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This work extends our previously reported algorithms that generate data sets containing rectangles

which can be optimally packed into rectangular regions using slicing layouts. The sizes and rela-

tive areas of the rectangles in the data sets can be controlled by the use of two input parameters.

The new procedures described in this paper enable researchers to control the generation of data

sets of rectangles which can be packed into rectangular regions using simplenon-slicinglayouts.

By incorporating both slicing and non-slicing layouts, a broader range of data sets may now be

generated. The characteristics of these data sets are specified by the user so that the data can be

used to benchmark any packing or layout heuristic designed to solve rectangular cutting stock,

bin-packing, or VLSI layout problems.

(Cutting stock, Packing, Analysis of Algorithms)

1. Introduction

In our previous work (Wang and Valenzuela 2001) we introduced and analyzed a technique that

can be used to generate a data set of rectangles which can be optimally packed into a single larger

rectangle. The user can specify values for two input parameters which control the shapes and

relative areas of the rectangles produced by the data generation process. More precisely, the two

input parameters specify:

• the maximum and minimum height/width ratios (i.e. theaspect ratios) of the pieces, and

• the ratio of the largest to the smallest piece (i.e. thearea ratio) of the data set.

1This work was partially supported by the NASA Goddard Space Flight Center (NAG–5–9781)
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Figure 1: Two slicing layouts

These data sets can then be used by researchers to evaluate new algorithms for solving cutting,

packing, or layout problems.

The data generation procedure is a recursive process which cuts the required number of rect-

angles from a larger rectangle by making a succession of horizontal and vertical edge–to–edge (or

guillotine) cuts. The resulting set of rectangles will satisfy the following: (1) if aspect ratioρ ≥ 2

is specified, then every rectangleRi = hi × wi will have the property that1/ρ ≤ hi/wi ≤ ρ and

(2) if area ratioγ ≥ 5 is specified, then the ratio of the areas of any two rectanglesRi andRj in

the data set will fall in the interval[1/γ, γ]

Using the procedure, data sets that have specific characteristics (e.g. all rectangles might be

tall and thin, or all rectangles must be “nearly” square) canbe generated inO(n2) time wheren

is the size of the data set. These rectangles can be packed into a larger rectangle with zero waste

using aslicing layout pattern– the individual rectangles of the data set can be obtained from the

larger rectangle by making edge-to-edge or guillotine cuts. Figure 1 illustrates slicing layouts for

two sets of 500 rectangles generated in (Wang and Valenzuela2001). The aspect and area ratios of

the rectangles in the left layout were not controlled. In contrast, the aspect ratios of all rectangles

in the right hand layout are in the range1/4.18 ≤ ρ ≤ 4.18 and the area ratio is less than 7.32 for

all this data.

The layout on the right in Figure 1 contains rectangles that were generated by AlgorithmIV

which is reproduced from (Wang and Valenzuela 2001) in Figure 2. A similar recursive process was

developed independently and used by (Hopper and Turton 2001). Algorithm IV, however, obtains

the desired number ofn rectangles by repeatedly slicing an input rectangle of height H and width

W at slicing cut positions that are dictated by the theoretical results proved in our previous paper.
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Algorithm IV: Controlling the Aspect and Area Ratio
Input the parametersn, {γ, ρ ≥ 2}, H, and thenW where2H/ρ ≤W ≤ ρH/2
while n rectangles not yet generated do

Let m be the area of the largest rectangle in the current set
Choose a rectangleR from all subrectangles whose areas are greater than2m/γ
If possible, randomly choose a vertical or horizontal slicing direction; otherwise

select the vertical or horizontal direction as appropriate(see (Wang and Valenzuela 2001))
Randomly choose a cutting position within the legal range ofslicing positions

(see (Wang and Valenzuela 2001))
Perform the cut onR, generating two subrectangles
ReplaceR in the list with the two subrectangles

endwhile

Figure 2: Previous Algorithm for Generating Slicing Data Sets

The reader is referred to it for a detailed description of thetheory and application of the data set

generation technique. The method was applied extensively to supply test problems for our work in

(Valenzuela and Wang 2001).

Much of the work on cutting, packing and placement which has been reported in the liter-

ature may utilize non-slicing or non-guillotine patterns (e.g. (Chazella 1983), (Coffman et al.

1984), (Hopper and Turton 2001), (Jakobs 1996), (Liu and Teng 1999), (Murata and Kuh 1998),

(Nakatake et al. 1995). The purpose of our present paper is togeneralize our techniques to produce

a wider range of data sets and thus extend their usefulness. Data sets which are generated by the

production of non-slicing patterns that are cut out of a large enclosing rectangle with zero waste

would provide ideal benchmarks.

In non-slicinglayouts, at least one rectangle in the layout cannot be obtained by making a series

of guillotine cuts. Two non-slicing layouts shown in Figure3 are reproduced from (Wu 2002) and

(Wang and Wong 1992). None of the interior rectangles can be obtained if only edge-to-edge cuts

are permitted. As we shall see, it will be possible to generate similar data sets of rectangles whose

aspect and area ratios are controlled and which can optimally be packed into a single rectangle

using a non-slicing layout. For the most part we shall restrict our study of non-slicing floorplans to

hierarchical floorplans of order 5 which can be obtained by recursively partitioning a rectangle into

either two smaller rectangles or into a5-wheel. 5-wheels are the simplest non-slicing floorplans

containing 5 smaller rectangles with a layout similar to Figure 4. A computer program which

produces non-slicing data sets based on wheels has been written by Hopper and Turton, and some

data sets produced using their program can be found at the SICUP web-site (SICUP).
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Figure 3: Two Non-slicing Layouts

In section 2, we examine constraints which need to be satisfied for generating data sets that

incorporate 5-wheels so that the aspect ratio of the rectangles in the set is bounded. In section 3,

we examine conditions needed for data set generation when area ratio is to be controlled. Section

4 describes a data generation algorithm that can generate hierarchical layouts where the aspect

and area ratios of the rectangles are controlled by the user.Section 5 discusses general conditions

which permit non-slicing data sets to be created, and section 6 summarizes the results and describes

ongoing research on this problem. The proofs of most of the lemmas, theorems, and corollaries

can be found in the Appendices of this paper.

2. Satisfying the Aspect Ratio Requirements

In this section, we determine conditions under which it willbe possible to generate a set of rectan-

gles having legal aspect ratioshi/wi that lie between1/ρ andρ whereρ ≥ 2 and which together,

can be optimally packed into a single rectangle using a non-slicing layout. We begin with a con-

struction process based on a single symmetric shape and showhow it can be generalized. In the

following discussion, a rectanglehi × wi is said to have alegalaspect ratio if1/ρ ≤ hi/wi ≤ ρ.

2.1 Generating Symmetric Non-Slicing Layouts

The simplest way in which to generate a non-slicing layout isto divide anH ×W rectangle into

five subrectangles using a5-wheellayout. For the purposes of discussion, we will analyze only

one orientation of the 5-wheel shown in Figure 4 in the subsequent discussion. Analogous results

can be derived for wheels obtained by reflecting this layout.

A data generation process based on the outline shown in Figure 2 will be utilized. A partial
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Figure 4: A Simple Symmetric 5-wheel Layout

list of rectangles with legal aspect ratios is maintained asin (Wang and Valenzuela 2001); initially

the list consists of a user specified rectangle. A member of the list is then selected randomly for

cutting. The resulting subrectangles are added to the current list, and the process is repeated until

n rectangles are obtained.

In this case, however, the selected rectangle may be dividedinto five subrectangles as shown

in Figure 4 instead of just two subrectangles as in the case ofslicing layouts. We denote the height

and width of the selected rectangle asH andW , respectively. If rectangle4 is centered within the

larger rectangle at pointA = (H/2, W/2) and if its size is given byh×w, then the dimensions of

the remaining rectangles can be obtained symmetrically as:

Table 1: Sizes of the symmetric 5-wheel subrectangles
Subrectangle Height Width

0 H−h
2

W+w
2

1 H+h
2

W−w
2

2 H−h
2

W+w
2

3 H+h
2

W−w
2

4 h w

In order to ensure that the five subrectangles resulting fromthis division of the originalH×W

rectangle all have legal aspect ratios, the choices forh andw are given by the following theorem.

Theorem 1 LetH ×W have a legal aspect ratio and denote the aspect ratio of subrectangle4 by

f . Selectf between1/ρ andρ. In order to guarantee that all five subrectangles of the symmetric

5-wheel will have legal aspect ratios,w must satisfy the following inequality

0 ≤ w ≤ min{ρW −H

ρ + f
,
ρH −W

ρf + 1
}.
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Figure 5: Sample Symmetric 5-wheel Layout

h can then be computed ash = fw.

Corollary 1 If H/W = ρ or H/W = 1/ρ, then the selectedH ×W rectangle cannot be cut into

a 5-wheel whose subrectangles have legal aspect ratios.

Example: An application of Theorem 1 is shown in Figure 5 where anH ×W = 200× 100

rectangle is partitioned two different ways forρ = 8. Aspect ratios of2 and 1
8
, respectively, are

used for the center subrectangle 4. The resulting layouts are symmetric and all subrectangles have

legal aspect ratios as illustrated.

The algorithm shown in Figure 6 can now used to construct a setof n rectangles. It recursively

cuts an input rectangle of sizeH × W into subrectangles by using either edge-to-edge cuts or

symmetric 5-wheel layouts while preserving the aspect ratios of the resulting subrectangles. This

algorithm utilizes the results proved in (Wang and Valenzuela 2001) regarding the generation of

rectangles with legal aspect ratios when subdividing a rectangle into only two subrectangles.

2.2 Conditions for Generating Asymmetric Non-Slicing Layouts

In the previous section, the interior subrectangle4 was required to be centered within the enclosing

5-wheel layout. This restriction can be removed to yield subrectangles having different dimensions.

A more flexible 5-wheel layout is shown in Figure 7 where the point B denotes the bottom-left

corner position of subrectangle4. This type of 5-wheel is referred to asasymmetric.

Defining the base pointB to have coordinates(bh, bw), we easily determine that the dimensions

of the remaining rectangles must be:
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Algorithm I: Controlling the Aspect Ratio With Symmetric 5- wheels
Input the parametersn, {ρ ≥ 2}, H, and thenW where2H/ρ ≤W ≤ ρH/2
while n rectangles not yet generated do

Choose a rectangleR at random
Randomly choose a type of cut: slicing or the 5-wheel (unlessmore thatn− 5 rectangles

have been generated orH/W = ρ or 1/ρ)
if the type of cut is a slicing cutthen

Randomly choose a vertical or horizontal slicing direction, if possible; otherwise
select the vertical or horizontal direction as appropriate(see (Wang and Valenzuela 2001))

Randomly choose a cutting position within the legal range ofslicing positions
(see (Wang and Valenzuela 2001))

Perform the cut onR, generating two subrectangles
ReplaceR in the list with the two subrectangles

else
Choose a value off between1/ρ andρ
Choose a value ofw as dictated by Theorem 1
Calculate the dimensions of the 5-wheel subrectangles
ReplaceR in the list with the five subrectangles

endif
endwhile

Figure 6: Generating Data Sets Containing Symmetric 5-wheels with Legal Aspect Ratios
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Figure 7: Asymmetric 5-wheel Layout
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Table 2: Sizes of the asymmetric 5-wheel subrectangles
Subrectangle Height Width

0 bh bw + w
1 bh + h W − (bw + w)
2 H − (bh + h) W − bw

3 H − bh bw

4 h w

As before, a set of conditions can now be developed which willbound the choices forw andbw

so that all five subrectangles will have legal aspect ratios when the initialH ×W rectangle has a

legal aspect ratio. Note that ifB is chosen so that rectangle4 is centered within the larger rectangle,

then the conditions for choosingw that were given in Theorem 1 can be applied. However, we now

seek to incorporate a larger range of possible layouts by permitting B to be any point inside the

larger rectangle.

First, consider the conditions that would be needed to ensure that each of the subrectangles of

the asymmetric 5-wheel shown in Figure 7 will have a legal aspect ratio. We shall examine each

subrectangle in turn and begin with subrectangle0 of the asymmetric 5-wheel.

Lemma 1 Subrectangle0 of the asymmetric 5-wheel will have a legal aspect ratio if the following

condition is satisfied:
bh

ρ
− bw ≤ w ≤ ρbh − bw

To develop the conditions necessary for the remaining subrectangles to have legal aspect ratios,

we first define a parameterf . As before, we denote the aspect ratio of theh×w subrectangle4 by

the variable

f = h/w or (h = fw).

Then subrectangle4 will have a legal aspect ratio by choosing1/ρ ≤ f ≤ ρ.

