of the interior rectangles carbitereed if only edge-to-edge cuts
are permitted. As we shall see, it will be possible to germesahilar data sets of rectangles whose
aspect and area ratios are controlled and which can optirbalpacked into a single rectangle
using a non-slicing layout. For the most part we shall restnur study of non-slicing floorplans to
hierarchical floorplans of order 5 which can be obtained byrgvely partitioning a rectangle into
either two smaller rectangles or intcbawheel 5-wheels are the simplest non-slicing floorplans
containing 5 smaller rectangles with a layout similar toufeg4. A computer program which
produces non-slicing data sets based on wheels has be&rviayt Hopper and Turton, and some
data sets produced using their program can be found at tHéFSV&b-site (SICUP).



Figure 3: Two Non-slicing Layouts

In section 2, we examine constraints which need to be satiffiegenerating data sets that
incorporate 5-wheels so that the aspect ratio of the retdarnig the set is bounded. In section 3,
we examine conditions needed for data set generation wiearratio is to be controlled. Section
4 describes a data generation algorithm that can generatarthical layouts where the aspect
and area ratios of the rectangles are controlled by the 8setion 5 discusses general conditions
which permit non-slicing data sets to be created, and se6tsummarizes the results and describes
ongoing research on this problem. The proofs of most of tharlas, theorems, and corollaries
can be found in the Appendices of this paper.

2. Satisfying the Aspect Ratio Requirements

In this section, we determine conditions under which it Wwélpossible to generate a set of rectan-
gles having legal aspect ratibs/w; that lie betweerl /p andp wherep > 2 and which together,
can be optimally packed into a single rectangle using a fhiomg layout. We begin with a con-
struction process based on a single symmetric shape andrshwwt can be generalized. In the
following discussion, a rectangle x w; is said to have &egalaspect ratio ifl /p < h; /w; < p.

2.1 Generating Symmetric Non-Slicing Layouts

The simplest way in which to generate a non-slicing layotb idivide anH x W rectangle into
five subrectangles usingmwheellayout. For the purposes of discussion, we will analyze only
one orientation of the 5-wheel shown in Figure 4 in the subsetidiscussion. Analogous results
can be derived for wheels obtained by reflecting this layout.

A data generation process based on the outline shown ind-@will be utilized. A partial



Figure 4: A Simple Symmetric 5-wheel Layout

list of rectangles with legal aspect ratios is maintainethggVang and Valenzuela 2001); initially

the list consists of a user specified rectangle. A memberedfishis then selected randomly for

cutting. The resulting subrectangles are added to thertuise, and the process is repeated until
n rectangles are obtained.

In this case, however, the selected rectangle may be dividedive subrectangles as shown
in Figure 4 instead of just two subrectangles as in the caskoaig layouts. We denote the height
and width of the selected rectangle/dsandlV, respectively. If rectanglé is centered within the
larger rectangle at poit = (H/2,W/2) and if its size is given by. x w, then the dimensions of

the remaining rectangles can be obtained symmetrically as:

Table 1: Sizes of the symmetric 5-wheel subrectangles

Subrectangle Height Width
1 # W2—w
4 h w

In order to ensure that the five subrectangles resulting fresrdivision of the originald x W
rectangle all have legal aspect ratios, the choices fmdw are given by the following theorem.

Theorem 1 Let H x W have a legal aspect ratio and denote the aspect ratio of stidngle4 by
f. Selectf betweenl/p andp. In order to guarantee that all five subrectangles of the sginm
5-wheel will have legal aspect ratios, must satisfy the following inequality
oW —H pH—-W

p+f " opf+1 )

5

0 < w < min{
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Figure 5: Sample Symmetric 5-wheel Layout

h can then be computed as= fw.

Corollary 1 If H/W = por H/W = 1/p, then the selecte x W rectangle cannot be cut into
a 5-wheel whose subrectangles have legal aspect ratios.

Example: An application of Theorem 1 is shown in Figure 5 wherefarx W = 200 x 100
rectangle is partitioned two different ways for= 8. Aspect ratios o andi, respectively, are
used for the center subrectangle 4. The resulting layoatsyanmetric and all subrectangles have
legal aspect ratios as illustrated.

The algorithm shown in Figure 6 can now used to construct afsetectangles. It recursively
cuts an input rectangle of siz€ x W into subrectangles by using either edge-to-edge cuts or
symmetric 5-wheel layouts while preserving the aspeaobsatf the resulting subrectangles. This
algorithm utilizes the results proved in (Wang and Valeta@®01) regarding the generation of

rectangles with legal aspect ratios when subdividing arege into only two subrectangles.

2.2 Conditions for Generating Asymmetric Non-Slicing Layaits

In the previous section, the interior subrectangleas required to be centered within the enclosing
5-wheel layout. This restriction can be removed to yieldsatangles having different dimensions.
A more flexible 5-wheel layout is shown in Figure 7 where thanp@® denotes the bottom-left
corner position of subrectangle This type of 5-wheel is referred to asymmetric

Defining the base poir to have coordinate®,, b,,), we easily determine that the dimensions
of the remaining rectangles must be:



Algorithm I: Controlling the Aspect Ratio With Symmetric 5- wheels
Input the parameters, {p > 2}, H, and therlV where2H /p < W < pH /2
while n rectangles not yet generated do
Choose a rectanglg at random
Randomly choose a type of cut: slicing or the 5-wheel (unhesee thatn — 5 rectangles
have been generated Bi/W = por1/p)
if the type of cut is a slicing cuhen
Randomly choose a vertical or horizontal slicing directibpossible; otherwise
select the vertical or horizontal direction as appropr{ate (Wang and Valenzuela 2001))
Randomly choose a cutting position within the legal rangsliofing positions
(see (Wang and Valenzuela 2001))
Perform the cut orR, generating two subrectangles
ReplaceR in the list with the two subrectangles
else
Choose a value of betweenl /p andp
Choose a value ab as dictated by Theorem 1
Calculate the dimensions of the 5-wheel subrectangles
ReplaceR in the list with the five subrectangles
endif
endwhile

Figure 6. Generating Data Sets Containing Symmetric 5-igheih Legal Aspect Ratios

bp

Figure 7: Asymmetric 5-wheel Layout



Table 2: Sizes of the asymmetric 5-wheel subrectangles

Subrectangle Height Width
0 bh bw +w
1 b, + h W — (bw + w)
2 H— (b, +h) W — by,
3 H -1y, by
4 h w

As before, a set of conditions can now be developed whichowilind the choices far andb,,
so that all five subrectangles will have legal aspect ratibemthe initialH x W rectangle has a
legal aspect ratio. Note that#f is chosen so that rectanglés centered within the larger rectangle,
then the conditions for choosingthat were given in Theorem 1 can be applied. However, we now
seek to incorporate a larger range of possible layouts byigtarg B to be any point inside the
larger rectangle.

First, consider the conditions that would be needed to ernthat each of the subrectangles of
the asymmetric 5-wheel shown in Figure 7 will have a legakaspatio. We shall examine each
subrectangle in turn and begin with subrectarigié the asymmetric 5-wheel.

Lemma 1 Subrectangl® of the asymmetric 5-wheel will have a legal aspect ratioeffibilowing
condition is satisfied:
b—h—bwéwépbh—bw
p
To develop the conditions necessary for the remaining stdmmgles to have legal aspect ratios,
we first define a parametgr As before, we denote the aspect ratio of khe w subrectangld by
the variable

f=h/wor (h= fw).

Then subrectangléwill have a legal aspect ratio by choosing < f < p.

Lemma 2 Subrectanglé of the asymmetric 5-wheel will have a legal aspect ratioeffibilowing

condition is satisfied:
W — by, — pby, <w< pW — pb,, — by,
L+ fp f+p

Lemma 3 Subrectangl@ of the asymmetric 5-wheel will have a legal aspect ratioeffibilowing

condition is satisfied:

H — by, — p(W = by) <w<H—bh—,%(W—bw)
f - f



These first three lemmas provide necessary and sufficienitcoms for subrectangles 1, 2,
and4 to have legal aspect ratios wheépy < f < p. Subrectangl@ of the asymmetric 5-wheel
will have a legal aspect ratio if the conditiarip < (H — b;,) /b, < pis satisfied. We define

g=(H —bp)/by

to represent the aspect ratio of subrectaigle

By choosingf andg (the aspect ratios of subrectangfeand4) so thatl/p < f,g < p and
a pair of value$,, andw which satisfy Lemmas 1, 2, and 3, an asymmetric division eflinger
H x W rectangle into five subrectangles having legal aspectsatilb be obtained.

As we intend to develop an algorithm based on these conditiwa must show that they are
not mutually exclusive. Before we proceed, we substitute (H — b,)/b,, into the bounds in
Lemmas 1, 2, and 3 to eliminate thgvariable.

Theorem 2 If a rectangled x W having a legal aspect ratio is to be divided into an asymruoetri
5-wheel whose subrectangles also have legal aspect r#ties the following conditions must first
be satisfied fob,,, w, g, and f:

Subrectangle 0 condition : %(g“’) <w < pH —by(pg + 1)
Subrectangle 1 condition : W=p I?:}’Z(p 9= <y < 2 W_I?;sw(p ~9)
Subrectangle 2 condition : M <w< W
Subrectangle 3 condition : 1/p<g<p
Subrectangle 4 condition : I/p<f<p

Corollary 2 If H/W = p, it cannot be subdivided into five subrectangles that willdhéegal
aspect ratios.

2.3 Satisfying the Conditions for Asymmetric Layout

The next task is to prove that it is always possible to selakies forb,,, w, g, and f so that the
conditions of Theorem 2 are valid. We begin by defining a $tamt notation for these bounds.

Definition 1 Let the upper and lower bounds farin the first three conditions of Theorem 2 be



denoted as follows:

min0 = %@”) max0 = pH — b, (pg + 1)
cq . (W—pH)+bw(pg—1) _ (pW—H)—buw(p—g)
minl = 157, maxl = i
min? — bwlgte)—pW max? — twlgpt)-W
f Ie

It must now be shown that it is possible to select a pair ofesforb,, andw such that

min0 < w < maxO,
minl < w < maxl, and
min2 < w < max2

for any choice off andg betweenl/p andp. To do this, we examine the intersection of the six
regions of the plane defined by > m n0, w < max0, w > m nl, w < maxl1l, w > M n2,
andw < max2. Some results that will be useful for showing that this isé&tion is nonempty
are presented in the following lemmas: e.g. determiningthandw intercepts of the lines, the
points where each pair of lines intersect, the relativeedagf the lines, and the relative positions
of theb,, intercepts.

Lemma 4 Theb,-intercepts andv-intercepts of the linee = m n0, w =m nl, andw = m n2,
w = max0,w = max1, andw = max2 are

Table 3: Intercepts of Boundary Conditions
Line w-intercept  b,-intercept
H

w =m nO a L

p ptg

_ pH

w =max0 pH py]
—m W—pH pH-W

w=m nl +fp pg—1
w=maxl  2-H Wi

f+p p—g

—-m _ow w

w =m n2 f g+p

_ _w w_

w =max2 o7 pr]

Lemma 5 The following properties can be shown easily:
(i) When rectangld! x W is assumed to have a legal aspect ratio, tiier< pIV andW < Hp.

(i) Whenl/p < g < pwherep > 2, itis also true thatyp > 1.

(iil) The w-intercepts ofw = m n0, w = Max0, w = max1 are positive
(iv) Thew-intercepts ofv = m nl,w = m n2,w = Max2 are negative.
(v) Theb,-intercepts of all six lines are positive.

10
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Figure 8: Relative positions of the, -intercepts ofw =m n0, w =max0, w =m n2, and
w =ax2

Lemma 6 The relative positions of thig,-intercepts fomi n0, max0, m n2, andmax?2 satisfy:
(i) b,-intercept ofm nO < b,-intercept ofmax0

(ii) b,-intercept ofmax2 < b,-intercept ofm n2
(ii)) b,-intercept ofm nO < b, -intercept ofm n2
(iv) b,-intercept ofmax2 < b, -intercept ofmaxo.

This lemma implies that there are at most four possible jpositgs for the fouw,,-intercepts.
These arrangements are illustrated in Figure 8. Note the&dh case, the inequalities derived in
Lemma 6 are valid and that there are no additional relatigtipoings for which they hold.

Lemmas 7 and 8 examine the points of intersections for péiiaes as well as their relative
slopes.

Lemma 7 For respective pairs of lines, the intersections points bartalculated:
(i) w=m n0 andw =max0 intersect at,, = H/g andw = —H /g,

. s _ ; _ fW+H _ Wg—H
(i) w =m nl andw =max1 intersect at,, = v andw = o

(i) w =m n2 andw =max2 intersect at,, = W andw = Wg/f.

Lemma 8 For each line, the slope and its sign are:

Table 4: Slopes of Boundary Conditions
w=mn0 w=mx0 w=mnl w=mx1l w=mn2 w=nmax2

gtp pg—1 p—g gFp gpF1
slope —T2 —(pg+1)  E ~ T 5 N
sign - — + — + +

Thus, the relative slopes of each pair of lines satisfies:

(i) w =maxO0 is steeper tham =m n0O

11
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w =max 0
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w=min 0

H/g
T

Hi(p+g) | i
pH/(pg+1
“HIgR -

Figure 9: Feasible Region of Choices forandb,,: m n0 < w < nax0
(i) w =m n2 is steeper tham =nax2
(i) w =m n0 andw =max0 are steeper thamw =max1

(iv) w =m n2 andw =max2 are steeper tham =m nl

These lemmas enable us to plot the lines associateduwithnmi n0, w = max0, w = m nl,
w=max1l,w =m n2, andw = max2 as a function ob,,. Recall that the goal is to seldgt and
w values which ensure that all subrectangles have legal tisgiexs. In particular, if subrectangle
0 is to have a legal aspect ratio, we need to ensurentha® < w < max0 (as well asw > 0.)
Consider the plots of the lines =mi n0 andw =nmax0 as shown in Figure 9. For a fixeég in the
shaded region of the graph, any valuewo€hosen betweemn =m n0 andw =nmax0 will permit
subrectangl® to have a legal aspect ratio.

Similarly, Figure 10 plots thev =m n2 andw =mnmax2 lines and illustrates the choices for
b, andw which will produce a subrectangfehaving a legal aspect ratio. It is also necessary to
examine the region defined oy n1 < w < max1, but first we note that Lemmas 6, 7, and 8 can
be used to prove that the regions shown in Figure 9 and 10 miesséect.

Theorem 3 The intersection of the regions definedryn0 < w < max0 andmax2 < w <

m n2is non-empty itV < pH. If W = pH, the intersection is a single poifh,,, w) = (%, 0).

Observation: The shape of the common region indicated by Theorem 3 wileddpn the
relative positions of the overlappimg-intercepts. It must also be examined in relation to theargi

12
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Figure 10: Feasible Region of Choices foandb,,: m n2 < w < max2

defined bym n1 < w < max1. The geometry of the region of intersection can be charaetr
by the values of//WW andg. In Figure 11, three configurations of the regiinn1 < w < max1
are shown depending on whethiéyg < W, H/g = W,orH/g > W.

In order to develop an algorithm that relies on dividing aaegle H x IV into five asymmetric
subrectangles with legal aspect ratios, it is necessargt@rmmine some conditions under which
m nl < w < max1 intersects withm N0 < w < max0 andm n2 < w < max2. If this is
possible, then a pair of values floy andw can be selected from the common region and then used

to determine the dimensions of all five subrectangles.

2.4 An Algorithm for Generating Asymmetric Layouts with Legal Aspect
Ratios

Consider the aspect ratio conditions for subrectanglee. the regiomi nl < w < max1 in
Figure 11. Since we are interested in the intersection sfribgion with those in Figures 9 and
10, we examine the simplest case whérg; = W. This choice implies that the user has selected
an aspect ratio for subrectanglen Figure 7 identical to the aspect ratio of the rectangledei
subdivided. IfH/g = W, then the exact relationship between theintercepts ofw = ni nO,

w = max0,w = m n2, andw = max2 can be determined.

Lemma 9 If H/g = W, then Lemma 6 can be revised.
() If ¢ > 1, theb,-intercept ofw = m nO is greater than or equal to the,-intercept ofw =

max2, and theb,,-intercept ofw = maxO0 is greater than or equal to thi,-intercept ofw =

13
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w=min1

| ! N by N by
(PH-W)/(pg-1) (W + H)/(f+g)  (pPW-H)/(p-g) ! (pH—M /(pg-1)

3 (W—pH)/(1+fp) 1

(W=pH)/(1+fp)

w w

w
(pPW=H)/(f+p)
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pPW-H)(p-g) |

(QW=HYI(F+Q) |~ ===~~~ ool by

: (fw + I-‘|)I(f+g)

(W-pH)/(1+fp)

(©H/g>W

Figure 11: Feasible Regions of Choicesdoandb,,: m nl < w < max1
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Figure 12: Overlap ofri N0 < w < max0 andm n2 < w < max2 whenH/g = W andg > 1
m n2. Thus, Figure 8(a) applies.

(i) If g < 1, theb,-intercept ofw = m nO is less than or equal to the,-intercept ofw =
max2, and theb,-intercept ofw = max0 is less than or equal to thk,-intercept ofw =
m n2. Thus, Figure 8(b) applies.

Lemma 6 and Lemma 7 established that both pairs of linesi{i-em n0O andw =nax0, and
w =m n2 andw =max?2) will intersect atb,, = W. The case whep > 1 is given in Figure 12
while Figure 13 illustrates the situation whenr< 1. The shaded regions in these figures need now
be intersected with the region definedynl < w < max1 for the case wherél/ /g = WW. As
we shall see, this intersection can occur in two ways. To kiynilve process for specifying this
common region, we first determine the intersections poih$®me lines shown in Figures 12 and
13.

Lemma 10 The linesw =mi n0 andw =nax2 intersect at a pointA = (b,,, w) whereb,, =

FHAW _ 9(pH-W)+(H—pW)
fa+fptrgpt+i andw = plgf+fpt+pg+1)

15
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Figure 13: Overlap ofri N0 < w < max0 andm n2 < w < max2 whenH/g = W andg < 1
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Lemma 11 The linesw =max0 and w =m n2 intersect at a pointB = (b, w) whereb,, =

p(fHAW pH-W)+g(H—pW)

) _(
Ffpg+f+g+tp andw = pgf+f+g+p

Lemma 12 The linesw =nmax0 and w =nax2 intersect at a pointX = (b,,, w) whereb,, =

foPHAW pH-W

(Fp+1)(pg+1) andw = ol "

To create an asymmetric subdivision offax W rectangle that has a legal aspect ratio, select
f, the aspect ratio for subrectangl@ndg, the aspect ratio of subrectanglso thatl /p < f < p
andg = H/W. We must now determine conditions foy andw so that subrectanglés 1, and
2 will have legal aspect ratios. As we have seen, these condiaire defined by the intersection
of the shaded regions in Figure 12 and Figure 13 with the shestgon defined byn n1 < w <
max1 in Figure 10(b). Thus, it is of interest to determine wherlthew =max1 intersects the
shaded regions in Figure 12 and Figure 13. There are two tasessider, depending on whether
g>lorg<1.

241 Casely>1

Some possible positions for the line =nmax1 are shown as dotted lines in Figure 14 which
magnifies the shaded region shown in Figure 12. From Lemnie&]opes of lines = m n0 and

w = max0 are both steeper than the slope of the line- max1 so these are the only intersection
combinations that can occur. Thatis=max1 cannot intersect botls =m n2 andw =max O;
similarly, it cannot intersect botls =m n0 andw =nax2. It may also not intersect any of the
lines.

Lemma 13 The linew =max1 may intersect the common region in one of the following stesa
S1: w =max1 intersects the line segmem€’ and BD at pointsA; and B,
S2: w =max1 intersects the line segmens’ and BE at pointsA; and B,
S3: w =max1 intersects the line segmends” and BD at pointsA, and B;
S4: w =max 1 intersects the line segmendsy and BE at pointsA, and B,

S5: w =max1 lies above the region outlined by the points CAEBDC

(pW—H)p—H(f+p)
(p—9)p—(g+p)(f+p)’

where theb,, values of the points!,, A,, B;, and B, are, respectivelyb,, =

by = fp(pW—H)+W (f+p)

(gp+1)(f+p)+(p—g)fp’ "W

_ f(eW—H)+pW (f+p)
(g+p)(f+p)+f(p—g) ’ andb,

17

— (pPW—H)—(f+p)pH
(p—9)—(f+p)(pg+1)"




Figure 14: Feasible Region féf/g = W andg > 1
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Figure 15: Feasible Region féf /g = WV andg < 1
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242 Case?2y<1

The region of intersection for all three pairs of lines carfduend for the case of < 1 by using
similar arguments. Figure 15 shows the intersection ofelgeonsni N0 < w < max0 andm n2

< w < max2 from Figure 13 with the linev =maxO0. In this case, there are two possible scenarios
described in the lemma below.

Lemma 14 The linew =max1 may intersect the common region in one of the following stesa

S6: w =max1 intersects the line segmefsy and G E at pointsA4, and B,

S7: w =max1 lies above the region outlined by the points FEGF

; _ fp(pW—H)+W (f+p)
where, as before, thi, values of the pointsl, and B, are b,, = (AR P
(oW —H)—(f+p)pH

(p—g)—(f+p)(pg+1) "

andb, =

The seven scenarios of these lemma identify the coordirmategoof the vertices of the region
defined by the intersection of the inequaliti@sn0 < w < max0, m nl < w < max1, and
m n2 < w < max2. By selecting a pointb,,, w) in the region, the initial{ x W rectangle can
be subdivided into five smaller rectangles having legal etsatios. Each of these, in turn, can be
subdivided by the same process (or just sliced into two @dréppropriate positions as analyzed
in (Wang and Valenzuela 2001). Thus, we have establisheidlibe/ing result.

Theorem 4 Let H x W be a rectangle with a legal aspect ratjo# p, 1/p. If f is chosen so that
1/p < f < p, thenitis possible to choose values égrandw so that all five subrectangles of an
asymmetric 5-wheel division &f x W will have legal aspect ratios.