Lemma 2 Subrectangle1 of the asymmetric 5-wheel will have a legal aspect ratio if the following

condition is satisfied:
W − bw − ρbh

1 + fρ
≤ w ≤ ρW − ρbw − bh

f + ρ

Lemma 3 Subrectangle2 of the asymmetric 5-wheel will have a legal aspect ratio if the following

condition is satisfied:

H − bh − ρ(W − bw)

f
≤ w ≤

H − bh − 1
ρ
(W − bw)

f
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These first three lemmas provide necessary and sufficient conditions for subrectangles0, 1, 2,

and4 to have legal aspect ratios when1/ρ ≤ f ≤ ρ. Subrectangle3 of the asymmetric 5-wheel

will have a legal aspect ratio if the condition1/ρ ≤ (H − bh)/bw ≤ ρ is satisfied. We define

g = (H − bh)/bw

to represent the aspect ratio of subrectangle3.

By choosingf andg (the aspect ratios of subrectangles3 and4) so that1/ρ ≤ f, g ≤ ρ and

a pair of valuesbw andw which satisfy Lemmas 1, 2, and 3, an asymmetric division of the larger

H ×W rectangle into five subrectangles having legal aspect ratios will be obtained.

As we intend to develop an algorithm based on these conditions, we must show that they are

not mutually exclusive. Before we proceed, we substituteg = (H − bh)/bw into the bounds in

Lemmas 1, 2, and 3 to eliminate thebh variable.

Theorem 2 If a rectangleH ×W having a legal aspect ratio is to be divided into an asymmetric

5-wheel whose subrectangles also have legal aspect ratios,then the following conditions must first

be satisfied forbw, w, g, andf :

Subrectangle 0 condition : H−bw(g+ρ)
ρ

≤ w ≤ ρH − bw(ρg + 1)

Subrectangle 1 condition : (W−ρH)+bw(ρg−1)
1+fρ

≤ w ≤ (ρW−H)−bw(ρ−g)
f+ρ

Subrectangle 2 condition : bw(g+ρ)−ρW
f

≤ w ≤ bw(gρ+1)−W
fρ

Subrectangle 3 condition : 1/ρ ≤ g ≤ ρ

Subrectangle 4 condition : 1/ρ ≤ f ≤ ρ

Corollary 2 If H/W = ρ, it cannot be subdivided into five subrectangles that will have legal

aspect ratios.

2.3 Satisfying the Conditions for Asymmetric Layout

The next task is to prove that it is always possible to select values forbw, w, g, andf so that the

conditions of Theorem 2 are valid. We begin by defining a shorthand notation for these bounds.

Definition 1 Let the upper and lower bounds forw in the first three conditions of Theorem 2 be
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denoted as follows:

min0 = H−bw(g+ρ)
ρ

max0 = ρH − bw(ρg + 1)

min1 = (W−ρH)+bw(ρg−1)
1+fρ

max1 = (ρW−H)−bw(ρ−g)
f+ρ

min2 = bw(g+ρ)−ρW
f

max2 = bw(gρ+1)−W
fρ

It must now be shown that it is possible to select a pair of values forbw andw such that

min0 ≤ w ≤ max0,
min1 ≤ w ≤ max1, and
min2 ≤ w ≤ max2

for any choice off andg between1/ρ andρ. To do this, we examine the intersection of the six

regions of the plane defined byw ≥ min0, w ≤ max0, w ≥ min1, w ≤ max1, w ≥ min2,

andw ≤ max2. Some results that will be useful for showing that this intersection is nonempty

are presented in the following lemmas: e.g. determining thebw andw intercepts of the lines, the

points where each pair of lines intersect, the relative slopes of the lines, and the relative positions

of thebw intercepts.

Lemma 4 Thebw-intercepts andw-intercepts of the linesw = min0, w = min1, andw = min2,

w = max0, w = max1, andw = max2 are

Table 3: Intercepts of Boundary Conditions
Line w-intercept bw-intercept

w =min0 H
ρ

H
ρ+g

w =max0 ρH ρH
ρg+1

w =min1 W−ρH
1+fρ

ρH−W
ρg−1

w =max1 ρW−H
f+ρ

ρW−H
ρ−g

w =min2 −ρW
f

ρW
g+ρ

w =max2 −W
ρf

W
ρg+1

Lemma 5 The following properties can be shown easily:

(i) When rectangleH×W is assumed to have a legal aspect ratio, thenH ≤ ρW andW ≤ Hρ.

(ii) When1/ρ ≤ g ≤ ρ whereρ ≥ 2, it is also true thatgρ ≥ 1.

(iii) The w-intercepts ofw = min0, w = max0, w = max1 are positive

(iv) Thew-intercepts ofw = min1, w = min2, w = max2 are negative.

(v) Thebw-intercepts of all six lines are positive.

10



b w

b w

b w

b w

(a) (b)

(c) (d)

max0max2 min0 min2

max0max2min0 min2

max2min0 max0 min2

max2 max0 min2min0

Figure 8: Relative positions of thebw-intercepts ofw =min0, w =max0, w =min2, and
w =max2

Lemma 6 The relative positions of thebw-intercepts formin0, max0, min2, andmax2 satisfy:

(i) bw-intercept ofmin0 ≤ bw-intercept ofmax0

(ii) bw-intercept ofmax2 ≤ bw-intercept ofmin2

(iii) bw-intercept ofmin0 ≤ bw-intercept ofmin2

(iv) bw-intercept ofmax2 ≤ bw-intercept ofmax0.

This lemma implies that there are at most four possible positionings for the fourbw-intercepts.

These arrangements are illustrated in Figure 8. Note that ineach case, the inequalities derived in

Lemma 6 are valid and that there are no additional relative positionings for which they hold.

Lemmas 7 and 8 examine the points of intersections for pairs of lines as well as their relative

slopes.

Lemma 7 For respective pairs of lines, the intersections points canbe calculated:

(i) w =min0 andw =max0 intersect atbw = H/g andw = −H/g,

(ii) w =min1 andw =max1 intersect atbw = fW+H
f+g

andw = Wg−H
f+g

,

(iii) w =min2 andw =max2 intersect atbw = W andw = Wg/f .

Lemma 8 For each line, the slope and its sign are:

Table 4: Slopes of Boundary Conditions
w =min0 w =max0 w =min1 w =max1 w =min2 w =max2

slope −g+ρ
ρ

−(ρg + 1) ρg−1
1+fρ

− ρ−g
f+ρ

g+ρ
f

gρ+1
fρ

sign − − + − + +

Thus, the relative slopes of each pair of lines satisfies:

(i) w =max0 is steeper thanw =min0

11



pH

w = max 0

H/p

w = min 0

bw

−H/g

H/(p+g)
pH/(pg+1)

H/g

w

Figure 9: Feasible Region of Choices forw andbw: min0 ≤ w ≤ max0

(ii) w =min2 is steeper thanw =max2

(iii) w =min0 andw =max0 are steeper thanw =max1

(iv) w =min2 andw =max2 are steeper thanw =min1

These lemmas enable us to plot the lines associated withw = min0, w = max0, w = min1,

w = max1, w = min2, andw = max2 as a function ofbw. Recall that the goal is to selectbw and

w values which ensure that all subrectangles have legal aspect ratios. In particular, if subrectangle

0 is to have a legal aspect ratio, we need to ensure thatmin0 ≤ w ≤ max0 (as well asw > 0.)

Consider the plots of the linesw =min0 andw =max0 as shown in Figure 9. For a fixedbw in the

shaded region of the graph, any value ofw chosen betweenw =min0 andw =max0 will permit

subrectangle0 to have a legal aspect ratio.

Similarly, Figure 10 plots thew =min2 andw =max2 lines and illustrates the choices for

bw andw which will produce a subrectangle2 having a legal aspect ratio. It is also necessary to

examine the region defined bymin1 ≤ w ≤ max1, but first we note that Lemmas 6, 7, and 8 can

be used to prove that the regions shown in Figure 9 and 10 must intersect.

Theorem 3 The intersection of the regions defined bymin0 ≤ w ≤ max0 andmax2 ≤ w ≤
min2 is non-empty ifW < ρH. If W = ρH, the intersection is a single point(bw, w) = ( ρH

ρg+1
, 0).

Observation: The shape of the common region indicated by Theorem 3 will depend on the

relative positions of the overlappingbw-intercepts. It must also be examined in relation to the region
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Figure 10: Feasible Region of Choices forw andbw: min2 ≤ w ≤ max2

defined bymin1 ≤ w ≤ max1. The geometry of the region of intersection can be characterized

by the values ofH/W andg. In Figure 11, three configurations of the regionmin1 ≤ w ≤ max1

are shown depending on whetherH/g < W , H/g = W , or H/g > W .

In order to develop an algorithm that relies on dividing a rectangleH×W into five asymmetric

subrectangles with legal aspect ratios, it is necessary to determine some conditions under which

min1 ≤ w ≤ max1 intersects withmin0 ≤ w ≤ max0 andmin2 ≤ w ≤ max2. If this is

possible, then a pair of values forbw andw can be selected from the common region and then used

to determine the dimensions of all five subrectangles.

2.4 An Algorithm for Generating Asymmetric Layouts with Legal Aspect
Ratios

Consider the aspect ratio conditions for subrectangle1, i.e. the regionmin1 ≤ w ≤ max1 in

Figure 11. Since we are interested in the intersection of this region with those in Figures 9 and

10, we examine the simplest case whereH/g = W . This choice implies that the user has selected

an aspect ratio for subrectangle3 in Figure 7 identical to the aspect ratio of the rectangle being

subdivided. IfH/g = W , then the exact relationship between thebw-intercepts ofw = min0,

w = max0, w = min2, andw = max2 can be determined.

Lemma 9 If H/g = W , then Lemma 6 can be revised.

(i) If g ≥ 1, thebw-intercept ofw = min0 is greater than or equal to thebw-intercept ofw =

max2, and thebw-intercept ofw = max0 is greater than or equal to thebw-intercept ofw =

13



(a)H/g < W (b) H/g = W

(pH−W)/(pg−1) (fW + H)/(f+g)
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(c) H/g > W

Figure 11: Feasible Regions of Choices forw andbw: min1 ≤ w ≤ max1

14



H/p

pH

-W/(pf)

-pW/f

H/g

W

(pW-H)/(p-g)
(pH-W)/(pg-1)

min 0

max 0

min 2

max 2

W/(pg+1) pH/(pg+1)H/(p+g)

pW/(g+p)

w

bw

Figure 12: Overlap ofmin0 ≤ w ≤ max0 andmin2 ≤ w ≤ max2 whenH/g = W andg ≥ 1

min2. Thus, Figure 8(a) applies.

(ii) If g < 1, the bw-intercept ofw = min0 is less than or equal to thebw-intercept ofw =

max2, and thebw-intercept ofw = max0 is less than or equal to thebw-intercept ofw =

min2. Thus, Figure 8(b) applies.

Lemma 6 and Lemma 7 established that both pairs of lines (i.e.w =min0 andw =max0, and

w =min2 andw =max2) will intersect atbw = W . The case wheng ≥ 1 is given in Figure 12

while Figure 13 illustrates the situation wheng < 1. The shaded regions in these figures need now

be intersected with the region defined bymin1 ≤ w ≤ max1 for the case whereH/g = W . As

we shall see, this intersection can occur in two ways. To simplify the process for specifying this

common region, we first determine the intersections points of some lines shown in Figures 12 and

13.

Lemma 10 The linesw =min0 and w =max2 intersect at a pointA = (bw, w) wherebw =
fH+W

fg+fρ+gρ+1
andw = g(ρH−W )+(H−ρW )

ρ(gf+fρ+ρg+1)
.
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Figure 13: Overlap ofmin0 ≤ w ≤ max0 andmin2 ≤ w ≤ max2 whenH/g = W andg < 1
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Lemma 11 The linesw =max0 and w =min2 intersect at a pointB = (bw, w) wherebw =
ρ(fH+W )

fρg+f+g+ρ
andw = (ρH−W )+g(H−ρW )

ρgf+f+g+ρ
.

Lemma 12 The linesw =max0 and w =max2 intersect at a pointE = (bw, w) wherebw =
fρ2H+W

(fρ+1)(ρg+1)
andw = ρH−W

ρf+1
.

To create an asymmetric subdivision of aH ×W rectangle that has a legal aspect ratio, select

f , the aspect ratio for subrectangle4 andg, the aspect ratio of subrectangle3 so that1/ρ ≤ f ≤ ρ

andg = H/W . We must now determine conditions forbw andw so that subrectangles0, 1, and

2 will have legal aspect ratios. As we have seen, these conditions are defined by the intersection

of the shaded regions in Figure 12 and Figure 13 with the shaded region defined bymin1 ≤ w ≤
max1 in Figure 10(b). Thus, it is of interest to determine where the linew =max1 intersects the

shaded regions in Figure 12 and Figure 13. There are two casesto consider, depending on whether

g ≥ 1 or g < 1.

2.4.1 Case 1:g ≥ 1

Some possible positions for the linew =max1 are shown as dotted lines in Figure 14 which

magnifies the shaded region shown in Figure 12. From Lemma 8, the slopes of linesw = min0 and

w = max0 are both steeper than the slope of the linew = max1 so these are the only intersection

combinations that can occur. That is,w =max1 cannot intersect bothw =min2 andw =max 0;

similarly, it cannot intersect bothw =min0 andw =max2. It may also not intersect any of the

lines.

Lemma 13 The linew =max1may intersect the common region in one of the following scenarios:

S1: w =max1 intersects the line segmentsAC andBD at pointsA1 andB1

S2: w =max1 intersects the line segmentsAC andBE at pointsA1 andB2

S3: w =max1 intersects the line segmentsAE andBD at pointsA2 andB1

S4: w =max1 intersects the line segmentsAE andBE at pointsA2 andB2

S5: w =max1 lies above the region outlined by the points CAEBDC

where thebw values of the pointsA1, A2, B1, and B2 are, respectively,bw = (ρW−H)ρ−H(f+ρ)
(ρ−g)ρ−(g+ρ)(f+ρ)

,

bw = fρ(ρW−H)+W (f+ρ)
(gρ+1)(f+ρ)+(ρ−g)fρ

, bw = f(ρW−H)+ρW (f+ρ)
(g+ρ)(f+ρ)+f(ρ−g)

, andbw = (ρW−H)−(f+ρ)ρH
(ρ−g)−(f+ρ)(ρg+1)

.
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2.4.2 Case 2:g < 1

The region of intersection for all three pairs of lines can befound for the case ofg < 1 by using

similar arguments. Figure 15 shows the intersection of the regionsmin0 ≤ w ≤ max0 andmin2

≤ w ≤ max2 from Figure 13 with the linew =max0. In this case, there are two possible scenarios

described in the lemma below.

Lemma 14 The linew =max1may intersect the common region in one of the following scenarios:

S6: w =max1 intersects the line segmentsFE andGE at pointsA2 andB2

S7: w =max1 lies above the region outlined by the points FEGF

where, as before, thebw values of the pointsA2 and B2 are bw = fρ(ρW−H)+W (f+ρ)
(gρ+1)(f+ρ)+(ρ−g)fρ

and bw =
(ρW−H)−(f+ρ)ρH
(ρ−g)−(f+ρ)(ρg+1)

.

The seven scenarios of these lemma identify the coordinate points of the vertices of the region

defined by the intersection of the inequalitiesmin0 ≤ w ≤ max0, min1 ≤ w ≤ max1, and

min2 ≤ w ≤ max2. By selecting a point(bw, w) in the region, the initialH ×W rectangle can

be subdivided into five smaller rectangles having legal aspect ratios. Each of these, in turn, can be

subdivided by the same process (or just sliced into two partsat appropriate positions as analyzed

in (Wang and Valenzuela 2001). Thus, we have established thefollowing result.

Theorem 4 LetH ×W be a rectangle with a legal aspect ratiog 6= ρ, 1/ρ. If f is chosen so that

1/ρ ≤ f ≤ ρ, then it is possible to choose values forbw andw so that all five subrectangles of an

asymmetric 5-wheel division ofH ×W will have legal aspect ratios.

Corollary 3 If H/g = W andg ≥ 1, the feasible values of(bw, w) reside in one of the regions

defined by the vertices:
Scenario Vertices

S1 CA1B1DC
S2 CA1B2BDC
S3 CAA2B1DC
S4 CAA2B2BDC
S5 CAEBC

Corollary 4 If H/g = W andg < 1, the feasible values of(bw, w) reside in one of the regions

defined by the vertices:
Scenario Vertices

S6 FA2B2GF
S7 FEGF
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Figure 16: Sample Asymmetric Wheel Layout

Example: An application of Theorem 4 and Corollary 3 is illustrated byFigure 16. The aspect

ratioρ = 8 and anH×W = 200× 100 rectangle is to be partitioned by selectingh/w = f = 1/4

and settingg = H/W = 2 for the aspect ratios of rectangles 4 and 3, respectively. The resulting

region from which a suitable(bw, w) value can be chosen is shown in Figure 16(a) where the corner

points areC = (20.0, 0), A = (7.69, 15.38), A2 = (13.30, ), B1 = (80.34, ), andD = (80.0, 0).

Figure 16(b) shows a partition of the rectangle when the values(bw, w) = (20, 32) are selected.

All resulting subrectangles have legal aspect ratios between 1
8

and 8.

This approach can be used to develop an algorithm that generates data sets containing rect-

angles that form asymmetric 5-wheels. The pseudo-code is given in Figure 17. We note that

the computation involves the determination of the feasibleregion of(bw, w) choices and that the

division will always set the aspect ratio of subrectangle 3 to be the same as the rectangle being

partitioned.

2.5 Determining the Feasible Region ofbw andw Choices for an Asymmetric
Layout when g 6= H/W

It would be desirable to have a similar generalized result sothatg, the aspect ratio of subrectangle 3

could be selected irrespective of the aspect ratio of theH×W rectangle being subdivided in Algo-

rithm II. Unfortunately, this necessitates a more complicated analysis to determine the intersection

of the three regions of interest.

Recall that the overlap of the regions defined by the intersection of min0 ≤ w ≤ max0 and

min2 ≤ w ≤ max2 with each of the regions formin1 ≤ w ≤ max1 whereH/g < W and
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Algorithm II: Controlling the Aspect Ratio With Asymmetric 5-wheels
Input the parametersn, {ρ ≥ 2}, H, and thenW where2H/ρ ≤W ≤ ρH/2
while n− 5 rectangles not yet generated do

Choose a rectangleR at random
Randomly choose a type of cut: slicing or the 5-wheel (unlessmore thatn− 5 rectangles

have been generated orheight(H)/height(W ) = ρ or 1/ρ)
if the type of cut is a slicing cut then

Randomly choose a vertical or horizontal slicing direction, if possible; otherwise,
select the vertical or horizontal direction as appropriate(see (Wang and Valenzuela 2001))

Randomly choose a cutting position within the legal range ofslicing positions
(see (Wang and Valenzuela 2001))

Perform the cut onR, generating two subrectangles
ReplaceR in the list with the two subrectangles

else
Let g ← height(R)/width(R)
Choose a value off between1/ρ andρ
if g ≥ 1 then

Determine which scenario of Corollary 3 applies and
choose appropriate values forbw andw randomly

else{g < 1}
Determine which scenario of Corollary 4 applies and

choose appropriate values forbw andw randomly
endif
Calculate the dimensions of the asymmetric 5-wheel subrectangles
ReplaceR in the list with the five subrectangles

endif
endwhile

Figure 17: Generating Data Sets Containing Asymmetric 5-wheels with Legal Aspect Ratios
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H/g > W would need to be determined. A detailed analysis based on ourapproach in section 2.4

might be performed. By inspection, however, we note that it may be possible for the intersection

of all three regions to be empty. We believe that quantifyingthe conditions which would ensure

that the overlap is non-empty will be a non-trivial task.

An alternative approach for solving the problem would be to utilize a numerical procedure to

calculate the intersections of the regions: the six inequalities of interest

H−bw(g+ρ)
ρ

≤ w ≤ ρH − bw(ρg + 1)
(W−ρH)+bw(ρg−1)

1+fρ
≤ w ≤ (ρW−H)−bw(ρ−g)

f+ρ
bw(g+ρ)−ρW

f
≤ w ≤ bw(gρ+1)−W

fρ

could be reformulated as equalities using slack variables,and the application of a procedure similar

to that used in linear programming to determine a basis for the system of equations would provide

the coordinates of the vertices for the region of intersection (if it exists). Thebw andw values of the

basis vectors would provide the corner vertices. Once theseare determined, the feasible region of

choices would be defined by these vertices so any point insidethem could be chosen, thus defining

a division of the asymmetric 5-wheel into five subrectangleswith legal aspect ratios.

3. Satisfying the Area Ratio Requirements

When generating data sets of slicing rectangles in (Wang andValenzuela 2001), the user was able

to specify values for a parameterγ which defined the bounds for the maximum and minimum

allowable ratios of the areas of any two rectangles in the data set. In this section, we explore the

possibility of using a similar technique to generate data sets of rectangles that can be placed into a

larger rectangle with zero waste.

As before, the procedure for generating the data is built upon the recursive process of dividing a

selectedH×W rectangle into smaller rectangles so that all pairs of resulting rectangles have legal

area ratios between1
γ

andγ. The simplest way to guarantee the legality of the final data set is to

require that a subdivision of a rectangle into a 5-wheel arrangement be such that the five resulting

subrectangles along with the current set of other generatedrectangles all have legal area ratios.

We first examine the simpler case where the symmetric 5-wheelis to be subdivided and show

that it is possible to preserve area ratios when partitioning a rectangle. This analysis provides some

insight for dealing with the asymmetric case.
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3.1 Using the Symmetric Wheel Layout

Consider a selected rectangle of sizeH × W and assume that all rectangles which have been

generated so far have legal area ratios. In particular,

1
γ
≤ HW

area(Rj)
≤ γ 1

γ
≤ area(Rj)

HW
≤ γ, and 1

γ
≤ area(Rk)

area(Rl)
≤ γ

for all rectanglesRj , Rk, andRl in the currently generated data set.

The goal is to divide theRi = H ×W rectangle into the five subrectangles{0,1,2,3,4} of the

symmetric 5-wheel layout (Figure 4) so that the area ratio property is preserved for the augmented

data set, i.e. so that

1

γ
≤ area(i)

area(Rj)
≤ γ (1)

1

γ
≤ area(k)

area(i)
≤ γ (2)

for all rectanglesRj in the generated data set and the subrectangles0 ≤ {i,k} ≤ 4.

A rectangleRi = H × W can always be selected so thatHW ≥ 5area(R0)/γ whenR0

is the rectangle of the currently generated list with the maximum area andγ ≥ 5. There are

two basic ways to partitionH × W so that the inequalities (1) and (2) are satisfied. The first

partitioning method divides theH×W so that the area of each subrectangle equalsHW/5. It will

follow that the resulting subrectangles satisfy inequalities (1) and (2). An alternative approach is

to divideH ×W into subrectangles with areas that are greater than or equalto area(R0)/γ. This

second method attempts to provide more flexibility to createfive symmetric subrectangles with

non-identical areas. These two approaches are discussed below.

3.1.1 Identical Area Subdivision

Lemma 15 Let Ri = H ×W be a rectangle whose area exceeds5area(R0)/γ whereR0 is the

rectangle of the currently generated list which has the maximum area andγ ≥ 5. If Ri is divided

into symmetric 5-wheel subrectangles each with area equal to HW/5, then the subrectangles have

legal area ratios.

Suppose a rectangle has been selected as part of the data generation process and that this rect-

angle is to be divided into a symmetric 5-wheel so that area ratios are preserved. A division of this

rectangle can be performed which will create five subrectangles with identical areas; the list of all

rectangles generated thus far will have legal area ratios.
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Figure 18: Sample Symmetric Layout with Identical Subrectangle Areas

Theorem 5 Let R0 be the rectangle having largest area in a list of rectangles with legal area

ratios andγ ≥ 5. Remove a rectangleH × W whereHW ≥ 5area(R0)/γ for cutting. Then,

a symmetric 5-wheel division of this rectangle usingh = H/
√

5 and w = W/
√

5 will produce

five subrectangles, each having areaHW/5. If these rectangles are added to the original list of

rectangles, then they will all have legal area ratios.

Example: An application of this theorem is shown in Figure 18. Assuming that area(R0) =

30, 000 andγ = 10, theH ×W = 200 × 100 rectangle is easily partitioned into five symmetric

subrectangles having identical areas.

3.1.2 Non-Identical Area Subdivision

Lemma 16 If we pickRi = H ×W to be a rectangle whose area exceeds5area(R0)/γ, γ ≥ 5,

and divideRi into five subrectangles i for whicharea(i) ≥ area(R0)/γ, then the subrectangles

will have legal area ratios.

Lemma 17 Suppose we pickRi = H ×W to be a rectangle whose area exceeds5area(R0)/γ,

γ ≥ 5, and we sethw = area(R0)/q where

γ area(R0)

γHW − 4area(R0)
≤ q ≤ γ.

Then the five subrectangles will each have area greater than or equal toarea(R0)/γ.

Theorem 6 Let R0 be the rectangle having largest area in a list of rectangles with a legal area

ratio whereγ ≥ 5. Remove a rectangleH × W whereHW ≥ 5area(R0)/γ for cutting. By
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setting the area of subrectangle4 of a symmetric 5-wheel to bearea(R0)/q, whereγ ≥ q ≥
(area(R0)γ)/(γHW − 4area(R0)), the dimensions of the remaining subrectangles can be deter-

mined so that their areas are greater than or equal toarea(R0)/γ.