Corollary 3 If H/g = W andg > 1, the feasible values db,,, w) reside in one of the regions
defined by the vertices:

Scenario Vertices
S1 CA B, DC
S2 CAB,BDC
S3 CAA,B,DC
S4 CAA,BsBDC
SH CAEBC

Corollary4 If H/g = W andg < 1, the feasible values d@b,,, w) reside in one of the regions
defined by the vertices:

Scenario Vertices
S6 FA,B,GF
S7 FEGF
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Figure 16: Sample Asymmetric Wheel Layout

Example: An application of Theorem 4 and Corollary 3 is illustratedfgure 16. The aspect
ratiop = 8 and anH x W = 200 x 100 rectangle is to be partitioned by selectingr = f = 1/4
and settingy = H/W = 2 for the aspect ratios of rectangles 4 and 3, respectivelg.rébulting
region from which a suitabl@,,, w) value can be chosen is shown in Figure 16(a) where the corner
points areC' = (20.0,0), 4 = (7.69,15.38), A, = (13.30,), B, = (80.34,), andD = (80.0,0).
Figure 16(b) shows a partition of the rectangle when theesly,, w) = (20, 32) are selected.
All resulting subrectangles have legal aspect ratios l:mmé{and 8.

This approach can be used to develop an algorithm that geselata sets containing rect-
angles that form asymmetric 5-wheels. The pseudo-codevengn Figure 17. We note that
the computation involves the determination of the feasietgon of (b,,, w) choices and that the
division will always set the aspect ratio of subrectangl® ®¢ the same as the rectangle being
partitioned.

2.5 Determining the Feasible Region af,, and w Choices for an Asymmetric
Layout when g # H/W

It would be desirable to have a similar generalized resuhaty, the aspect ratio of subrectangle 3
could be selected irrespective of the aspect ratio ofihell’ rectangle being subdivided in Algo-
rithm 1l. Unfortunately, this necessitates a more compéidanalysis to determine the intersection
of the three regions of interest.

Recall that the overlap of the regions defined by the intéi@eof m n0 < w < max0 and
m n2 < w < max2 with each of the regions fam n1 < w < max1 whereH/g < W and
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Algorithm II: Controlling the Aspect Ratio With Asymmetric 5-wheels
Input the parameters, {p > 2}, H, and therlV where2H /p < W < pH /2
while n — 5 rectangles not yet generated do
Choose a rectanglB at random
Randomly choose a type of cut: slicing or the 5-wheel (untesee thatn — 5 rectangles
have been generated kight(H)/height(W) = p or1/p)
if the type of cut is a slicing cut then
Randomly choose a vertical or horizontal slicing directibpossible; otherwise,
select the vertical or horizontal direction as appropr{ate (Wang and Valenzuela 2001))
Randomly choose a cutting position within the legal rangslioing positions
(see (Wang and Valenzuela 2001))
Perform the cut orR, generating two subrectangles
ReplaceR in the list with the two subrectangles
else
Letg < height(R)/width(R)
Choose a value of betweenl /p andp
if g > 1then
Determine which scenario of Corollary 3 applies and
choose appropriate values fgf andw randomly
else{g < 1}
Determine which scenario of Corollary 4 applies and
choose appropriate values figr andw randomly
endif
Calculate the dimensions of the asymmetric 5-wheel sutmgds
ReplaceR in the list with the five subrectangles
endif
endwhile

Figure 17: Generating Data Sets Containing Asymmetric Bedhwith Legal Aspect Ratios
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H/g > W would need to be determined. A detailed analysis based oapproach in section 2.4
might be performed. By inspection, however, we note thatay e possible for the intersection
of all three regions to be empty. We believe that quantifytimg conditions which would ensure
that the overlap is non-empty will be a non-trivial task.

An alternative approach for solving the problem would betilize a numerical procedure to
calculate the intersections of the regions: the six inetjealof interest

Atulatr) < w < pH—by(pg+1)
(W—le)Jr}Jw(pg—l) < w < (pW—Hf)—bw(p—g)
+ = = +
bw (g+§) —pTeV < w < (gp;rl) Y

- - p

could be reformulated as equalities using slack variables the application of a procedure similar
to that used in linear programming to determine a basis #sjfstem of equations would provide
the coordinates of the vertices for the region of intersexfif it exists). The,, andw values of the
basis vectors would provide the corner vertices. Once thesdetermined, the feasible region of
choices would be defined by these vertices so any point itiseda could be chosen, thus defining
a division of the asymmetric 5-wheel into five subrectanglih legal aspect ratios.

3. Satisfying the Area Ratio Requirements

When generating data sets of slicing rectangles in (Wangvalehzuela 2001), the user was able
to specify values for a parameterwhich defined the bounds for the maximum and minimum
allowable ratios of the areas of any two rectangles in tha dat. In this section, we explore the
possibility of using a similar technique to generate data skrectangles that can be placed into a
larger rectangle with zero waste.

As before, the procedure for generating the data is builbupe recursive process of dividing a
selected x IV rectangle into smaller rectangles so that all pairs of tegutectangles have legal
area ratios betweej;] and~. The simplest way to guarantee the legality of the final datassto
require that a subdivision of a rectangle into a 5-wheelrgyganent be such that the five resulting
subrectangles along with the current set of other generatddngles all have legal area ratios.

We first examine the simpler case where the symmetric 5-wiheelbe subdivided and show
that it is possible to preserve area ratios when partitpairectangle. This analysis provides some
insight for dealing with the asymmetric case.
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3.1 Using the Symmetric Wheel Layout

Consider a selected rectangle of sidex W and assume that all rectangles which have been
generated so far have legal area ratios. In particular,

area(R;)

1 HW <
HW

v = area(R;) — v

< <7, and

2|~

for all rectanglesk;, Ry, andR; in the currently generated data set.

The goal is to divide thé?; = H x W rectangle into the five subrectanglg1,2,3,4 of the
symmetric 5-wheel layout (Figure 4) so that the area ratperty is preserved for the augmented
data set, i.e. so that

_areald) (1)

<~ (2

for all rectangles?; in the generated data set and the subrectarigtegi,k} < 4.

A rectangleR; = H x W can always be selected so thdlV > 5area(Ry)/y when Ry
is the rectangle of the currently generated list with the imaxn area andy > 5. There are
two basic ways to partitio x W so that the inequalities (1) and (2) are satisfied. The first
partitioning method divides thH x 1/ so that the area of each subrectangle eqdais/5. It will
follow that the resulting subrectangles satisfy ineqiesdi(1) and (2). An alternative approach is
to divide H x W into subrectangles with areas that are greater than or émusda(R,)/~. This
second method attempts to provide more flexibility to créaee symmetric subrectangles with
non-identical areas. These two approaches are discusksd be

3.1.1 Identical Area Subdivision

Lemma 15 Let R, = H x W be a rectangle whose area exceédsea(R,)/vy whereR, is the
rectangle of the currently generated list which has the mmaxn area and, > 5. If R; is divided
into symmetric 5-wheel subrectangles each with area equdlit’/5, then the subrectangles have
legal area ratios.

Suppose a rectangle has been selected as part of the datatmpengrocess and that this rect-
angle is to be divided into a symmetric 5-wheel so that areasrare preserved. A division of this
rectangle can be performed which will create five subredesngith identical areas; the list of all
rectangles generated thus far will have legal area ratios.

23



50-10/ 5 50+10/ 5

R
o
o
4000 NS
. ol
I S 1)
2 8=
S <
4000
)
gz
2005 %
[9)]
5
I 4000
&
o
—
s0+10 5 50-10( 5

Figure 18: Sample Symmetric Layout with Identical Subregta Areas

Theorem 5 Let Ry be the rectangle having largest area in a list of rectanglethwegal area
ratios andy > 5. Remove a rectangl® x W where HW > 5area(R,)/~ for cutting. Then,

a symmetric 5-wheel division of this rectangle using= H/v/5 andw = W/+/5 will produce
five subrectangles, each having ar8dl’/5. If these rectangles are added to the original list of
rectangles, then they will all have legal area ratios.

Example: An application of this theorem is shown in Figure 18. Assugrtimat areéR,) =
30,000 andvy = 10, the H x W = 200 x 100 rectangle is easily partitioned into five symmetric

subrectangles having identical areas.

3.1.2 Non-ldentical Area Subdivision

Lemma 16 If we pick R; = H x W to be a rectangle whose area exceédsca(Ry)/v, v > 5,
and divideR; into five subrectangles i for whichrea(i) > area(R,)/v, then the subrectangles
will have legal area ratios.

Lemma 17 Suppose we pick; = H x W to be a rectangle whose area exceédsea(R,)/~,

v > 5, and we sebw = area(Ry)/q Where

v area(Ry)
yHW — 4area(Ry

<q<n7.
)
Then the five subrectangles will each have area greater th@&gual toarea(Ry) /.

Theorem 6 Let Ry be the rectangle having largest area in a list of rectanglétha legal area
ratio wherey > 5. Remove a rectangl& x W where HW > 5area(R,)/~ for cutting. By
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setting the area of subrectangleof a symmetric 5-wheel to beea(R,)/q, wherey > ¢ >
(area(Ro)7y)/(vHW — 4area(Ry)), the dimensions of the remaining subrectangles can be-deter
mined so that their areas are greater than or equaktea(Ry)/~.

Corollary 5 If we sethw = area(Ry)/q, thenh must be chosen so that

(area(Ro)(v+4q)—vgHW )+ \/(area(Ro V(v +4q)—vgHW )2 +442gHW area(Ro)

h > -
- alid

no< —(area(Ro) (v+49) —vgHW )++/ (arca(Ro) (v+49) —ygHW )?+4y> g H W area( Ro)
— 2vqW

Example: The rectangled x W = 200 x 100 is partitioned into symmetric subrectangles

with non-identical areas in Figure 19. Her, = 30,000, v = 10 andg = 4 is chosen so that

hw = %(RO) = 7500 for subrectangle 4. Note

area(Rp)
wH&/—4arcg(Ro) < q < v
N 3.75 <g< 10

In this case, Corollary5 indicates that the range of appatgh values which can used to yield
subrectangles with areas greater than or equﬁ}ﬁs 120 < h < 125.

We can now specify an algorithm that will generate data sat$aining symmetric 5-wheels
that satisfy the area ratio property based on Theorems md6Carollary 5. The pseudo-code is
given in Figure 20.

3.2 The Asymmetric Wheel Layout

The previous section determined conditions under which fidssible to preserve the area ratio
requirements when a rectangle is subdivided into a syme&twheel. In this section, we inves-
tigate if similar conditions can be found for generatingrasyetric subrectangles which preserve
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Algorithm IlI: Controlling the Area Ratio With Symmetric 5- wheels
Input the parameters, {p > 2,~v > 5}, H, and therlV where2H /p < W < pH/2
while n rectangles not yet generated do
Ry <+ rectangle with maximum area in the current list
Randomly choose a type of cut: slicing or the 5-wheel (unhesee thatn — 5 rectangles
have been generated)
if the type of cut is a slicing cuhen
Choose a rectanglB at random such thafrea(R) > 2area(Rp)/~y
Perform an appropriate slicing cut éth(see (Wang and Valenzuela 2001))
ReplaceR in the list with the two subrectangles
else{5-whee}
Choose a rectangl® at random such thatrea(R) > 5area(Ry)/~
if identical areas are desirédaken
Use Theorem 5 to divid& into five subrectangles
else
Use Theorem 6 and Corollary 5 to dividginto five subrectangles
endif
ReplaceR in the list with the five subrectangles
endif
endwhile

Figure 20: Generating Data Sets Containing Symmetric Selgheith Legal Area Ratios

the area ratio property. As before, we consider two posgatétioning methods: dividing the
rectangle into identical area subrectangles as opposeashtadentical area subrectangles.