Corollary 5 If we sethw = area(R0)/q, thenh must be chosen so that

h ≥ (area(R0)(γ+4q)−γqHW )+
√

(area(R0)(γ+4q)−γqHW )2+4γ2qHWarea(R0)

2γqW

h ≤ −(area(R0)(γ+4q)−γqHW )+
√

(area(R0)(γ+4q)−γqHW )2+4γ2qHWarea(R0)

2γqW

Example: The rectangleH × W = 200 × 100 is partitioned into symmetric subrectangles

with non-identical areas in Figure 19. Here,R0 = 30, 000, γ = 10 andq = 4 is chosen so that

hw = area(R0)
q

= 7500 for subrectangle 4. Note

γarea(R0)
γHW−4area(R0)

≤ q ≤ γ

⇒ 3.75 ≤ q ≤ 10

In this case, Corollary5 indicates that the range of appropriateh values which can used to yield

subrectangles with areas greater than or equal toR0

γ
is 120 ≤ h ≤ 125.

We can now specify an algorithm that will generate data sets containing symmetric 5-wheels

that satisfy the area ratio property based on Theorems 5, 6, and Corollary 5. The pseudo-code is

given in Figure 20.

3.2 The Asymmetric Wheel Layout

The previous section determined conditions under which it is possible to preserve the area ratio

requirements when a rectangle is subdivided into a symmetric 5-wheel. In this section, we inves-

tigate if similar conditions can be found for generating asymmetric subrectangles which preserve
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Algorithm III: Controlling the Area Ratio With Symmetric 5- wheels
Input the parametersn, {ρ ≥ 2, γ ≥ 5}, H, and thenW where2H/ρ ≤W ≤ ρH/2
while n rectangles not yet generated do

R0 ← rectangle with maximum area in the current list
Randomly choose a type of cut: slicing or the 5-wheel (unlessmore thatn− 5 rectangles

have been generated)
if the type of cut is a slicing cutthen

Choose a rectangleR at random such thatarea(R) ≥ 2area(R0)/γ
Perform an appropriate slicing cut onR (see (Wang and Valenzuela 2001))
ReplaceR in the list with the two subrectangles

else{5-wheel}
Choose a rectangleR at random such thatarea(R) ≥ 5area(R0)/γ
if identical areas are desiredthen

Use Theorem 5 to divideR into five subrectangles
else

Use Theorem 6 and Corollary 5 to divideR into five subrectangles
endif
ReplaceR in the list with the five subrectangles

endif
endwhile

Figure 20: Generating Data Sets Containing Symmetric 5-wheels with Legal Area Ratios

the area ratio property. As before, we consider two possiblepartitioning methods: dividing the

rectangle into identical area subrectangles as opposed to non-identical area subrectangles.

3.2.1 Identical Area Subdivision

Recall that the dimensions of the five subrectangles of an asymmetric 5-wheel were given in Table 2

and assume that the area of every such subrectangle isHW/5. By solving the equations for the

areas of the subrectangles, it can be shown that there is onlyone practical way in which to divide

the rectangles to meet the equal area requirement.

Theorem 7 LetR0 be the rectangle having largest area in a list of rectangles with legal area ratios

whereγ ≥ 5. Remove a rectangleH ×W whereHW ≥ 5area(R0)/γ for cutting. Then, the only

way to divide the asymmetric 5-wheel into five subrectangles, each having areaHW/5, is to set

h = H/
√

5, w = W/
√

5, (as in Theorem 5) andbh = H
√

5−1
2
√

5
andbw = W 2

√

5(
√

5+1)
.

3.2.2 Non-Identical Area Subdivision

The requirements for dividing an asymmetric rectangle intofive subrectangles with areas greater

than or equal toarea(R0)
γ

are more difficult to determine due to the fact that the base point coordi-
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natesbh andbw for subrectangle 4 must be determined along with its height and width. A set of

conditions can be written which need to be satisfied to obtaina non-identical area subdivision of

anH ×W rectangle into an asymmetric 5-wheel. The six area conditions are:

Basics : 0 < h, bh, < H and 0 < w, bw, < W
0 < h + bh < H and 0 < w + bw < W

Subrectangle 0 : bh(bw + w) ≥ area(R0)
γ

Subrectangle 1 : (bh + h)(W − (bw + w)) ≥ area(R0)
γ

Subrectangle 2 : (H − (bh + h))(W − bw) ≥ area(R0)
γ

Subrectangle 3 : (H − bh)bw ≥ area(R0)
γ

which must be satisfied bybh, bw, h, andw.

For fixedh andw values, the basic constraints clearly dictate that

BAS :0 < bh < H − h and B1 : 0 < bw < W − w.

The remaining area conditions can be characterized by viewing each constraint as a graph plotted

using the(bw, bh) coordinate system. The challenge is then to determine if a region of intersection

for all four conditions exists and what this region looks like if it does exist. We begin with four

lemmas characterizing the graph of each condition.

Lemma 18 The constraint for subrectangle 0 describes the region above the hyperbola

C0 :bh(bw + w) =
area(R0)

γ

as plotted in the(bw, bh) plane. The hyperbola has axes of symmetrybw = −w andbh = 0.

Lemma 19 The constraint for subrectangle 2 describes the region below the hyperbola

C2 :(H − (bh + h))(W − bw) =
area(R0)

γ

as plotted in the(bw, bh) plane. The hyperbola has axes of symmetrybw = W andbh = H − h.

Lemma 20 The constraint for subrectangle 1 describes the region to the left of the hyperbola

C1 :(bh + h)(W − (bw + w)) =
area(R0)

γ

as plotted in the(bw, bh) plane. The hyperbola has axes of symmetrybw = W − w andbh = −h.
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Lemma 21 The constraint for subrectangle 3 describes the region to the right of the hyperbola

C3 :(H − bh)bw =
area(R0)

γ

as plotted in the(bw, bh) plane. The hyperbola has axes of symmetrybw = 0 andbh = H.

To proceed, we employ the approach taken in the previous section for symmetric 5-wheels and

first pick q so that area(R0)γ
γHW−4area(R0)

≤ q ≤ γ. This determines a range forh (andw) in Theorem 6

so thathw = area(R0)/q and all five symmetric subrectangles have area ratios greater than or

equal toR0/γ. The choices forh andw are, of course, additionally restricted by theH andW

dimensions of the rectangle being subdivided.

We believe that by using this range of choices forh from Theorem 6, it will be possible to

selectbw andbh values so that all area constraints are satisfied when we partition into asymmetric

subrectangles with non-identical areas.

Conjecture 1 If the value ofh (andw) is selected within the range ofh values given in Theorem 6,

then the regions defined by the constraints B0, B1, and C0 – C3 will intersect. Any point(bw, bh)

in the intersection region will then yield an asymmetric division of anH ×W rectangle so that all

subrectangle areas are greater than or equal toarea(R0)/γ.

Consider the situation from the previous example whereH ×W = 200 × 100, area(R0) =

30, 000, γ = 10, andq = 4 was selected. From before, the range of(h, w) values defined by

Theorem 6 which will partition the rectangle symmetricallyinto subrectangles with non-identical

areas was120 ≤ h ≤ 125, and correspondingly60 ≤ w ≤ 62.5.

For the asymmetric case, we examine the graphs of the linesC0 – C3 with bh plotted as a

function ofbw for increasing fixed values ofw from w = 55 to w = 65. Figure 21 plots the four

constraints (i.e. hyperbolas) for the values ofw = 55, 60, 62, 62.5, 63, and 65.

For thew values between 60 and 62.5 (i.e. thosew correspondingly given by Theorem 6 there

exists a region of intersection for the four subregions defined in the above lemmas. For the other

values ofw, there is no common intersection. In particular, for Figures 21(a,b,c,d), the subregion

to the left ofC1 intersects with the subregion to the right ofC3. However, the subregion belowC2

does not intersect with the subregion aboveC0 in Figure 21(a). These subregions do intersect in

Figure 21(e,f), but the subregion to the left ofC1 does not intersect with the subregion to the right

of C3. The intersection of all four subregions exists in Figures 21(b,c,d).

Using the scenario shown in Figure 21(d) wherew = 40 and correspondinglyh = 120.968,

a point in the intersection region can be selected for the base point in the asymmetric layout, e.g.

(bw, bh) = (19, 40) yielding the arrangement show in Figure 22.
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Figure 21: Asymmetric Layout Constraints for Non-Identical Areas

29



75
00

/6
2 

  1
20

.9
68

≅

1981

40
16

0
160.968

39.032

19 81

3058.392
30

40

3240

3161.592

62

7500

Figure 22: Sample Asymmetric Layout with Non-Identical Subrectangle Areas

4. Controlling Aspect and Area Ratios

Our goal is to develop an algorithm that generates data sets of rectangles which form a non-slicing

layout when reassembled. Data sets are more effective as benchmarks when both the aspect ratio

and area ratio of the rectangles can be controlled by the user. In the case of slicing layouts (Wang

and Valenzuela 2001), the conditions under which aspect ratios were controllable could be directly

combined with conditions under which area ratios were controllable so that the data generation

algorithm shown in Figure 2 could be designed.

The same approach could be employed here, although it would require a substantial computa-

tional effort to determine some exact conditions that forcethe regions of intersection described in

section 2 to be consistent with those controlling area ratios in section 3. Consider, for example,

the situation described in section 2.5 where an asymmetric layout of subrectangles is desired– it

is necessary to determine if a region of intersection existsand what the corner points of that re-

gion, if it exists, would be. It is not obvious that the intersection region would be consistent with

w, h, bw, bh values solving the inequalities in section 3.2.2.

In spite of these difficulties, it is still possible to propose some simpler algorithms for gener-

ating non-slicing layouts where both aspect ratio and area ratios are controlled. We discuss two

possible methods below, both of which partition rectanglesinto symmetric 5-wheels.
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4.1 Identical Area Subdivision

Theorem 8 Let R0 be the rectangle having the largest area in a list of rectangles with legal area

and aspect ratios. Withγ ≥ 5, remove a rectangleH ×W whereHW ≥ 5area(R0)/γ and
√

5 + 1

ρ(
√

5− 1)
≤ H/W ≤ ρ(

√
5− 1)√
5 + 1

(3)

for cutting. Then a symmetric 5-wheel division of this rectangle usingh = H/
√

5 andw = W/
√

5

will produce a layout where all subrectangles have legal aspect and area ratios.

This approach is an extension of the process where a rectangle was divided into subrectangles

having identical areas, i.e. HW/5 in Theorem 5 so that the resulting area ratios are legal. If it is

also true that a rectangleH ×W can be found in the list which satisfies the additional constraint

of (3), then its partition will also preserve aspect ratios.

4.2 Non-Identical Area Subdivision

Using a similar approach, we investigate the possibility ofextending Theorem 6 and Corollary 5

which specified how symmetric layouts of subrectangles withnon-identical (legal) areas could be

obtained. Since it is of interest to preserve the aspect ratio property as well, we see that if certain

additional conditions can be satisfied, then it will be possible to obtain a 5-wheel partition where

all the subrectangles have legal aspect and area ratios.

Theorem 9 Let R0 be the rectangle having largest area in a list of rectangles with a legal area

ratio whereγ ≥ 5. Remove a rectangleH ×W whereHW ≥ 5 area(R0)/γ for cutting. Set the

area of subrectangle4 of a symmetric 5-wheel to bearea(R0)/q, wherew satisfies:

γ ≥ q ≥ area(R0)γ
γHW−4area(R0)

γ ≥ q ≥ 4ρ area(R0)
(ρH−W )2

γ ≥ q ≥ 4ρ area(R0)
(ρW−H)2

Find the intersection of the following conditions forh:

h ≥ (area(R0)(γ+4q)−γqHW )+
√

(area(R0)(γ+4q)−γqHW )2+4γ2qHWarea(R0)

2γqW

h ≤ −(area(R0)(γ+4q)−γqHW )+
√

(area(R0)(γ+4q)−γqHW )2+4γ2qHWarea(R0)

2γqW

and
√

area(R0)
ρq

≤ h ≤
√

area(R0)ρ
q

(ρH−W )−
√

(ρH−W )2−2ρarea(R0)/q

2ρ
≤ h ≤ (ρH−W )+

√
(ρH−W )2−4ρarea(R0)/q)

2ρ

(ρW−H)−
√

(ρW−H)2−2ρarea(R0)/q

2
≤ h ≤ (ρW−H)+

√
(ρW−H)2−4ρarea(R0)/q)

2
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Figure 23: Sample Symmetric Layouts Legal Aspect and Area Ratios (ρ = 4, γ = 20

If this intersection exists, then select anh from within the overlap. The resulting symmetric parti-

tioning ofH ×W will yield five subrectangles with legal area and aspect ratios.