3.2.1 Identical Area Subdivision

Recall that the dimensions of the five subrectangles of amamstric 5-wheel were given in Table 2
and assume that the area of every such subrectangl&lig5. By solving the equations for the
areas of the subrectangles, it can be shown that there isoaelypractical way in which to divide
the rectangles to meet the equal area requirement.

Theorem 7 Let R, be the rectangle having largest area in a list of rectangléhb Vegal area ratios
wherey > 5. Remove a rectangle x W where HW > 5area(Ry)/~ for cutting. Then, the only
way to divide the asymmetric 5-wheel into five subrectanglash having aredf1//5, is to set

_ _ i _ 17V/5-1 _ 2
h = H/\5,w =W/+/5, (asin Theorem 5) ant}, = H 7 andb, = W2

3.2.2 Non-ldentical Area Subdivision

The requirements for dividing an asymmetric rectangle fivi@ subrectangles with areas greater
than or equal t&@ are more difficult to determine due to the fact that the baset goordi-
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natesb;, andb,, for subrectangle 4 must be determined along with its heigbtvaidth. A set of
conditions can be written which need to be satisfied to ol#aion-identical area subdivision of
an H x W rectangle into an asymmetric 5-wheel. The six area contditave:

Basics: 0< h,bp,,< H and 0<w,b,, <W
O<h+4+b,<H and 0<w+b,<W

area( Ry

Subrectangle O : bp(by +w) > area(Ro)
Subrectangle 1: (b, + h)(W — (b, + w)) > aroa(RO)
Subrectangle 2 :  (H — (by, + h))(W —b,) > aroa(RO)
Subrectangle 3 : (H — bh)bw > areal o)

which must be satisfied by, b,,, h, andw.
For fixedh andw values, the basic constraints clearly dictate that

BASO0<b,<H—-hand B1:0<b, <W —w.

The remaining area conditions can be characterized by ngeeach constraint as a graph plotted
using the(b,,, b,) coordinate system. The challenge is then to determine fiameof intersection
for all four conditions exists and what this region look<liik it does exist. We begin with four
lemmas characterizing the graph of each condition.

Lemma 18 The constraint for subrectangle 0 describes the region altbg hyperbola

area(Ry)
Y

CO :by(by +w) =
as plotted in théb,,, b,) plane. The hyperbola has axes of symmétry- —w andb, = 0.

Lemma 19 The constraint for subrectangle 2 describes the regionweh® hyperbola

area(Rp)

G2 :(H = (b + W)W —bu) = =

as plotted in théb,,, b,) plane. The hyperbola has axes of symmeétry- W andb, = H — h.

Lemma 20 The constraint for subrectangle 1 describes the region ¢édeft of the hyperbola

area(Ry)

C1:(by + h)(W — (by +w)) = S

as plotted in théb,,, b,) plane. The hyperbola has axes of symmétry- W — w andb, = —h.
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Lemma 21 The constraint for subrectangle 3 describes the region écidpht of the hyperbola
area(Ry)

~
as plotted in théb,,, b,) plane. The hyperbola has axes of symmégry- 0 andb, = H.

C3 :(H — by)b, =

To proceed, we employ the approach taken in the previousmador symmetric 5-wheels and

area(Ro)y
~yHW —4area(Rp)

so thathw = area(Ry)/q and all five symmetric subrectangles have area ratios grtea or

first pick ¢ so that < ¢ < . This determines a range far(andw) in Theorem 6
equal toR,/~. The choices foh andw are, of course, additionally restricted by theand IV
dimensions of the rectangle being subdivided.

We believe that by using this range of choices ficirom Theorem 6, it will be possible to
selectb,, andb, values so that all area constraints are satisfied when wig@aihto asymmetric
subrectangles with non-identical areas.

Conjecture 1 If the value ofh (andw) is selected within the range afvalues given in Theorem 6,
then the regions defined by the constraints BO, B1, and CO —ilCBtersect. Any poin{(b,,, by,)

in the intersection region will then yield an asymmetricision of anH x W rectangle so that all
subrectangle areas are greater than or equahtea(Ry) /7.

Consider the situation from the previous example whidre W = 200 x 100, area(Ry) =
30,000, v = 10, andg = 4 was selected. From before, the ranggfofw) values defined by
Theorem 6 which will partition the rectangle symmetricaiiyo subrectangles with non-identical
areas was20 < h < 125, and correspondingl§0 < w < 62.5.

For the asymmetric case, we examine the graphs of the G@es C3 with b, plotted as a
function ofb,, for increasing fixed values ab from w = 55 to w = 65. Figure 21 plots the four
constraints (i.e. hyperbolas) for the values.of 55, 60, 62, 62.5, 63, and 65.

For thew values between 60 and 62.5 (i.e. thaseorrespondingly given by Theorem 6 there
exists a region of intersection for the four subregions @efim the above lemmas. For the other
values ofw, there is no common intersection. In particular, for Figu2é(a,b,c,d), the subregion
to the left of C1 intersects with the subregion to the right@3. However, the subregion belo@2
does not intersect with the subregion ab&@@&in Figure 21(a). These subregions do intersect in
Figure 21(e,f), but the subregion to the left@i does not intersect with the subregion to the right
of C3. The intersection of all four subregions exists in Figurgé&,d).

Using the scenario shown in Figure 21(d) where= 40 and correspondinglj = 120.968,

a point in the intersection region can be selected for the pagt in the asymmetric layout, e.g.
(b, by) = (19, 40) yielding the arrangement show in Figure 22.
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4. Controlling Aspect and Area Ratios

Our goal is to develop an algorithm that generates data egstangles which form a non-slicing
layout when reassembled. Data sets are more effective abimanks when both the aspect ratio
and area ratio of the rectangles can be controlled by the brstite case of slicing layouts (Wang
and Valenzuela 2001), the conditions under which aspeotratere controllable could be directly
combined with conditions under which area ratios were ablatole so that the data generation
algorithm shown in Figure 2 could be designed.

The same approach could be employed here, although it weqgldre a substantial computa-
tional effort to determine some exact conditions that fahgeregions of intersection described in
section 2 to be consistent with those controlling area saticsection 3. Consider, for example,
the situation described in section 2.5 where an asymmetyiout of subrectangles is desired— it
is necessary to determine if a region of intersection exastswhat the corner points of that re-
gion, if it exists, would be. It is not obvious that the intection region would be consistent with
w, h, b, b, values solving the inequalities in section 3.2.2.

In spite of these difficulties, it is still possible to progosome simpler algorithms for gener-
ating non-slicing layouts where both aspect ratio and aaas are controlled. We discuss two
possible methods below, both of which partition rectangiés symmetric 5-wheels.
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4.1 Identical Area Subdivision

Theorem 8 Let R, be the rectangle having the largest area in a list of rectasghkith legal area
and aspect ratios. Witk > 5, remove a rectanglé/ x W where HW > barea(R,)/~v and

VE+1 p(v5—1)
a5 =TT RS

for cutting. Then a symmetric 5-wheel division of this regle usingh = H/+/5 andw = W/\/5
will produce a layout where all subrectangles have legalexs@and area ratios.

®3)

This approach is an extension of the process where a reetaag divided into subrectangles
having identical areas, i.e. HW/5 in Theorem 5 so that theltieg area ratios are legal. If it is
also true that a rectanglé x W can be found in the list which satisfies the additional camstr
of (3), then its partition will also preserve aspect ratios.

4.2 Non-ldentical Area Subdivision

Using a similar approach, we investigate the possibilitgxtending Theorem 6 and Corollary 5
which specified how symmetric layouts of subrectangles with-identical (legal) areas could be
obtained. Since it is of interest to preserve the asped patiperty as well, we see that if certain
additional conditions can be satisfied, then it will be pblesto obtain a 5-wheel partition where
all the subrectangles have legal aspect and area ratios.

Theorem 9 Let R, be the rectangle having largest area in a list of rectangléth\a legal area
ratio wherey > 5. Remove a rectangld x W where HW > 5 area(R,)/~ for cutting. Set the
area of subrectanglé of a symmetric 5-wheel to beca(R,)/q, wherew satisfies:

area(Ro)y
v > qz ~YHW —4area(Ro)

4p area(Rp)
Y =292 (/;)H_iw)g

4p area(Rp)
v Z2q2 W

Find the intersection of the following conditions flor

(area(Ro)(v+4q) —7qHW)+\/(arca(Ro)('y+4q)—'quW)2 +4~v2gHW area(Ro)

h Z 2vqW
o< = (area(Ro)(’y+4q)—’quW)+\/(area(Ro)('y+4q) —vqgHW)2+4~v2qHW area(Ro)
— 2vqW
and
area(Ro) <h< area(Ro)p
Pa - - q
(PH-W)—/(pH-W)*~2parca(Ro)/q -  (PH=W)+/(pH-W)>~dparca(Ro)/q)
2p — — 2p
(pW —H)—/ (oW —H)?—2parea(Ro) /g _ b < (oW —H)++/ (pW —H)?—4parea(Ro)/q)
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Figure 23: Sample Symmetric Layouts Legal Aspect and Ardo&é& = 4,y = 20

If this intersection exists, then select arfrom within the overlap. The resulting symmetric parti-
tioning of H x W will yield five subrectangles with legal area and aspectasti

Example: Suppose that af/ x W = 200 x 100 rectangle is to be partitioned so that the
resulting subrectangles have legal aspect and area réfios d andy = 20 respectively, and that
this rectangle was chosen for partitioning because itseeeeds$ area(Ry)/~ with area(Ry) =
30,000. We note that a value af = 15 will satisfy the specified constraint8(Q( > ¢ > 2.143,

20 > ¢ > 0.98, and20 > ¢ > 12).

The area of subrectangle 4 will then he = % = 30000/15 = 2000. The possible values
for h are55.279 < h < 89.443. We can seleck = 80 or h = 60 and obtain the layouts
shown in Figure 23. The aspect ratio of the subrectanglesyshin the lower left corners) are
legal, i.e. between .25 and 4. The area of each rectangled@séy/y = 1500. Thus, either
set of subrectangles can be added to the currently gendistted rectangles and can be further
partitioned into subrectangles with legal aspect and aaeiitipns.