Example: Suppose that anH × W = 200 × 100 rectangle is to be partitioned so that the

resulting subrectangles have legal aspect and area ratios of ρ = 4 andγ = 20 respectively, and that

this rectangle was chosen for partitioning because its areaexceeds5 area(R0)/γ with area(R0) =

30, 000. We note that a value ofq = 15 will satisfy the specified constraints (20 ≥ q ≥ 2.143,

20 ≥ q ≥ 0.98, and20 ≥ q ≥ 12).

The area of subrectangle 4 will then behw = R0

q
= 30000/15 = 2000. The possible values

for h are 55.279 ≤ h ≤ 89.443. We can selecth = 80 or h = 60 and obtain the layouts

shown in Figure 23. The aspect ratio of the subrectangles (shown in the lower left corners) are

legal, i.e. between .25 and 4. The area of each rectangle exceedsR0/γ = 1500. Thus, either

set of subrectangles can be added to the currently generatedlist of rectangles and can be further

partitioned into subrectangles with legal aspect and area partitions.

We can now formulate a fourth algorithm shown in Figure 24 that combines both area and

aspect ratio using Theorems 8 and 9. Note that if it is not possible to partition a chosen rectangle

into legal subrectangles using the symmetric 5-wheel, thena slicing cut can be used. The latter can

always be applied (see (Wang and Valenzuela 2001)).
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Algorithm IV: Controlling the Aspect and Area Ratio With Sym metric 5-wheels
Input the parametersn, {ρ ≥ 2, γ ≥ 5}, H, and thenW where2H/ρ ≤W ≤ ρH/2
while n rectangles not yet generated do

R0 ← rectangle with maximum area in the current list
Randomly choose a type of cut: slicing or the 5-wheel (unlessmore thatn− 5 rectangles

have been generated)
if the type of cut is a slicing cutthen

Choose a rectangleR at random such thatarea(R) ≥ 2area(R0)/γ
Perform an appropriate slicing cut onR (see (Wang and Valenzuela 2001))
ReplaceR in the list with the two subrectangles

else{5-wheel}
if identical areas are desiredthen

try using Theorem 8 to divideR into five subrectangles
else

try using Theorem 9 to divideR into five subrectangles
endif
ReplaceR in the list with the five subrectangles if they could be generated;

if not, perform a slicing cut on a randomly selectedR (see (Wang and Valenzuela 2001))
endif

endwhile

Figure 24: Generating Data Sets Containing Symmetric 5-wheels with Legal Aspect and Area
Ratios
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5. Generalizing the Wheel

The results we have obtained make it possible to design algorithms that generate sets of rectangles

whose aspect and area ratios are controlled, and which collectively combine into a single larger

rectangle with zero waste using a hierarchical layout. The 5-wheel is a basic non-slicing layout

which can be used for partitioning rectangles into smaller ones during the data set generation

process. However, the 5-wheel is somewhat restrictive in terms of the types of patterns that will

be generated. On the other hand, as we have seen, it has been a non-trivial task to determine the

conditions under which the partitioning will yield subrectangles with legal aspect and area ratios

when the 5-wheel layout is utilized.

Other methods can be proposed for generating non-slicing layouts. By definition, a non-slicing

layout contains rectangles that cannot be obtained by making a series of edge-to-edge cuts. The

reason that the wheel layout is non-slicing is because the horizontal lines defining the top edge of

rectangle1 and the bottom edge of rectangle3 cannot be extended to the edges of the enclosing

rectangle because of the placement of rectangles0 and2.

Figure 25(a) summarizes this property. The three rectangles A, B, andC form the core of a

non-slicing layout if the lines of the rectangles are not continued to the outer edges of the enclosing

layout. Thus, if the rectangles in the final layout donot contain the line segments shown in Fig-

ures 25(b,c), then the layout will be non-slicing. The region surrounding the core rectangles can

be divided into many different types of subrectangles none of which border the complete dashed

line segments of Figures 25(b) or (c).

5.1 Extending the 5-wheel

In light of these observations, the subrectangles in the basic 5-wheel can be extended so that these

dashed segments do not appear in a final partition of the larger rectangle. One popular layout is ob-

tained by stretching two opposing rectangles either horizontally or vertically. An illustration of this

distorted wheel is shown in Figure 26(a). A larger non-slicing layout is obtained by successively

adding pairs of rectangles to create a pin-wheel or log-cabin quilt arrangement shown in Figure 26.

This extended-wheel arrangement has been used for VLSI layout studies of hierarchical floorplans

in (Wang and Wong 1992).
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Figure 25: A Recursive-wheel Layout

Figure 26: A Pin-wheel Layout

5.2 L-shapes

By additionally distorting the widths of rectangles0 and2 of the basic 5-wheel, the shaded L-

shaped regions shown in Figure 27(a) are created. These can be filled in using either slicing or

non-slicing layouts as shown in Figures 27(b) and (c), respectively. These completions illustrate

layouts that could be obtained using the techniques we have described in this paper (incorporating

symmetric reflections of the 5-wheel).

The shaded L-shaped regions, however, could have been completed in a different manner. In

effect, we can obtain non-slicing layouts by combining a series of L-shaped regions. The first

non-slicing layout introduced in Figure 3 can be obtained this way: by combining L-shapes 1, 2, 3,

and then 4 as shown in Figure 28, we would obtain the layout. The use of L-shapes for non-slicing

VLSI layout design has been proposed and studied by (Wang andWong 1992).

6. Summary

In this paper we have extended our earlier work which was confined to slicing floorplans, and in-

vestigated the use of the basic 5-wheel shape as a means for generating non-slicing data sets of
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rectangles that can be packed into a single larger rectangle. Our aim is to extend the usefulness

of our data generation techniques to benchmark a wider rangeof cutting, packing and placement

problems. As part of our new data generation process, we haveshown that it is possible to succes-

sively partition a rectangle into symmetric and asymmetric5-wheel layouts while preserving the

aspect ratio property needed to ensure that all final rectangles will have legal aspect ratios. Simi-

larly, conditions under which the area ratio property can bepreserved when subdividing a rectangle

have been studied. Using these results, we were able to formulate algorithms which create data

sets by subdividing a rectangle so that the subrectangles will have either legal aspect ratios or legal

area ratios.

Finding a partitioning of a rectangle so that both the aspectratio and area ratio properties are

preserved is more difficult. As we showed, it is possible to dothis and we investigated one method

where aspect ratios and area ratios within a symmetric 5-wheel might be preserved. In many cases,

however, it would be a non-trivial task to write a computer program which utilizes the most general

results we have obtained for partitioning a rectangle. Nevertheless, we have demonstrated that it

is feasible and in some cases, straightforward, to extend the algorithms developed in (Wang and

Valenzuela 2001) for generating data sets when symmetric 5-wheels are utilized.

Further extensions of the 5-wheel lead to other possible partitionings for generating non-slicing

layouts of rectangles. There are several directions for future research which might be taken from

this starting point; the use of L-shapes is currently under investigation.
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A. Proofs for Section 2.1

Theorem 1Let H ×W have a legal aspect ratio and denote the aspect ratio of subrectangle4 by

f . Selectf between1/ρ andρ. In order to guarantee that all five subrectangles of the symmetric

5-wheel will have legal aspect ratios,w must satisfy the following inequality

0 ≤ w ≤ min{ρW −H

ρ + f
,
ρH −W

ρf + 1
}.

h can then be computed ash = fw.

Proof. Assume thatf has been selected as the aspect ratio for subrectangle4 and that this

value was chosen to be between1/ρ andρ. Since subrectangles0 and2 are identically sized (as

are subrectangles1 and3), we need only examine the conditions that must be met in order for

subrectangles0 and1 to have legal aspect ratios.

For subrectangle0, it is necessary to have

1

ρ
≤ H − h

W + w
≤ ρ

or equivalently,
1

ρ
(W + w) ≤ H − h and H − h ≤ ρ(W + w)

By substitutingh = fw, we obtain

1
ρ
W + 1

ρ
w ≤ H − fw and H − fw ≤ ρW + ρw)

⇔ w(f + 1
ρ
) ≤ H − W

ρ
and H − ρW ≤ w(f + ρ)

⇔ w(ρf+1
ρ

) ≤ H − W
ρ

and H−ρW
f+ρ

≤ w

⇔ w ≤ ρH−W
ρf+1

Note thatH−ρW
f+ρ

≤ 0 becauseH/W ≤ ρ so we need only choose

0 ≤ w ≤ ρH −W

ρf + 1
(4)

in order for both inequalities above to be valid.

For subrectangle1 to have a legal aspect ratio, it is necessary for

1

ρ
≤ H + h

W − w
≤ ρ

which happens if and only if

1
ρ
(W − w) ≤ H + fw and H + fw ≤ ρ(W − w)

⇔ W
ρ
−H ≤ w(1

ρ
+ f) and H + fw ≤ ρW − ρw

⇔ W−ρH
ρ
≤ w(1+fρ

ρ
) and w ≤ ρW−H

f+ρ

⇔ W−ρH
1+fρ

≤ w
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SinceH/W ≥ 1
ρ
, W−ρH

1+fρ
≤ 0 and we need only choose

0 ≤ w ≤ ρW −H

ρ + f
(5)

in order for both inequalities above to be valid.

Note also thatw must not exceedW for practical reasons. However, since

ρW −H

ρ + f
≤ ρW

ρ + f
≤ W

becauseρ andf are both positive, we need only choosew so that

0 ≤ w ≤ min{ρW −H

ρ + f
,
ρH −W

ρf + 1
}.

Oncew has been chosen, thenh = fw can be calculated.�

Corollary 1 If H/W = ρ or H/W = 1/ρ, then the selectedH ×W rectangle cannot be cut

into a 5-wheel whose subrectangles have legal aspect ratios.

Proof. Note that ifH/W = ρ or H/W = 1/ρ, thenH = ρW or W = ρH, respectively, so

that the upper bound for the choice ofw is zero.�

B. Proofs for Section 2.2

Lemma 1Subrectangle0 of the asymmetric 5-wheel will have a legal aspect ratio if the following

condition is satisfied:
bh

ρ
− bw ≤ w ≤ ρbh − bw

Proof. If subrectangle0 has a legal aspect ratio, then

1

ρ
≤ bh

bw + w
≤ ρ.

This occurs if and only if

1
ρ
(bw + w) ≤ bh and bh ≤ ρ(bw + w)

⇔ bw + w ≤ ρbh and bh

ρ
≤ bw + w

⇔ w ≤ ρbh − bw and bh

ρ
− bw ≤ w

Thus, if both inequalities are satisfied, then subrectanglewill have a legal aspect ratio.�

Lemma 2 Subrectangle1 of the asymmetric 5-wheel will have a legal aspect ratio if the fol-

lowing condition is satisfied:

W − bw − ρbh

1 + fρ
≤ w ≤ ρW − ρbw − bh

f + ρ
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Proof. If subrectangle1 has a legal aspect ratio, then

1

ρ
≤ bh + h

W − (bw + w)
≤ ρ.

This happens if and only if
1
ρ
(W − (bw + w)) ≤ bh + fw and bh + fw ≤ ρ(W − bw − w)

⇔ W
ρ
− bw

ρ
− w

ρ
≤ bh + fw and bh + fw ≤ ρW − ρbw − ρw

⇔ W
ρ
− bw

ρ
− bh ≤ w

ρ
+ fw and ρw + fw ≤ ρW − ρbw − bh

⇔ W
ρ
− bw

ρ
− bh ≤ w(1

ρ
+ f) and (ρ + f)w ≤ ρW − ρbw − bh

⇔ W
ρ
− bw

ρ
− bh ≤ w(1+fρ

ρ
) and w ≤ ρW−ρbw−bh

ρ+f

⇔ W−bw−ρbh

1+fρ
≤ w

�

Lemma 3 Subrectangle2 of the asymmetric 5-wheel will have a legal aspect ratio if the fol-

lowing condition is satisfied:

H − bh − ρ(W − bw)

f
≤ w ≤

H − bh − 1
ρ
(W − bw)

f

Proof. If subrectangle2 has a legal aspect ratio, then

1

ρ
≤ H − (bh + h)

W − bw
≤ ρ.