We can now formulate a fourth algorithm shown in Figure 24 gwmbines both area and
aspect ratio using Theorems 8 and 9. Note that if it is notiptest partition a chosen rectangle
into legal subrectangles using the symmetric 5-wheel, éhaiting cut can be used. The latter can
always be applied (see (Wang and Valenzuela 2001)).
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Algorithm IV: Controlling the Aspect and Area Ratio With Sym metric 5-wheels
Input the parameters, {p > 2,y > 5}, H, and thenlV where2H /p < W < pH/2
while n rectangles not yet generated do
Ry « rectangle with maximum area in the current list
Randomly choose a type of cut: slicing or the 5-wheel (unhesee thatn — 5 rectangles
have been generated)
if the type of cut is a slicing cuhen
Choose a rectangl® at random such thatrea(R) > 2area(Ry)/~
Perform an appropriate slicing cut éh(see (Wang and Valenzuela 2001))
ReplaceR in the list with the two subrectangles
else{5-wheel
if identical areas are desirédaken
try using Theorem 8 to divid& into five subrectangles
else
try using Theorem 9 to divid& into five subrectangles
endif
ReplaceR in the list with the five subrectangles if they could be getezta
if not, perform a slicing cut on a randomly selectBdsee (Wang and Valenzuela 2001))
endif
endwhile

Figure 24: Generating Data Sets Containing Symmetric Selgheith Legal Aspect and Area
Ratios
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5. Generalizing the Wheel

The results we have obtained make it possible to designitdigms that generate sets of rectangles
whose aspect and area ratios are controlled, and whichctioélyy combine into a single larger
rectangle with zero waste using a hierarchical layout. TwehBel is a basic non-slicing layout
which can be used for partitioning rectangles into smallesoduring the data set generation
process. However, the 5-wheel is somewhat restrictivermgeof the types of patterns that will
be generated. On the other hand, as we have seen, it has beerravial task to determine the
conditions under which the partitioning will yield subraogles with legal aspect and area ratios
when the 5-wheel layout is utilized.

Other methods can be proposed for generating non-slicyayita. By definition, a non-slicing
layout contains rectangles that cannot be obtained by rgakseries of edge-to-edge cuts. The
reason that the wheel layout is non-slicing is because thedmal lines defining the top edge of
rectanglel and the bottom edge of rectandleannot be extended to the edges of the enclosing
rectangle because of the placement of rectaryybesd?2.

Figure 25(a) summarizes this property. The three rectangle3, andC form the core of a
non-slicing layout if the lines of the rectangles are nottoared to the outer edges of the enclosing
layout. Thus, if the rectangles in the final layout mlat contain the line segments shown in Fig-
ures 25(b,c), then the layout will be non-slicing. The regsairrounding the core rectangles can
be divided into many different types of subrectangles ndnghich border the complete dashed
line segments of Figures 25(b) or (c).

5.1 Extending the 5-wheel

In light of these observations, the subrectangles in thie Bagheel can be extended so that these
dashed segments do not appear in a final partition of therleegtangle. One popular layout is ob-
tained by stretching two opposing rectangles either hatety or vertically. An illustration of this
distorted wheel is shown in Figure 26(a). A larger non-gsliciayout is obtained by successively
adding pairs of rectangles to create a pin-wheel or logrcgbilt arrangement shown in Figure 26.
This extended-wheel arrangement has been used for VLSliayadies of hierarchical floorplans
in (Wang and Wong 1992).

34



(@)

(b) (c)

Figure 25: A Recursive-wheel Layout
Figure 26: A Pin-wheel Layout

5.2 L-shapes

By additionally distorting the widths of rectanglésand 2 of the basic 5-wheel, the shaded L-
shaped regions shown in Figure 27(a) are created. Theseechitel in using either slicing or
non-slicing layouts as shown in Figures 27(b) and (c), retbpady. These completions illustrate
layouts that could be obtained using the techniques we hes@itbed in this paper (incorporating
symmetric reflections of the 5-wheel).

The shaded L-shaped regions, however, could have been emtph a different manner. In
effect, we can obtain non-slicing layouts by combining daeseof L-shaped regions. The first
non-slicing layout introduced in Figure 3 can be obtainesway: by combining L-shapes 1, 2, 3,
and then 4 as shown in Figure 28, we would obtain the layous.Uude of L-shapes for non-slicing
VLSI layout design has been proposed and studied by (Wany\amg) 1992).

6. Summary

In this paper we have extended our earlier work which was redfto slicing floorplans, and in-
vestigated the use of the basic 5-wheel shape as a meansfenatieg non-slicing data sets of
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Figure 27: Completing the 5-wheel

Figure 28: Combining L-shaped Regions
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rectangles that can be packed into a single larger rectale aim is to extend the usefulness
of our data generation techniques to benchmark a wider rahgetting, packing and placement

problems. As part of our new data generation process, wedbaen that it is possible to succes-
sively partition a rectangle into symmetric and asymmeirigheel layouts while preserving the

aspect ratio property needed to ensure that all final retdangll have legal aspect ratios. Simi-

larly, conditions under which the area ratio property capteserved when subdividing a rectangle
have been studied. Using these results, we were able to fatenalgorithms which create data

sets by subdividing a rectangle so that the subrectanglelsave either legal aspect ratios or legal
area ratios.

Finding a partitioning of a rectangle so that both the aspsed and area ratio properties are
preserved is more difficult. As we showed, it is possible tohd®and we investigated one method
where aspect ratios and area ratios within a symmetric Selwvhight be preserved. In many cases,
however, it would be a non-trivial task to write a computergram which utilizes the most general
results we have obtained for partitioning a rectangle. Kbeéess, we have demonstrated that it
is feasible and in some cases, straightforward, to extemaltprithms developed in (Wang and
Valenzuela 2001) for generating data sets when symmetsibéels are utilized.

Further extensions of the 5-wheel lead to other possibliipaings for generating non-slicing
layouts of rectangles. There are several directions faréutesearch which might be taken from

this starting point; the use of L-shapes is currently undeestigation.
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A. Proofs for Section 2.1

Theorem 1Let H x W have a legal aspect ratio and denote the aspect ratio ofcdabgtesd by
f. Selectf betweenl/p andp. In order to guarantee that all five subrectangles of the sgimn
5-wheel will have legal aspect ratias,must satisfy the following inequality
oW —H pH-W

p+f 7 opf+1 i’

0 < w < min{

h can then be computed as= fw.
Proof. Assume thatf has been selected as the aspect ratio for subrectdrayle that this

value was chosen to be betwekfp andp. Since subrectanglésand?2 are identically sized (as

are subrectanglek and 3), we need only examine the conditions that must be met inrdode

subrectangle8 and1 to have legal aspect ratios.
For subrectangle, it is necessary to have

1 < H-—h

p - WHw

IA

p

or equivalently,

1
;(Wer)SH—handH—hgp(Wer)

By substitutingh = fw, we obtain

%th%ng—fw and H — fw < pW + pw)

= w(f+%)§H—% and H — pW <w(f+p)

& w(%) < H — % and Hffy <w
pH—-W
= w < pf+1

Note thatHijZV < 0 becausd? /W < p so we need only choose

(4)

in order for both inequalities above to be valid.
For subrectanglé to have a legal aspect ratio, it is necessary for
1 < H+h <
p- W —w

which happens if and only if

%(W—w)gHijw and H + fw < p(W —w)

& Y _Hg<wlE+f) and H+ fw<pW —pw
"w—pt frs W—H
& = < w(=22) and w < S
W—-pH
= 1+fp Sw
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SinceH /W > 1, £ < 0 and we need only choose
oW — H
0<w< ——0 )
p+f

in order for both inequalities above to be valid.

Note also thatv must not exceetl’ for practical reasons. However, since

WoH oWy
p+f T op+fT
because and f are both positive, we need only choaseo that
oW —H pH—-W
p+f 7 pf+1

Oncew has been chosen, thén= fw can be calculated.]

0 < w < min{

1.

Corollary 1 If H/W = por H/W = 1/p, then the selectedd x W rectangle cannot be cut
into a 5-wheel whose subrectangles have legal aspect.ratios

Proof. Note that if H/W = por H/W = 1/p, thenH = pWW or W = pH, respectively, so
that the upper bound for the choice«ofis zero.[]

B. Proofs for Section 2.2

Lemma 1 Subrectangl® of the asymmetric 5-wheel will have a legal aspect ratioeffibilowing
condition is satisfied:

%_bwéwgpbh_bw

Proof. If subrectanglé) has a legal aspect ratio, then

by,
by + w

1
- < < p.
P

This occurs if and only if
%(bw +w) <b, and b, < p(b, +w)

& by +w<pb, and b?hgbijw

& w< pb,—0b, and %—bwgw
Thus, if both inequalities are satisfied, then subrectanwdldave a legal aspect ratial

Lemma 2 Subrectangld of the asymmetric 5-wheel will have a legal aspect ratio & tbl-
lowing condition is satisfied:
W—Mrwmgwng—dm—%
1+ fp f+p
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Proof. If subrectangld has a legal aspect ratio, then

by, +h <)

<t
~ W —(by +w) ~

1

p

This happens if and only if
SW = (by +w)) Sbp+ fw and by + fw < p(W = by — w)

& %—%—%Sbhijw and b, + fw < pW — pb, — pw
& % b;“—bhg%+fw and pw + fw < pW — pb, — by,
& Totob,<wE+f)  and (p+ flw < pW = pby, — by
e Wb p, < qp(itie) and w < W =pbu=by

P Webu—pb p Gzl
= wpph<w

0]
Lemma 3 Subrectangle of the asymmetric 5-wheel will have a legal aspect ratio & tbl-
lowing condition is satisfied:
1
H—%—?W—mng H—%—?W—%)

Proof. If subrectangle@ has a legal aspect ratio, then
L A—nth)
p W — by
Substitutingh = fw, the double inequality can be expressed as:
%(W—bw) <H-—(bpy+h) and H—(bp+h)<p(W —0by,)

IN

= %(W —by) <H—(bp+ fw) and H — (b + fw) < p(W —by)
& %(W—bw)SH—bh—fw and H —b, — fw < p(W —by,)
& waH—bh—%(W—bw) and H —b, —p(W —b,) < fw
N w < H—bh—%}(W—bw) and H—bh—;}(W—bw) <w

O

Theorem 2If a rectanglel x W having a legal aspect ratio is to be divided into an asymmetri
5-wheel whose subrectangles also have legal aspect taiothe following conditions must first
be satisfied fob,,, w, g, andf:

Subrectangle 0 condition : %(gﬂ’) <w < pH —by(pg + 1)
Subrectangle 1 condition : W=p I?:;);J(p 9= <y < 2 W_I?;sw(p ~9)
Subrectangle 2 condition : M <w< W
Subrectangle 3 condition : I/p<g<p
Subrectangle 4 condition : 1/p<f<p
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Proof. If ¢ = (H — b,) /by, thenb, = H — gb, can be substituted into the inequalities of

Lemma 1:
b —b, <w< Py — by
& e, <w< p(H - gby) = by
& H_dv_p, <w< pH—bu(pg+1)
N %f’_bw(gﬂ) <w< pH —by(pg+1)
o Hzbeltn) <y < pH — by(pg + 1)

For the inequalities of Lemma 2, the substitution yields

W —bw—pbp pW —pbw—bp,
W—b 1+f1;} b =S w bf+pH b
P —bw—p(H—gbw) S w S pW —pbw—(H —gbw)
W—b 1+{{p+ bw) 17%4 bf+l}{+ buw)
- ( wl)szi”(pgw) svs pﬁb’)(gl;
W—pH)+bw(pg=1) < pPW —H—=bw(p—g
< +fp =Wz f+p

Finally, usingb, = H — gb,, in the inequalities of Lemma 3, we obtain

H—bh—%(W—bw)

HobimpWobs) oy <
f =0 = 7
= H_(H_ng})_pW"l‘pbw S w S H—(H—gbw)—%ﬂ-%ﬂ
gb W bw
YN W <w< %
_ bw “1‘l W
o bV WY

O

Corollary 2 If H/W = p, it cannot be subdivided into five subrectangles that willehizgal
aspect ratios.