Substitutingh = fw, the double inequality can be expressed as:
1
ρ
(W − bw) ≤ H − (bh + h) and H − (bh + h) ≤ ρ(W − bw)

⇔ 1
ρ
(W − bw) ≤ H − (bh + fw) and H − (bh + fw) ≤ ρ(W − bw)

⇔ 1
ρ
(W − bw) ≤ H − bh − fw and H − bh − fw ≤ ρ(W − bw)

⇔ fw ≤ H − bh − 1
ρ
(W − bw) and H − bh − ρ(W − bw) ≤ fw

⇔ w ≤ H−bh−
1
ρ
(W−bw)

f
and H−bh−ρ(W−bw)

f
≤ w

�

Theorem 2If a rectangleH×W having a legal aspect ratio is to be divided into an asymmetric

5-wheel whose subrectangles also have legal aspect ratio, then the following conditions must first

be satisfied forbw, w, g, andf :

Subrectangle 0 condition : H−bw(g+ρ)
ρ

≤ w ≤ ρH − bw(ρg + 1)

Subrectangle 1 condition : (W−ρH)+bw(ρg−1)
1+fρ

≤ w ≤ (ρW−H)−bw(ρ−g)
f+ρ

Subrectangle 2 condition : bw(g+ρ)−ρW
f

≤ w ≤ bw(gρ+1)−W
fρ

Subrectangle 3 condition : 1/ρ ≤ g ≤ ρ

Subrectangle 4 condition : 1/ρ ≤ f ≤ ρ
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Proof. If g = (H − bh)/bw, thenbh = H − gbw can be substituted into the inequalities of

Lemma 1:
bh

ρ
− bw ≤ w ≤ ρbh − bw

⇔ H−gbw

ρ
− bw ≤ w ≤ ρ(H − gbw)− bw

⇔ H
ρ
− gbw

ρ
− bw ≤ w ≤ ρH − bw(ρg + 1)

⇔ H
ρ
− bw(g

ρ
+ 1) ≤ w ≤ ρH − bw(ρg + 1)

⇔ H−bw(g+ρ)
ρ

≤ w ≤ ρH − bw(ρg + 1)

For the inequalities of Lemma 2, the substitution yields

W−bw−ρbh

1+fρ
≤ w ≤ ρW−ρbw−bh

f+ρ

⇔ W−bw−ρ(H−gbw)
1+fρ

≤ w ≤ ρW−ρbw−(H−gbw)
f+ρ

⇔ W−bw−ρH+ρgbw)
1+fρ

≤ w ≤ ρW−ρbw−H+gbw)
f+ρ

⇔ (W−ρH)+bw(ρg−1)
1+fρ

≤ w ≤ ρW−H−bw(ρ−g)
f+ρ

Finally, usingbh = H − gbw in the inequalities of Lemma 3, we obtain

H−bh−ρ(W−bw)
f

≤ w ≤ H−bh−
1
ρ
(W−bw)

f

⇔ H−(H−gbw)−ρW+ρbw

f
≤ w ≤ H−(H−gbw)−W

ρ
+ bw

ρ

f

⇔ gbw−ρW+ρbw

f
≤ w ≤ gbw−

W
ρ

+ bw
ρ

f

⇔ bw(g+ρ)−ρW
f

≤ w ≤ bw(g+ 1
ρ
)−W

ρ

f

�

Corollary 2 If H/W = ρ, it cannot be subdivided into five subrectangles that will have legal

aspect ratios.

Proof. If H/W = ρ, then the upper bound for subrectangle 1 is non-positive:ρW − H = 0

andρ− g ≥ 0 because1/ρ ≤ g ≤ ρ in order for subrectangle 3 to have a legal aspect ratio.�

Lemma 4 The bw-intercepts andw-intercepts of the linesw = min0, w = min1, andw =

min2, w = max0, w = max1, andw = max2 are

Table 3: Intercepts of Boundary Conditions
Line w-intercept bw-intercept

w =min0 H
ρ

H
ρ+g

w =max0 ρH ρH
ρg+1

w =min1 W−ρH
1+fρ

ρH−W
ρg−1

w =max1 ρW−H
f+ρ

ρW−H
ρ−g

w =min2 −ρW
f

ρW
g+ρ

w =max2 −W
ρf

W
ρg+1
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Proof: Setbw = − andw = 0 in the respective line equations and solve for the corresponding

w andbw. �

Lemma 6 The relative positions of thebw-intercepts formin0, max0, min2, andmax2 sat-

isfy:

(i) bw-intercept ofmin0 ≤ bw-intercept ofmax0

(ii) bw-intercept ofmax2 ≤ bw-intercept ofmin2

(iii) bw-intercept ofmin0 ≤ bw-intercept ofmin2

(iv) bw-intercept ofmax2 ≤ bw-intercept ofmax0.

Proof.

(i) Sinceρ ≥ 2 by assumption, then clearlyρ2 ≥ 1 so

ρ2 ≥ 1
ρ2 + ρg ≥ 1 + ρg

1
ρ+g

≤ ρ
ρg+1

H
ρ+g

≤ ρH
ρg+1

(ii) Similarly,
ρ2 ≥ 1

ρ2g ≥ g
ρ2g + ρ ≥ g + ρ

1
ρg+1

≤ ρ
ρ+g

W
ρg+1

≤ ρW
ρ+g

For (iii) and (iv), we use inequalities:

H ≤ ρW ⇒ H
ρ+g
≤ ρW

ρ+g

W ≤ ρH ⇒ W
ρg+1

≤ ρH
ρg+1

�

Lemma 7For respective pairs of lines, the intersections points canbe calculated:

(i) w =min0 andw =max0 intersect atbw = H/g andw = −H/g,

(ii) w =min1 andw =max1 intersect atbw = fW+H
f+g

andw = Wg−H
f+g

,

(iii) w =min2 andw =max2 intersect atbw = W andw = Wg/f .
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Proof. (i) Settingmin0 equal tomax0, we obtain

H
ρ
− bw(g+ρ

ρ
) = ρH − bw(ρg + 1)

bw(ρg + 1− g+ρ
ρ

) = ρH − H
ρ

bw = (ρ2
−1)H

ρ2g−g

bw = H
g

Thew coordinate can be obtained by substituting this fraction into eitherw = min0 or w = max0.

(ii) Settingmin1 equal tomax1, we obtain

(W−ρH)+bw(ρg−1)
1+fρ

= (ρW−H)−bw(ρ−g)
f+ρ

((W − ρH) + bw(ρg − 1))(f + ρ) = ((ρW −H)− bw(ρ− g))(1 + fρ)
(W − ρH)(f + ρ) + bw(ρg − 1)(f + ρ) = (ρW −H)(1 + fρ)− bw(ρ− g)(1 + fρ)
bw(ρg − 1)(f + ρ)− bw(ρ− g)(1 + fρ) = (ρW −H)(1 + fρ)− (W − ρH)(f + ρ)

bw(fρg + ρ2g − f − ρ + ρ− g + fρ2 − fρg) = ρW + fρ2W −H − fρH − fW − ρW + ρfH + ρ2H
bw(ρ2(f + g)− 1(f + g)) = fW (ρ2 − 1) + (ρ2 − 1)H

bw(ρ2 − 1)(f + g) = (fW + H)(ρ2 − 1)

bw = (fW+H)(ρ2
−1)

(ρ2
−1)(f+g)

bw = fW+H
f+g

Thew coordinate can be obtained by substituting this fraction into eitherw = min1 or w = max1.

(iii) Settingmin2 equal tomax2, we obtain

bw(g+ρ)−ρW
f

= bw(gρ+1)−W
fρ

(bw(g + ρ)− ρW )(fρ) = (bw(gρ + 1)−W )(f)
bw(g + ρ)(fρ)− (ρW )(fρ) = bw(gρ + 1)f −Wf
bw((g + ρ)(fρ)− (gρ + 1)f = (ρW )(fρ)−Wf

bw(gfρ + fρ2 − gfρ− f) = ρWfρ−Wf
bwf(ρ2 − 1) = fW (ρ2 − 1)

bw = fW (ρ2
−1)

f(ρ2
−1)

bw = fW
f

bw = W

Thew coordinate can be obtained by substituting this value into eitherw = min2 or w = max2.

�

Lemma 8For each line, the slope and its sign are:

Table 4: Slopes of Boundary Conditions
w =min0 w =max0 w =min1 w =max1 w =min2 w =max2

slope −g+ρ
ρ

−(ρg + 1) ρg−1
1+fρ

− ρ−g
f+ρ

g+ρ
f

gρ+1
fρ

sign − − + − + +

Thus, the relative slopes of each pair of lines satisfies:

(i) w =max0 is steeper thanw =min0
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(ii) w =min2 is steeper thanw =max2

(iii) w =min0 andw =max0 are steeper thanw =max1

(iv) w =min2 andw =max2 are steeper thanw =min1

Proof. To establish (i), take the negative slopes ofw = min0 andw = max0 and show that

the slope ofw = min0 is greater than the slope ofw = max0:

ρ2 > 1 since ρ ≥ 2

⇒ ρ2g > g
⇒ ρ2g + ρ > g + ρ
⇒ ρ(ρg + 1) > g + ρ
⇒ ρg + 1 > g+ρ

ρ

⇒ −g+ρ
ρ

> −(ρg + 1)

For (ii), since the slopes ofw = min2 andw = max2 are positive, we show that the slope of

w = max2 is greater than the slope ofw = min2:

ρ2 > 1 since ρ ≥ 2

⇒ gρ + ρ2 > gρ + 1
⇒ (g + ρ)ρ > gρ + 1
⇒ g+ρ

f
> gρ+1

fρ

sincef > 0.

For (iii), compare the negative slopes ofw = max0 andw = max1 and show that the slope of

w = max1 is greater than the slope ofw = max0:

ρgf + ρ2g + f + g > 0 since ρ, f, g > 0

⇒ ρgf + ρ2g + f + ρ > ρ− g
⇒ (ρg + 1)(f + ρ) > ρ− g
⇒ ρg + 1 > ρ−g

f+ρ

⇒ − ρ−g
f+ρ

> −(ρg + 1)

Similarly,w = min0 is steeper thanw = max1 because both slopes are negative and the slope

of w = max1 is greater than the slope ofw = min0:

fg + fρ + 2gρ > 0 since ρ, f, g > 0

⇒ fg + fρ + gρ + ρ2 > ρ2 − gρ
⇒ (g + ρ)(f + ρ) > (ρ− g)ρ
⇒ g+ρ

ρ
> ρ−g

f+ρ

⇒ − ρ−g
f+ρ

> −g+ρ
ρ
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For (iv) the slopes ofw = min2, w = max2, andw = min1 are all positive and subsequently,

the slope ofw = max2 exceeds the slopes of the other two lines:

g + ρ + fρ2 + f > 0 since ρ, f, g > 0

⇒ g + gfρ + ρ + fρ2 > gfρ− f
⇒ (g + ρ)(1 + fρ) > f(gρ− 1)
⇒ g+ρ

f
> ρg−1

1+fρ

and

ρg + 2fρ + 1 > 0 since ρ, f, g > 0

⇒ ρg + ρgfρ + 1 > fρρg − fρ
⇒ (ρg + 1)(1 + fρ) > fρ(ρg − 1)
⇒ ρg+1

fρ
> ρg−1

1+fρ

�

Theorem 3The intersection of the regions defined bymin0 ≤ w ≤ max0 andmax2 ≤ w ≤
min2 is non-empty.

Proof: Lemma 6 establishes that the line segment between the intercepts of the lines plotted

in Figure 9 must intersect with the line segments between thelines plotted in Figure 10 on thebw

axis. Since the pair of linesw = min0 andw = max0 have positive slopes and the other pairw =

min2 andw = max2 have negative slopes, there must be a region of overlap. Thus, there exist

points(bw, w) wheremin0 ≤ w ≤ max0 andmin2 ≤ w ≤ max2. �

C. Proofs for Section 2.4

Lemma 9 If H/g = W , then Lemma 6 can be revised.

(i) If g ≥ 1, thebw-intercept ofw = min0 is greater than or equal to thebw-intercept ofw =

max2, and thebw-intercept ofw = max0 is greater than or equal to thebw-intercept ofw =

min2. Thus, Figure 8(a) applies.

(ii) If g < 1, the bw-intercept ofw = min0 is less than or equal to thebw-intercept ofw =

max2, and thebw-intercept ofw = max0 is less than or equal to thebw-intercept ofw =

min2. Thus, Figure 8(b) applies.

Proof. (i) SupposeH/g = W . If g ≥ 1, theng2 ≥ 1, ρg2 + g ≥ ρ + g, so

H
ρ+g

≥ H
ρg2+g

⇒ H
ρ+g

≥ H
g(ρg+1)

⇒ H
ρ+g

≥ W
ρg+1
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Similarly, g2 ≥ 1, gρ + ρg2 ≥ ρg + 1, so

1
ρg+1

≥ 1
gρ+ρg2

⇒ H
ρg+1

≥ H
g(ρ+ρg)

⇒ H
ρg+1

= W
ρ+g

Thus, thebw-intercept ofmin0 is greater than or equal to thebw-intercept ofmax2 and thebw-

intercept ofmax0 is greater than or equal to thebw-intercept ofmin2, which implies that Fig-

ure 8(a) applies.