Proof. If H/W = p, then the upper bound for subrectangle 1 is non-posiiVEé:— H = 0
andp — g > 0 becausd /p < g < pin order for subrectangle 3 to have a legal aspect ratio.

Lemma 4 The b,,-intercepts andv-intercepts of the linesy = m n0, w = m nl, andw =
m n2, w = max0, w = max1, andw = max2 are

Table 3: Intercepts of Boundary Conditions
Line w-intercept b, -intercept
H

w = n0 g L
p ptg

_ pH
w =max0 pH py
R W—pH pH—-W
w=m nl o e
w =max1 pW—H eW—H
f+p p—g

—m _w W

w =m n2 f g+p
_ _w w_

w =max?2 o7 py
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Proof: Setb,, = — andw = 0 in the respective line equations and solve for the corredipgn
w andb,,. O

Lemma 6 The relative positions of the,-intercepts fomi n0, max0, m n2, andmax2 sat-
isfy:
(i) b,-intercept ofm n0O < b, -intercept ofmax0

(i) b,-intercept ofmrax2 < b,,-intercept ofim n2
(i) b,-intercept ofm n0 < b,,-intercept ofim n2
(iv) b,-intercept ofmax2 < b,-intercept ofmaxo.

Proof.

(i) Sincep > 2 by assumption, then clearh > 1 so

p? > 1
PP+pg > 1+pg
1 <« _pr_
ptg — pgtl
H  ~ pH
ptg — pg+l

(i) Similarly,
p? > 1
p’g > g
pP’g+p > g+p
D S
p%—l - //))-‘r
pg+1 S p+g

For (iii) and (iv), we use inequalities:

_H_ W
HE T Sy
W<pH =05 < 0

O

Lemma 7 For respective pairs of lines, the intersections pointsbeacalculated:

(i) w=m n0 andw =nmax0 intersectab,, = H/g andw = —H /g,

. i _ . _ [W+H _ Wg-H
(i) w =m nl andw =max1 intersect ab,, = o andw yit

(iii) w =m n2 andw =max2 intersect ab,, = W andw = Wg/f.
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Proof. (i) Settingnm n0O equal tomax0, we obtain

%_bw(#) -
bu(pg +1—22) = pH -4

b — (pP°-1)H
w If2g_g
buw Y

Thew coordinate can be obtained by substituting this fractiom @ther.w = m n0 or w = max0.
(ii) Settingm n1 equal tonax1, we obtain

(W—pH)+bw(pg—1
+fp

)
(W —pH) ~+by(pg —1))(f +p)

(W — pH)(f + p) + bw(pg — 1)(f + p)
buw(pg — 1)(f +p) — buw(p — g)(1 + fpg
)

)

(pW —H)—bw(p—g)

f+p
= (MW —H)=bu(p—9)(1+ fp)
(pW — H)(1L + fp) — bu(p—g)(1+ fp)
(W —H)(1 + fp) = (W — pH)(f + p)
oW + fpPW — H — fpH — fW — pW + pfH + p*H
fW(p* =1+ (p* - 1)H
(fW+H)(p*—1)

(fWg+H)(ﬂ2—1)
f‘g‘e;f})(f +9)

wo = f+g

bo(frg+p’9—f—p+p—9g+fr*—frg
bw(P*(f +9) — 1(f +9)

bu(p* = 1)(f+g

b
b

g

Thew coordinate can be obtained by substituting this fractim @ther.w = m nl orw = max1.
(i) Settingm n2 equal tonax2, we obtain

bw (g+p)—pW bw(gp+1)—W

(bulg + p) — WY(F0) = (bulgp+1) — W)
buw(g +p)(fp) — (pPW)(fp) bu(gp+1)f = WFf
(PW)(fp) =W f

bu((g+p)(fp) — (gp+1)f

bu(gfp+ [0 —gfp—Ff) = pWfp—Wf
buf(p* —1) = fW(p*—1)
b, = WD
b — &p -1
by = W

Thew coordinate can be obtained by substituting this value iitteeew = m n2 or w = max2.
O
Lemma 8 For each line, the slope and its sign are:

Table 4: Slopes of Boundary Conditions
w=mn0 w=mx0 w=mnl w=mx1l w=mn2 w=nmax2

gFp pg—1 p—g gFp gpF1
slope —T2 —(pg+1)  E ~ T 5 N
sign - — + — + +

Thus, the relative slopes of each pair of lines satisfies:

(i) w =maxO0 is steeper thaw =m n0O
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(i) w =m n2 is steeper thaw =max2
(i) w =m n0 andw =nmax0 are steeper tham =max1
(iv) w =m n2 andw =nmax2 are steeper tham =m nl

Proof. To establish (i), take the negative slopeswf m n0 andw = nmax0 and show that
the slope ofv = mi nO is greater than the slope of = maxO0:

p* > 1since p > 2

g > g
Pg+p > gtp
plpg+1) > g+p
pg+1 > gtp

p
—&2 > —(pg+1)

For (i), since the slopes ab = m n2 andw = nax2 are positive, we show that the slope of

4l

w = max2 is greater than the slope ef = m n2:

p* > 1since p > 2

= gp+p° > gp+1
= (g+pp > gp+1
=

g+p gp+1
7 Z

sincef > 0.
For (iii), compare the negative slopeswof= max0 andw = nmax1 and show that the slope of
w = max1 is greater than the slope of = max0:

pgf +p’g+ f+g>0sincep, f,g >0

= pgf +p°9+f+p > p—y
= (pg+1(f+p) > p—g

= pg +1 > v
= - > —(pg+1)

Similarly, w = m nO is steeper than = nax1 because both slopes are negative and the slope
of w = max1 is greater than the slope of = m nO:

fg+ fp+2gp>0sincep, f,g >0

= fg+fotgp+p* > p—gp
=  (g+p(f+p) > (p—9)p
= % > e
= — > =22
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For (iv) the slopes ofv = m n2,w = max2, andw = m nl are all positive and subsequently,
the slope ofv = max2 exceeds the slopes of the other two lines:
g+p+fp°+f>0sincep, f,g >0

= g+gfp+p+fr* > gfp—f
= (g+p)A+fp) > flgp—1)

g+p pg—1
= 7 S s
and
pg+2fp+1>0sincep, f,g >0
=  pg+pgfp+1l > fppg—fp
= (pg + 1)& +fp) > frlpyg - 1)
pgT1L Py —
= Ip > 1+fp
|

Theorem 3The intersection of the regions definediiiyn0 < w < max0 andmax2 < w <
m n2 is non-empty.

Proof: Lemma 6 establishes that the line segment between theeptsrof the lines plotted
in Figure 9 must intersect with the line segments betweetirbs plotted in Figure 10 on thg,
axis. Since the pair of lines = m n0 andw = max0 have positive slopes and the other paie
m n2 andw = nmax2 have negative slopes, there must be a region of overlap., There exist
points(b,,, w) wherem n0 < w < max0 andm n2 < w < max2. O

C. Proofs for Section 2.4

Lemma 9If H/g = W, then Lemma 6 can be revised.
() If ¢ > 1, theb,-intercept ofw = m nO is greater than or equal to thg-intercept ofw =

max2, and they,, -intercept ofw = max0 is greater than or equal to thg-intercept ofw =
m n2. Thus, Figure 8(a) applies.

(i) If g < 1, theb,-intercept ofw = m nO is less than or equal to thg -intercept ofw =
max2, and theb,-intercept ofw = maxo is less than or equal to thg, -intercept ofw =
m n2. Thus, Figure 8(b) applies.

Proof. (i) Suppose /g = W. If g > 1,theng? > 1, pg®> +g > p+ g, SO

H > _H
p+g =  pgc+yg
= H > H
p;gg = g(plgl;rl)
H oo W
= p+g — pg+1
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Similarly, g> > 1, gp + pg* > pg + 1, so

> 1

A L
= H >

pgtl =  g(ptpg)
- _H_ _ W

pg+1 ptg

Thus, theb,-intercept ofm nO is greater than or equal to tlsg-intercept ofmax2 and theb,, -
intercept ofmax0 is greater than or equal to thg-intercept ofm n2, which implies that Fig-
ure 8(a) applies.

(i) If H/g=W andg < 1, theng? < 1 andpg® + g < p+ g SO

H H w

< - W
ptg p9%+g pg+1

Similarly, g?> < 1 impliespg + g% < pg + 1 s0

pH pH _ pW

— <
pg+1 9%+pg g+p

In this case, thé,,-intercept ofm nO is less than thé, -intercept ofrax 2 and theb,, -intercept of
max0 is less than thé,-intercept ofm n2 which implies that Figure 8(b) applies]
Lemma 10The linesw =max0 andw =m n2 intersect at a poin = (b,,, w) whereb,, =

p(fH+W) _ (pH-W)+g(H—pw)
fpg+f+g+p andw = pgf+f+g+p
Proof.
H bu 1) —W
H oy @1y = oot
p p fo
H—bulg+p) _ bulgp+1)—W
p fo
f(H =by(g+p) = bulgp+1)—W
fH = fby(g+p) = bu(gp+1)—W
fHAW = bu{f(g+p) +(gp+1)}
fH+W = b,{fg+ fp+gp+1}
, o JHYW
b fg+ fp+gp+1
O

Lemma 11 The linesw =ni n0 andw =max2 intersect at a poinB = (b,,, w) whereb,, =

FHAW _ 9(pH-W)+(H—-pW)
fog+fotgp+l andw = p(gf+fpt+pg+1)
Proof.

bu(g + p) — pW
f

pH —by(pg+1) =
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fpH — by(pg + 1)}
fpH — fby(pg+1)

bw(g + p) — pW
bw(g +p) — pW
bu{f(pg+1)+(9+p)}

bl frg+ [+ 9+ p}
p(fH+W)

fpg+f+g+p

Lemma 12 The linesw =max0 andw =max2 intersect at a point’ = (b,,, w) whereb,, =

fpH + pW
p(fH+W)
b
O
fp2H+W _ pH-W
(fﬁil)(Pg-H) andw = ppf+1 )
Proof.

pH —by(pg +1)
fo*H = by fp(pg +1)
fpPH +W

fpPH +W

b

buw(pg+1) =W
Ip
bu(pg+1)—W

bulfr(pg +1)+ (pg+ 1)}

bu(fp+1)(pg +1)
fp*PH +W

(fp+1)(pg+1)

Lemma 13 The linew =max1l may intersect the common region in one of the following

scenarios:

S1: w =max 1 intersects the line segmemg’ and BD at pointsA; and B,

S2: w =max1 intersects the line segmem€’ and BE at pointsA4; and B,

S3: w =max 1 intersects the line segmems” and BD at points4, and B,

S4: w =max 1 intersects the line segmems” and BE at points4, and B,

S5: w =max1 lies above the region outlined by the points CAEBDC

where theb,, values of the pointsi,, A, By, and B, are, respectivelyb,,
_ f(eW—-H)+pW (f+p

) andb,, =

b — JPeW—H)+W(f+p) _
W (gp+D)(fHp)+(p—g)fp TV

(g+p)(f+p)+f(p—9)

_ (W-H)(p)—H(f+p)
(p=9)p—(g+p)(f+p) ’

_ (pW-H)—(f+p)pH
(p=9)—(f+p)(pg+1) "

Proof. Theb,, coordinate of the pointd, B, andE were calculated in Lemmas 10, 11, and 12,

respectively. The possible points of intersection of liegreents andy =max1 can be computed
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as follows

Line Segment

Scenario AC AF BD BE

S1 A, - B -
S2 A - = B
S3 - A B -
S4 - A — By

Theb,, value of the pointd; occurs at the intersection of the lines=nm n0 andw =nax1
and can be calculated as:

=
~
+
b
~—
I
=
g
Q
+
e
—  ~—

(
bullp—g)p—(g+p)(f+p)} = (pPW —H)(p) — H(f+p
. -

Theb,, value of the pointd, occurs at the intersection of the lines=nax1 andw =nax2
and can be calculated as:
(W —H)=bulp—9g) _ bulgp+1) =W
f+p fp
(kW —H) =bu(p—9)fp = (bulgp+1) =W)(f+p)
fo(pW — H) = bu(p—g)fp = bulgp+1)(f +p) = W(f+p)
fo(oW —H)+W(f+p) = bu{lgp+1)(f+p)+(p—9)fr}
fo(pW — H)+W(f +p)

(gp+V)(f+p)+(p—g)fp

Theb,, value of the pointB; occurs at the intersection of the lines=n n2 andw =nax1

w =

and can be calculated as:
bu(g+p)—pW _ pW —H —bu(p—9)
f f+p
(bu(g+p) = pW)(f+p) = f(pW —H —by(p—g))
bu(g+p)(f+p)—pW(f+p) = f(pW —H)—=b,f(p—g))
( )

bul{(g+p)(f+p)+flp—9)} = f (f +
b — f(eW = H) + pW(f +p
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Theb,, value of the pointB; occurs at the intersection of the lines=nax0 andw =nax1

and can be calculated as:

(pW — H) — by(p—g)
— b,
pH — by(pg +1 I

)
(f +p)(pH —bu(pg+1)) = (pW —H) —bu,(p—g)
(f +p)pH = by (f +p)(pg+1)) = (pW — H) = by(p —9g)

bulp—9) = (F+p)pg+1)} = (oW —H) = (f+p)pH
b (pW —H) = (f+p)pH
(p—9)—(f+p)pg+1)
O
Lemma 14 The linew =max1 may intersect the common region in one of the following
scenarios:

S6: w =max 1 intersects the line segmemd’ andG' E at pointsA, and B,
S7: w =max1 lies above the region outlined by the points FEGF

where, as before, thig, values of the pointsi, and B, areb,, = ALV -H+EWUL) gndp, =

( )= (f+p) = (ot ) (Fp)+(o—a)fp
pW—H)—(f+p)pH

(p—g)—(f+p)(pg+1) "
Proof. Theb,, coordinate of the poinE’ was calculated in Lemma 12. Tlbg coordinates

for the pointsF’ andG are just theh,, intercepts of the lines» =max0 andw =max2 as given
in Lemma 4. The points of intersection of the line segmentk wi=nax1 can be computed as

follows

Line Segment

Scenario FE GE
S6 A, B,

Theb,, value of the pointd, occurs at the intersection of the lines=max1 andw =nax2

and was be calculated previously to be:

_ fplpW —H)+ W(f+p)
(gp+1)(f+p)+(p—g)fp

Theb,, value of the pointB, occurs at the intersection of the lines=max0 andw =nax1

and was be calculated previously to be:

(pW — H) = (f +p)pH
(p—9)—(f+p)pg+1)

by =
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D. Proofs for Section 3.1

Lemma 15Let R; = H x W be a rectangle whose area excegaisa(R,)/y whereR, is the
rectangle of the currently generated list which has the maxri area and > 5. If R; is divided
into symmetric 5-wheel subrectangles each with area equalt’/5, then the subrectangles have
legal area ratios.

Proof. If the area(i) of subrectangle i is equal #7/5, then

area(i) = HW/5 > barea(Ry)/(57) > area(Ry)/y > area(R;) /v

so area(i)/area(R;) > 1/~ for all rectanglesR; in the generated data set and subrectangles
{0,1,2,3,4. In addition,area(i) < area(R;), SO thatarea(i)/area(R;) < area(R;)/area(R;) < 7.
Finally, the ratioarea(k) /area(i) = 1, so inequalities (1) and (2) are satisfiéd.

Theorem 5Let R, be the rectangle having largest area in a list of rectangi#slegal area
ratios andy > 5. Remove a rectangl& x W where HW > barea(R,)/~ for cutting. Then,
a symmetric 5-wheel division of this rectangle using= H/+/5 andw = W/+/5 will produce
five subrectangles, each having afé&l/’/5. If these rectangles are added to the original list of
rectangles, they will all have legal area ratios.

Proof. The dimensions of the subrectangles of the symmetric 5-Wwirexe given in Table 1.
Assuming that all subrectangles areasdi&’/5 implies thathw = HW/5 orw = HW/(5h).

The area of subrectangleand?2 is

H-—h W+uw (H—h)(W +w)

2 2 4
~ HW + Huw—hW — hw
B 4
_ HW+HEGE — bW — )
4

AHW n H?W AW

20 20h 4

HW W
= 4+ _—(H*>-51
) - 20h( 5) ©)
The area of subrectanglésnd3 is

H+h W-w (H+h)(W —w)

2 2 4
_ HW — Hw+hW — hw
B 4
_ HW - HGEE 4+ hW — )
4
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HW W
= - _%_h(H2—5h2) (7)

Note that if we sefi/? = 5h? in both equations (6) and (7) then all five subrectanglestvaille
area equal talW/5. Thus, if we select = H/+/5 andw = W/+/5, Lemma 15 can be applied
to prove the desired propertyl

Lemma 161f we pick R; = H x IV to be a rectangle whose area exceedeea(Ry) /v,y > 5,
and divideR; into five subrectangles i for whickrea(i) > area(Ry)/~, then the subrectangles will
have legal area ratios.

Proof. Use a similar inequality sequence as in Lemma 15, it folldves t

area(i) > area(Ry)/vy > area(R;)/y = area(i)/area(R;) > 1/v

for all rectangles; in the generated data set and subrectangles i. Again(i) < area(R;), SO
that
area(i)/area(R;) < area(R;)/area(R;) < 7.

To show that inequality (2) is valid, consider the following
area(i) < area(R;) < area(Ry), so area(i) < area(Ry)

Thus,
area(k)

area(i)

area(k)
area(Ry)

from above. Sincerea(i) > area(Ry)/~, for all k,

> >1/y

area(k) area(Ry)
area(i) — area(Ro)/y —

IA

O
Lemma 17 Suppose we pick;, = H x IV to be a rectangle whose area exceeds:a(Ry) /7,
v > 5, and we sebw = area(R)/q where

varea(Rp) <q<n
yHW — 4area(Ry)

Then the five subrectangles will each have area greater thegual toarea(Ry)/~.
Proof. If ¢ < ~, thenhw = area(Ry)/q > area(Ry)/v, SO subrectangl¢has area greater than
or equal toRy/v. If hw = area(Ry)/q, then the sum of the areas of the other four subrectangles
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must be equal téd/ W — area(Ry)/q. Now suppose that each of the remaining subrectangles also
has area greater thanca((R,) /v which means that we must have

3
4

4 area(Fo) < E area of subrectangle(i) = HW — area( o)
Y g q

(8)

If ¢ < varea(Ry)/(yHW — darea(Ry)), then because HW — 4area(R,) is positive, we have
that

q(yHW — 4 area(Ry)) < area(Ry)y
4q area(Ry) > qyHW — area(Ryp)y
4q area(Ry) > ~(¢gHW — area(Ry))
4 area(Ro) qgHW — area(Ry)

v q
If this is valid, it will not be possible to find subrectanglieensions so that (8) is true. Thus, in or-
der for all subrectangles to have area greater thea( R ) /-, we must have > area(Ry)y/(yHW —
4 area(Ry)). O

Theorem 6 Let R, be the rectangle having largest area in a list of rectangi#is kegal
area ratio wherey > 5. Remove a rectanglé/ x W where HW > barea(Ry)/~ for cut-
ting. By setting the area of subrectangleof a symmetric 5-wheel to berea(R,)/q, where
v > q > (area(Ry)y)/(yHW — 4area(Ry)), the dimensions of the remaining subrectangles
can be determined so that their areas are greater than drtecuea(R,)/~.

Proof. Suppose that the area of subrectangle chosen to béw = area (Ry)/q. We now
determine conditions for which subrectangles 0, 1, 2, andI®ave areas exceedingea (Ry) /7.
Note that if these conditions are satisfied, Lemma 16 can pkealto prove the desired result.

As before, the area of subrectanglemnd2 of the symmetric 5-wheel given in Table 1 is

H—h W+uw (H—h)(W +w)
2 2 4
HW + Hw — hW — hw

4
area(Ro) _area(Rp)

4
qhHW + Harea(Ry) — qgh?W — h area(R,)

4qh

Then this quantity is greater théﬁ’@ if and only if

—ah? —
V(qhHWJrHarea(ROthqh Wh arealfo)y > area(Ry)
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& yqghHW + yHarea(Ry) — vqgh*W — vh area(Ry) > 4qh area(Ry)
& 0> yqh®*W + vharea(Ry) + 4qh area(Ry) — ygh HW — yHarea(R,)
& 0 > vqh®*W + h(area(Ry)(y + 4q) — y¢HW') — yHarea(Ry)

The quadratic expression describes a concave-up parabolsewalue ak = 0 is negative and
whose axis of symmetry is positive:

_area(Ro) (v +4q) — ygHW

h pumy
2yqW

The quadratic expressions has roots

—(area(Ro)(y + 4q) — ygHW) + /(area(Ro) (v + 4q) — ygHW )2 + 42gHW area(Ry)

o= 2vgW
. —larea(Ro)(y +4g) —1gHW) — v/ (area(Ro) (y + 4q) — ygHW)? + 412qHW arca(R,)
, =
2vqW

and so, the area of subrectangles 0 and 2 will exé¢agd if and only ifro < h < ry.
Similarly, the area of subrectanglesind3 is

H+h W-w (H+h)(W —w)

2 2 4
_ HW — Hw+ hW — hw
B 4
area(Ro) area(Rp)
4
qhHW — Harea(Ry) + qh?W — h area(R,)

4qh

Then this quantity is greater tha#2 if and only if

— 2 -
7(qhHW Harea(R()i;th W—h area(RO)) > area(Ryp)

& yqghHW — yHarea(Ry) + vqh*W — ~vharea(Ry) > 4qh area(R,)
& yqh*W — yharea(Ry) — 4qharea(Ry) + yghHW — yHarea(Rgy) > 0
& yqh*W — h(area(Ro)(y + 4q) — v¢HW) — yHarea(Rg) > 0

The quadratic expression describes a concave-up paralhasewalue ab = 0 is negative
and whose axis of symmetry is negative:

_area(Ro)(y +4q) — yqgHW

h
2vqW
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The quadratic has roots

(area(Ro)(y + 4q) — ygHW) + \/(area(Ro)(y + 4q) — ygHW )2 + 42gHW area(Ry)
2yqW

(area(Ro)(7y + 4q) — ygHW) — \/(area(Ry)(y + 4q) — vgHW )2 + 4y2gHW area(Ry)
2vgW

and so, the inequality will be true if and only/if> s; andh < s, Thus, ifh is also chosen so that

S1 =

So =

ro < h <1y, then all four subrectangles will have area greater thamoaltoarea(R,)/~. Note
thats; = —r, ands, = —r; so the conditions can be combined ifte> s; andh < r;. O

E. Proofs for Section 3.2

Theorem 7Let R, be the rectangle having largest area in a list of rectangitslegal area ratio
wherey > 5. Remove a rectangld x W whereHW > barea(R,)/~ for cutting. Then, the only
way to divide the asymmetric 5-wheel into five subrectangtesh having are& 17/5, is to set
_ _ i _ pry/5-1 _ 2W
h = H/\5,w=W/+/5, as in Theorem 5, ang, = H S andb, = NS
Proof. The proof of this theorem first derives a system of equationshfe requirement that

all generated (asymmetric) subrectangles have Hié&'5. The system is then reduced to a single
polynomial which can be solved to define values fiow, b,, andb,,. We show that only one of
these roots corresponds to a practical choice of valuetiésetparameters.