(ii) If H/g = W andg < 1, theng2 < 1 andρg2 + g < ρ + g so

H
ρ+g

< H
ρg2+g

= W
ρg+1

Similarly, g2 < 1 impliesρg + g2 < ρg + 1 so

ρH
ρg+1

< ρH
g2+ρg

= ρW
g+ρ

In this case, thebw-intercept ofmin0 is less than thebw-intercept ofmax2 and thebw-intercept of

max0 is less than thebw-intercept ofmin2 which implies that Figure 8(b) applies.�

Lemma 10The linesw =max0 andw =min2 intersect at a pointA = (bw, w) wherebw =
ρ(fH+W )

fρg+f+g+ρ
andw = (ρH−W )+g(H−ρw)

ρgf+f+g+ρ
.

Proof.

H

ρ
− bw(

g

ρ
+ 1) =

bw(gρ + 1)−W

fρ

H − bw(g + ρ)

ρ
=

bw(gρ + 1)−W

fρ
f(H − bw(g + ρ)) = bw(gρ + 1)−W

fH − fbw(g + ρ) = bw(gρ + 1)−W

fH + W = bw{f(g + ρ) + (gρ + 1)}

fH + W = bw{fg + fρ + gρ + 1}

bw =
fH + W

fg + fρ + gρ + 1

�

Lemma 11The linesw =min0 andw =max2 intersect at a pointB = (bw, w) wherebw =
fH+W

fg+fρ+gρ+1
andw = g(ρH−W )+(H−ρW )

ρ(gf+fρ+ρg+1)
.

Proof.

ρH − bw(ρg + 1) =
bw(g + ρ)− ρW

f
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f{ρH − bw(ρg + 1)} = bw(g + ρ)− ρW

fρH − fbw(ρg + 1) = bw(g + ρ)− ρW

fρH + ρW = bw{f(ρg + 1) + (g + ρ)}

ρ(fH + W ) = bw{fρg + f + g + ρ}

bw =
ρ(fH + W )

fρg + f + g + ρ

�

Lemma 12The linesw =max0 andw =max2 intersect at a pointE = (bw, w) wherebw =
fρ2H+W

(fρ+1)(ρg+1)
andw = ρH−W

ρf+1
.

Proof.

ρH − bw(ρg + 1) =
bw(ρg + 1)−W

fρ

fρ2H − bwfρ(ρg + 1) = bw(ρg + 1)−W

fρ2H + W = bw{fρ(ρg + 1) + (ρg + 1)}

fρ2H + W = bw(fρ + 1)(ρg + 1)

bw =
fρ2H + W

(fρ + 1)(ρg + 1)

Lemma 13 The line w =max1 may intersect the common region in one of the following

scenarios:

S1: w =max1 intersects the line segmentsAC andBD at pointsA1 andB1

S2: w =max1 intersects the line segmentsAC andBE at pointsA1 andB2

S3: w =max1 intersects the line segmentsAE andBD at pointsA2 andB1

S4: w =max1 intersects the line segmentsAE andBE at pointsA2 andB2

S5: w =max1 lies above the region outlined by the points CAEBDC

where thebw values of the pointsA1, A2, B1, andB2 are, respectively,bw = (ρW−H)(ρ)−H(f+ρ)
(ρ−g)ρ−(g+ρ)(f+ρ)

,

bw = fρ(ρW−H)+W (f+ρ)
(gρ+1)(f+ρ)+(ρ−g)fρ

, bw = f(ρW−H)+ρW (f+ρ)
(g+ρ)(f+ρ)+f(ρ−g)

, andbw = (ρW−H)−(f+ρ)ρH
(ρ−g)−(f+ρ)(ρg+1)

.

Proof. Thebw coordinate of the pointsA, B, andE were calculated in Lemmas 10, 11, and 12,

respectively. The possible points of intersection of line segments andw =max1 can be computed
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as follows
Line Segment

Scenario AC AE BD BE
S1 A1 − B1 −
S2 A1 − − B2

S3 − A2 B1 −
S4 − A2 − B2

Thebw value of the pointA1 occurs at the intersection of the linesw =min0 andw =max1

and can be calculated as:

H − bw(g + ρ)

ρ
=

(ρW −H)− bw(ρ− g)

f + ρ
(H − bw(g + ρ))(f + ρ) = ((ρW −H)− bw(ρ− g))(ρ)

H(f + ρ)− bw(g + ρ)(f + ρ) = (ρW −H)(ρ)− bw(ρ− g)ρ

bw{(ρ− g)ρ− (g + ρ)(f + ρ)} = (ρW −H)(ρ)−H(f + ρ)

bw =
(ρW −H)(ρ)−H(f + ρ)

(ρ− g)ρ− (g + ρ)(f + ρ)

Thebw value of the pointA2 occurs at the intersection of the linesw =max1 andw =max2

and can be calculated as:

(ρW −H)− bw(ρ− g)

f + ρ
=

bw(gρ + 1)−W

fρ
((ρW −H)− bw(ρ− g))fρ = (bw(gρ + 1)−W )(f + ρ)

fρ(ρW −H)− bw(ρ− g)fρ = bw(gρ + 1)(f + ρ)−W (f + ρ)

fρ(ρW −H) + W (f + ρ) = bw{(gρ + 1)(f + ρ) + (ρ− g)fρ}

bw =
fρ(ρW −H) + W (f + ρ)

(gρ + 1)(f + ρ) + (ρ− g)fρ

Thebw value of the pointB1 occurs at the intersection of the linesw =min2 andw =max1

and can be calculated as:

bw(g + ρ)− ρW

f
=

ρW −H − bw(ρ− g)

f + ρ
(bw(g + ρ)− ρW )(f + ρ) = f(ρW −H − bw(ρ− g))

bw(g + ρ)(f + ρ)− ρW (f + ρ) = f(ρW −H)− bwf(ρ− g))

bw{(g + ρ)(f + ρ) + f(ρ− g)} = f(ρW −H) + ρW (f + ρ)

bw =
f(ρW −H) + ρW (f + ρ)

(g + ρ)(f + ρ) + f(ρ− g)
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Thebw value of the pointB2 occurs at the intersection of the linesw =max0 andw =max1

and can be calculated as:

ρH − bw(ρg + 1) =
(ρW −H)− bw(ρ− g)

f + ρ
(f + ρ)(ρH − bw(ρg + 1)) = (ρW −H)− bw(ρ− g)

(f + ρ)ρH − bw(f + ρ)(ρg + 1)) = (ρW −H)− bw(ρ− g)

bw{ρ− g)− (f + ρ)(ρg + 1)} = (ρW −H)− (f + ρ)ρH

bw =
(ρW −H)− (f + ρ)ρH

(ρ− g)− (f + ρ)(ρg + 1)

�

Lemma 14 The line w =max1 may intersect the common region in one of the following

scenarios:

S6: w =max1 intersects the line segmentsFE andGE at pointsA2 andB2

S7: w =max1 lies above the region outlined by the points FEGF

where, as before, thebw values of the pointsA2 andB2 arebw = fρ(ρW−H)+W (f+ρ)
(gρ+1)(f+ρ)+(ρ−g)fρ

andbw =
(ρW−H)−(f+ρ)ρH
(ρ−g)−(f+ρ)(ρg+1)

.

Proof. The bw coordinate of the pointE was calculated in Lemma 12. Thebw coordinates

for the pointsF andG are just thebw intercepts of the linesw =max0 andw =max2 as given

in Lemma 4. The points of intersection of the line segments with w =max1 can be computed as

follows
Line Segment

Scenario FE GE
S6 A2 B2

Thebw value of the pointA2 occurs at the intersection of the linesw =max1 andw =max2

and was be calculated previously to be:

bw =
fρ(ρW −H) + W (f + ρ)

(gρ + 1)(f + ρ) + (ρ− g)fρ

Thebw value of the pointB2 occurs at the intersection of the linesw =max0 andw =max1

and was be calculated previously to be:

bw =
(ρW −H)− (f + ρ)ρH

(ρ− g)− (f + ρ)(ρg + 1)

�
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D. Proofs for Section 3.1

Lemma 15 Let Ri = H ×W be a rectangle whose area exceeds5area(R0)/γ whereR0 is the

rectangle of the currently generated list which has the maximum area andγ ≥ 5. If Ri is divided

into symmetric 5-wheel subrectangles each with area equal to HW/5, then the subrectangles have

legal area ratios.

Proof. If the area(i) of subrectangle i is equal toHW/5, then

area(i) = HW/5 ≥ 5area(R0)/(5γ) ≥ area(R0)/γ ≥ area(Rj)/γ

so area(i)/area(Rj) ≥ 1/γ for all rectanglesRj in the generated data set and subrectangles

{0,1,2,3,4}. In addition,area(i) ≤ area(Ri), so thatarea(i)/area(Rj) ≤ area(Ri)/area(Rj) ≤ γ.

Finally, the ratioarea(k)/area(i) = 1, so inequalities (1) and (2) are satisfied.�

Theorem 5 Let R0 be the rectangle having largest area in a list of rectangles with legal area

ratios andγ ≥ 5. Remove a rectangleH × W whereHW ≥ 5area(R0)/γ for cutting. Then,

a symmetric 5-wheel division of this rectangle usingh = H/
√

5 andw = W/
√

5 will produce

five subrectangles, each having areaHW/5. If these rectangles are added to the original list of

rectangles, they will all have legal area ratios.

Proof. The dimensions of the subrectangles of the symmetric 5-wheel were given in Table 1.

Assuming that all subrectangles areas areHW/5 implies thathw = HW/5 or w = HW/(5h).

The area of subrectangles0 and2 is

H − h

2
· W + w

2
=

(H − h)(W + w)

4

=
HW + Hw − hW − hw

4

=
HW + H HW

5h
− hW − HW

5
)

4

=
4HW

20
+

H2W

20h
− hW

4

=
HW

5
+

W

20h
(H2 − 5h2) (6)

The area of subrectangles1 and3 is

H + h

2
· W − w

2
=

(H + h)(W − w)

4

=
HW −Hw + hW − hw

4

=
HW −H HW

5h
+ hW − HW

5
)

4
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=
HW

5
− W

20h
(H2 − 5h2) (7)

Note that if we setH2 = 5h2 in both equations (6) and (7) then all five subrectangles willhave

area equal toHW/5. Thus, if we selecth = H/
√

5 andw = W/
√

5, Lemma 15 can be applied

to prove the desired property.�

Lemma 16If we pick Ri = H×W to be a rectangle whose area exceeds5 area(R0)/γ, γ ≥ 5,

and divideRi into five subrectangles i for whicharea(i) ≥ area(R0)/γ, then the subrectangles will

have legal area ratios.

Proof. Use a similar inequality sequence as in Lemma 15, it follows that

area(i) ≥ area(R0)/γ ≥ area(Rj)/γ ⇒ area(i)/area(Rj) ≥ 1/γ

for all rectanglesRj in the generated data set and subrectangles i. Again,area(i) ≤ area(Ri), so

that

area(i)/area(Rj) ≤ area(Ri)/area(Rj) ≤ γ.

To show that inequality (2) is valid, consider the following:

area(i) < area(Ri) ≤ area(R0), so area(i) ≤ area(R0)

Thus,
area(k)

area(i)
≥ area(k)

area(R0)
≥ 1/γ

from above. Sincearea(i) ≥ area(R0)/γ, for all k ,

area(k)

area(i)
≤ area(R0)

area(R0)/γ
≤ γ.

�

Lemma 17Suppose we pickRi = H×W to be a rectangle whose area exceeds5 area(R0)/γ,

γ ≥ 5, and we sethw = area(R0)/q where

γarea(R0)

γHW − 4area(R0)
≤ q ≤ γ.

Then the five subrectangles will each have area greater than or equal toarea(R0)/γ.

Proof. If q ≤ γ, thenhw = area(R0)/q ≥ area(R0)/γ, so subrectangle4 has area greater than

or equal toR0/γ. If hw = area(R0)/q, then the sum of the areas of the other four subrectangles
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must be equal toHW − area(R0)/q. Now suppose that each of the remaining subrectangles also

has area greater thanarea((R0)/γ which means that we must have

4 area(R0)

γ
≤

3
∑

i=0

area of subrectangle(i) = HW − area(R0)

q
(8)

If q < γ area(R0)/(γHW − 4area(R0)), then becauseγHW − 4area(R0) is positive, we have

that

q(γHW − 4 area(R0)) < area(R0)γ

4q area(R0) > qγHW − area(R0)γ

4q area(R0) > γ(qHW − area(R0))

4 area(R0)

γ
>

qHW − area(R0)

q

If this is valid, it will not be possible to find subrectangle dimensions so that (8) is true. Thus, in or-

der for all subrectangles to have area greater thanarea(R0)/γ, we must haveq ≥ area(R0)γ/(γHW−
4 area(R0)). �

Theorem 6 Let R0 be the rectangle having largest area in a list of rectangles with legal

area ratio whereγ ≥ 5. Remove a rectangleH × W whereHW ≥ 5area(R0)/γ for cut-

ting. By setting the area of subrectangle4 of a symmetric 5-wheel to bearea(R0)/q, where

γ ≥ q ≥ (area(R0)γ)/(γHW − 4area(R0)), the dimensions of the remaining subrectangles

can be determined so that their areas are greater than or equal to area(R0)/γ.