First, consider the area of subrectangfeom Table 2:

(H_bh)bw - %

HW
LA ®
Next substitute the value af = HW/(5h) (from the area of subrectanglginto the equation

for subrectanglé:

bh(warw) = —H;/V
0 ) =
e s

Shbpbe + by HW = hHW
hHW — 5hbyby = by HW
h(HW = 5byb,) = byHW

by HW
h=——r—— 10
=T HW = 5bub, (10)
Substituting Equation (9) into (10) yields
by HW
h = HW—;bwg—%
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bp(H — by)
H — 2by,
Then equations (9) and (11) are substituted into the equédicsubrectangle:

= h= 11

HW
5

(H — (bn + h))(W —by)
(H _bh_ h)(W —by)
(H
1

by (H—by,)
h( ’)(W—%)

/5 (4H 5bh)H(ffb 3bp,)
H—20by,

(H? — 5Hby, + 5b,>)W
H — 2by,
The roots to this equation can be determined to be

—1 1
b= gL a Yot

25 2v/5

The second root does not represent practical divisionsefithx 1 rectangles. When, =

= —3/5 =0

H‘{\}l solving forh using equation (11) yields = —H/+/5 which is impractical. However, the
first root is a viable solution and corresponds to the symmBtwheel partition where subrectan-

gle 4 is centered within thél x 1V rectangle and = H//5, w = W/+/5. 0.

F. Proofs for Section 4

Theorem 8Let R, be the rectangle having the largest area in a list of reatanglth legal area
and aspect ratios. With > 5, remove a rectangl& x W whereHW > 5area(R,)/~ and

V541 <H/W<p(\/5—1)

p(V5—1) "~ IRVGE|

for cutting. Then a symmetric 5-wheel division of this rewke using: = H/+/5 andw = W/\/5
will produce a layout where all subrectangles have legatetspnd area ratios.

Proof. If the rectangle is subdivided symmetrically with= [ /+/5 andw = W/+/5, then the
area of all subrectangles i$1//5, and as before, all have legal area ratio from Theorem 5.

(3)

If equation 3 is satisfied, then because

V-1 V541 1v5+1 V5 —1
< and ————— <—< p
VE+1 V5—1 pPVE—1" W = /5+1
we have
lggﬁ—lgpadlggﬁﬂgp
p~ Wis+1 p- WV5-1
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The aspect ratio of subrectangle 4 will B&/W which is a legal aspect ratio by assumption.
Subrectangles 0 and 2 will have aspect ratio

H-h H-H/N6 HV5-1

W+w W+W//E W5+1
and subrectangles 1 and 3 will have aspect ratio

H+h H+H/V5 HV5+1
W—-w W-Ww//5 Wy{5-1

O

Theorem 9Let R, be the rectangle having largest area in a list of rectangittsanegal area
ratio wherey > 5. Remove a rectangld x W where HWW > barea(R,)/~ for cutting. Set the
area of subrectangleof a symmetric 5-wheel to beea(R,)/q, wherew satisfies:

area(Ro)y
v Z qZ yHW —4area(Ro)

4parea(Rop)
Y 24Z Growye

4parea(Rop)
Y 242 Lweme

Find the intersection of the following conditions fbr

(area(Ro)(y+4q)—yqHW)++/ (area(Ro) (v+4q) —yqHW))2+472qHW area(Ro)
2vqW
—(area(Ro)(y+4q)—ygHW )+ \/(area(Ro )(y+4q)—vqgHW))2+4vy2qHW area(Rg)
2vqW

h
h

A%

IN

and
area(Ro)
pq
(pH—W)—+/ (pH—W)2—2parea(Ro)/q

area(Ro)p
q
(pH—W)++/(pH—W)2—4parea(Ro)/q)
2p 2p
(pW —H)—+/ (pW — H)?—2parea(Ro) /q (pW —H)++/(pW —H)?—4parea(Ro) /q)
2 2
If this intersection exists, then select afrom within the overlap. The resulting symmetric parti-

IA
VAN

IA
IA

h
h
<h<

tioning of H x W will yield five subrectangles with legal area and aspecbsgati
Proof: The first two constraints for were developed in Theorem 6 for maintaining area ratios.
We impose three additional constraints which are obtaineckestricting the aspect ratios of the

five subrectangles in a symmetric 5-wheel partition so they have legal aspect ratios.
area(Rop)
q

wherey > ¢ > %%. This implies thaty = 2“2 The aspect ratio of subrectangle 4

As in Theorem 6, we select a value for the area of the centtakstangle 4 agw =

is . .
P < o =p

= < h <wp

- area}E Ro) < h < area(}}l%o)p
qnp - - q

= area(Ro) < h2 < area(Ro)p
qp - - q

= area(Rp) < B < area(Ro)p
qp - - q

a1
»



For subrectangles 0 and 2, the aspect ratio requirementiviaaul

i
>

% < W+w < P
Wit < H—h < p(W +w)
prarealfo)leh < H —h < p(W + area(Ro)/qh)
hW-i—are;:(Ro)/q < H-— h < phW-i— ar;\a(Ro)/q
p

From this we obtain two inequalities:
hW + area(Ro)/q < hp(H —h) and h(H — h) < p(hW + area(Ry)/q)
which simplify to

ph? — h(pH — W) + area(Ry)/q < 0 (12)
0 < h*+ h(pW — H) + p area(Ry)/q (13)

The quadratic irh on the left hand side of (12) has roots

(pH—W)++/(pH—W)2—4p area(Ro)/q
2p

_ (pH=W)—/(pH—W)2—4p area(Ro)/q
— N

and 79 =

1

both of which are positive becaus®& > W and, by assumptiofipH —W)?—4p area(Ry)/q > 0.
Similarly, the quadratic itk on the right hand side of (13) has roots

_ —(pW—H)++/(pW—H)2—4p area(Ro)/q

_ W)W H? g arealBo)/a g .

S1 — 3

both of which are negative becayd® > H and, by assumptiotiplV — H)?—4p area(R)/q > 0.
For subrectangles 1 and 3, the aspect ratio requirementivibaul

1 H+h
ot < Hth < p(W —w)
romeallollth < H+4h < p(W — area(Ry)/qh)
hW — area hW — area
w ph(RO)/q S H+h S p w - (Ro)/q

From this we obtain two inequalities:
hW — area(Ry)/q < hp(H + h) and h(H + h) < p(hW — area(Ry)/q)
which simplify to

ph* + h(pH — W) + area(Ry)/q > 0 (14)
0> h* — h(pW — H) + p area(Ry)/q (15)
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The quadratic ik on the left hand side of (14) has roots

b = CHW - OH Wt arealfal/a oy . ZOH- W)+ pH-W)—dp arealFo)/q

2p 2p

which are both negative becaysé > 1V and, by assumptiopH — W)? — 4p area(Ry)/q > 0.
Similarly, the quadratic irk on the right hand side of (15) has roots

_ (pW—H)—\/(pW—H)2—4p area(Ro)/q

_ (pW=H)++/(pW—H)2—4p area(Ro)/q
U1 D) =

2

and vy

which are both positive becaus®” > H and, by assumptioripW' — H)? — 4p area(R)/q > 0.

On inspection, we note that the quadratic expressions guiaéies of (12) and (14) describe
the same concave up parabola reflected orhthe0 axis. The range of valuesr; < h < ry will
satisfy both inequalities. Correspondingly, the sameus for the expressions in inequalities (13)
and (15). Hence, the range bvaluesy; < h < v, will satisfy both inequalities.

Combining these restrictions farwith those for rectangle 4 and the ranges needed to preserve
area ratios, we define a set/o¥alues which would yield a symmetric partition 8fx ¥ in which
all subrectangles would have legal aspect and area ratios.

Acknowledgements

The authors would like to thank Professors Ariela Sofer ategl®n Nash at George Mason Uni-
versity for their assistance and helpful suggestions ckggthe solution of the constraint inequal-
ities which appeared throughout this paper.

References

Chazelle, B. 1983. The Bottom-Left Bin-Packing Heuris#ia Efficient ImplementationlEEE
Transactions on Computers—32 (8)697—707.

Coffman Jr., E.G., M.R. Garey, D.S. Johnson. 1984. Apprexiom Algorithms for Bin Packing —
An Updated Survey. G. Ausiello, N. Lucertini, P. Serafinis eélgorithm Design for Computer
Systems Desigrspringer-Verlag, Vienna, 49-106.

Hopper, E., B. C. H. Turton. 2001. An empirical investigatiof meta-heuristic and heuristic
algorithms for a 2D packing problenturopean Journal of Operational Research28 (1)
34-57.

58



Jakobs, S. 1996. On Genetic Algorithms for the Packing oydrmis.European Journal of Oper-
ational Research88165-181.

Liu, D., H. Teng. 1999. An Improved BL-algorithm for Genetigorithm of the Orthogonal
Packing of Rectangle€uropean Journal of Operational Researdi2412-420.

Murata, H., E. S. Kuh. 1998. Sequence-pair based placemetitooh for hard/soft/pre-placed
modules.International Symposium on Physical Desig67-172.

Nakatake, S., H. Murata, K. Fujiyoushi. and Y. Kajitani. 59%®Rectangle-packing-based module
placementProceedings IEEE International Conference on ComputeleAdiDesign143-145.

SICUP — The Special Interest Group on Cutting and Packing.L:URp://prodlog.wiwi.uni-
halle.de/sicup/index.html.

Valenzuela, C.L., P.Y. Wang. 2001. Heuristics for LargepSRacking Problems with Guillotine
Patterns: an Empirical Study. Presented aMietaheuristics International Conference 2001
Porto, Portugal.

Wang, P.Y., C.L. Valenzuela”. 2001. Data set generationréatangular placement problems.
European Journal of Operational Researd34 (2)378-391",

Wang, T.-C., D.F. Wong. 1992. Optimal floorplan area optatian. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systdrh$8)992—1002.

Yu, Y.-L., W. Huang, S. Lau, C.K. Wong, G.H. Young. 2002. Arfégtive Quasi-Human Based
Heuristic for Solving the Rectangle Packing Problem. ToegppnEuropean Journal of Op-

erational Research

59