Proof. Suppose that the area of subrectangle4 is chosen to behw = area (R0)/q. We now

determine conditions for which subrectangles 0, 1, 2, and 3 will have areas exceedingarea (R0)/γ.

Note that if these conditions are satisfied, Lemma 16 can be applied to prove the desired result.

As before, the area of subrectangles0 and2 of the symmetric 5-wheel given in Table 1 is

H − h

2
· W + w

2
=

(H − h)(W + w)

4

=
HW + Hw − hW − hw

4

=
HW + H area(R0)

qh
− hW − area(R0)

q

4

=
qhHW + Harea(R0)− qh2W − h area(R0)

4qh

Then this quantity is greater thanarea(R0)
γ

if and only if

γ( qhHW+Harea(R0)−qh2W−h area(R0)
4qh

) ≥ area(R0)
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⇔ γqhHW + γHarea(R0)− γqh2W − γh area(R0) ≥ 4qh area(R0)

⇔ 0 ≥ γqh2W + γharea(R0) + 4qh area(R0)− γqhHW − γHarea(R0)

⇔ 0 ≥ γqh2W + h(area(R0)(γ + 4q)− γqHW )− γHarea(R0)

The quadratic expression describes a concave-up parabola whose value ath = 0 is negative and

whose axis of symmetry is positive:

h = −area(R0)(γ + 4q)− γqHW

2γqW

The quadratic expressions has roots

r1 =
−(area(R0)(γ + 4q)− γqHW ) +

√

(area(R0)(γ + 4q)− γqHW )2 + 4γ2qHWarea(R0)

2γqW

r2 =
−(area(R0)(γ + 4q)− γqHW )−

√

(area(R0)(γ + 4q)− γqHW )2 + 4γ2qHWarea(R0)

2γqW

and so, the area of subrectangles 0 and 2 will exceedR0/γ if and only if r2 ≤ h ≤ r1.

Similarly, the area of subrectangles1 and3 is

H + h

2
· W − w

2
=

(H + h)(W − w)

4

=
HW −Hw + hW − hw

4

=
HW −H area(R0)

qh
+ hW − area(R0)

q

4

=
qhHW −Harea(R0) + qh2W − h area(R0)

4qh

Then this quantity is greater thanarea(R0)
γ

if and only if

γ( qhHW−Harea(R0)+qh2W−h area(R0)
4qh

) ≥ area(R0)

⇔ γqhHW − γHarea(R0) + γqh2W − γharea(R0) ≥ 4qh area(R0)

⇔ γqh2W − γharea(R0)− 4qharea(R0) + γqhHW − γHarea(R0) ≥ 0

⇔ γqh2W − h(area(R0)(γ + 4q)− γqHW )− γHarea(R0) ≥ 0

The quadratic expression describes a concave-up parabola whose value ath = 0 is negative

and whose axis of symmetry is negative:

h =
area(R0)(γ + 4q)− γqHW

2γqW
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The quadratic has roots

s1 =
(area(R0)(γ + 4q)− γqHW ) +

√

(area(R0)(γ + 4q)− γqHW )2 + 4γ2qHWarea(R0)

2γqW

s2 =
(area(R0)(γ + 4q)− γqHW )−

√

(area(R0)(γ + 4q)− γqHW )2 + 4γ2qHWarea(R0)

2γqW

and so, the inequality will be true if and only ifh ≥ s1 andh ≤ s2 Thus, ifh is also chosen so that

r2 ≤ h ≤ r1, then all four subrectangles will have area greater than or equal toarea(R0)/γ. Note

thats1 = −r2 ands2 = −r1 so the conditions can be combined intoh ≥ s1 andh ≤ r1. �

E. Proofs for Section 3.2

Theorem 7Let R0 be the rectangle having largest area in a list of rectangles with legal area ratio

whereγ ≥ 5. Remove a rectangleH ×W whereHW ≥ 5area(R0)/γ for cutting. Then, the only

way to divide the asymmetric 5-wheel into five subrectangles, each having areaHW/5, is to set

h = H/
√

5, w = W/
√

5, as in Theorem 5, andbh = H
√

5−1
2
√

5
andbh = 2W

√

5(
√

5+1)
.

Proof. The proof of this theorem first derives a system of equations for the requirement that

all generated (asymmetric) subrectangles have areaHW/5. The system is then reduced to a single

polynomial which can be solved to define values forh, w, bh, andbw. We show that only one of

these roots corresponds to a practical choice of values for these parameters.

First, consider the area of subrectangle3 from Table 2:

(H − bh)bw = HW
5

⇒ bw =
HW

5(H − bh)
(9)

Next substitute the value ofw = HW/(5h) (from the area of subrectangle4) into the equation

for subrectangle0:
bh(bw + w) = HW

5

bh(bw + HW
5h

) = HW
5

bhbw + bhHW
5h

= HW
5

5hbhbw + bhHW = hHW
hHW − 5hbhbw = bhHW
h(HW − 5bhbw) = bhHW

⇒ h =
bhHW

HW − 5bhbw
(10)

Substituting Equation (9) into (10) yields

h = bhHW

HW−5bh
HW

5(H−bh)
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⇒ h =
bh(H − bh)

H − 2bh
(11)

Then equations (9) and (11) are substituted into the equation for subrectangle2:

HW
5

= (H − (bh + h))(W − bw)
= (H − bh − h)(W − bw)

= (H − bh − bh(H−bh)
H−2bh

)(W − HW
5(H−bh)

)

= 1/5 (4 H−5 bh)W (H−3 bh)
H−2 bh

⇒ −3/5
(H2 − 5Hbh + 5bh

2)W

H − 2bh

= 0

The roots to this equation can be determined to be

bh = H

√
5− 1

2
√

5
and H

√
5 + 1

2
√

5

The second root does not represent practical divisions of the H × W rectangles. Whenbh =

H
√

5+1
2
√

5
, solving forh using equation (11) yieldsh = −H/

√
5 which is impractical. However, the

first root is a viable solution and corresponds to the symmetric 5-wheel partition where subrectan-

gle4 is centered within theH ×W rectangle andh = H/
√

5, w = W/
√

5. �.

F. Proofs for Section 4

Theorem 8 Let R0 be the rectangle having the largest area in a list of rectangles with legal area

and aspect ratios. Withγ ≥ 5, remove a rectangleH ×W whereHW ≥ 5area(R0)/γ and

√
5 + 1

ρ(
√

5− 1)
≤ H/W ≤ ρ(

√
5− 1)√
5 + 1

(3)

for cutting. Then a symmetric 5-wheel division of this rectangle usingh = H/
√

5 andw = W/
√

5

will produce a layout where all subrectangles have legal aspect and area ratios.

Proof. If the rectangle is subdivided symmetrically withh = H/
√

5 andw = W/
√

5, then the

area of all subrectangles isHW/5, and as before, all have legal area ratio from Theorem 5.

If equation 3 is satisfied, then because
√

5− 1√
5 + 1

<

√
5 + 1√
5− 1

and
1

ρ

√
5 + 1√
5− 1

≤ H

W
≤
√

5− 1√
5 + 1

ρ

we have
1

ρ
≤ H

W

√
5− 1√
5 + 1

≤ ρ and
1

ρ
≤ H

W

√
5 + 1√
5− 1

≤ ρ
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The aspect ratio of subrectangle 4 will beH/W which is a legal aspect ratio by assumption.

Subrectangles 0 and 2 will have aspect ratio

H − h

W + w
=

H −H/
√

5

W + W/
√

5
=

H

W

√
5− 1√
5 + 1

and subrectangles 1 and 3 will have aspect ratio

H + h

W − w
=

H + H/
√

5

W −W/
√

5
=

H

W

√
5 + 1√
5− 1

�

Theorem 9Let R0 be the rectangle having largest area in a list of rectangles with a legal area

ratio whereγ ≥ 5. Remove a rectangleH ×W whereHW ≥ 5area(R0)/γ for cutting. Set the

area of subrectangle4 of a symmetric 5-wheel to bearea(R0)/q, wherew satisfies:

γ ≥ q ≥ area(R0)γ
γHW−4area(R0)

γ ≥ q ≥ 4ρarea(R0)
(ρH−W )2

γ ≥ q ≥ 4ρarea(R0)
(ρW−H)2

Find the intersection of the following conditions forh:

h ≥ (area(R0)(γ+4q)−γqHW )+
√

(area(R0)(γ+4q)−γqHW ))2+4γ2qHWarea(R0)

2γqW

h ≤ −(area(R0)(γ+4q)−γqHW )+
√

(area(R0)(γ+4q)−γqHW ))2+4γ2qHWarea(R0)

2γqW

and
√

area(R0)
ρq

≤ h ≤
√

area(R0)ρ
q

(ρH−W )−
√

(ρH−W )2−2ρarea(R0)/q

2ρ
≤ h ≤ (ρH−W )+

√
(ρH−W )2−4ρarea(R0)/q)

2ρ

(ρW−H)−
√

(ρW−H)2−2ρarea(R0)/q

2
≤ h ≤ (ρW−H)+

√
(ρW−H)2−4ρarea(R0)/q)

2

If this intersection exists, then select anh from within the overlap. The resulting symmetric parti-

tioning ofH ×W will yield five subrectangles with legal area and aspect ratios.

Proof: The first two constraints forh were developed in Theorem 6 for maintaining area ratios.

We impose three additional constraints which are obtained by restricting the aspect ratios of the

five subrectangles in a symmetric 5-wheel partition so that they have legal aspect ratios.

As in Theorem 6, we select a value for the area of the central subrectangle 4 ashw = area(R0)
q

whereγ ≥ q ≥ area(R0)γ
γHW−4area(R0)

. This implies thatw = area(R0)
qh

. The aspect ratio of subrectangle 4

is
1
ρ
≤ h

w
≤ ρ

⇒ w
ρ
≤ h ≤ wρ

⇒ area(R0)
qhρ

≤ h ≤ area(R0)ρ
qh

⇒ area(R0)
qρ

≤ h2 ≤ area(R0)ρ
q

⇒
√

area(R0)
qρ

≤ h ≤
√

area(R0)ρ
q
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For subrectangles 0 and 2, the aspect ratio requirement would be

1
ρ
≤ H−h

W+w
≤ ρ

W+w
ρ
≤ H − h ≤ ρ(W + w)

W+area(R0)/qh
ρ

≤ H − h ≤ ρ(W + area(R0)/qh)
hW+area(R0)/q

ρh
≤ H − h ≤ ρhW+ area(R0)/q

h

From this we obtain two inequalities:

hW + area(R0)/q ≤ hρ(H − h) and h(H − h) ≤ ρ(hW + area(R0)/q)

which simplify to

ρh2 − h(ρH −W ) + area(R0)/q ≤ 0 (12)

0 ≤ h2 + h(ρW −H) + ρ area(R0)/q (13)

The quadratic inh on the left hand side of (12) has roots

r1 =
(ρH−W )−

√
(ρH−W )2−4ρ area(R0)/q

2ρ
and r2 =

(ρH−W )+
√

(ρH−W )2−4ρ area(R0)/q

2ρ

both of which are positive becauseρH ≥W and, by assumption,(ρH−W )2−4ρ area(R0)/q ≥ 0.

Similarly, the quadratic inh on the right hand side of (13) has roots

s1 =
−(ρW−H)−

√
(ρW−H)2−4ρ area(R0)/q

2
and s2 =

−(ρW−H)+
√

(ρW−H)2−4ρ area(R0)/q

2

both of which are negative becauseρW ≥ H and, by assumption,(ρW−H)2−4ρ area(R0)/q ≥ 0.

For subrectangles 1 and 3, the aspect ratio requirement would be

1
ρ
≤ H+h

W−w
≤ ρ

W−w
ρ
≤ H + h ≤ ρ(W − w)

W− area(R0)/qh
ρ

≤ H + h ≤ ρ(W − area(R0)/qh)
hW− area(R0)/q

ρh
≤ H + h ≤ ρhW− area(R0)/q

h

From this we obtain two inequalities:

hW − area(R0)/q ≤ hρ(H + h) and h(H + h) ≤ ρ(hW − area(R0)/q)

which simplify to

ρh2 + h(ρH −W ) + area(R0)/q ≥ 0 (14)

0 ≥ h2 − h(ρW −H) + ρ area(R0)/q (15)
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The quadratic inh on the left hand side of (14) has roots

t1 =
−(ρH−W )−

√
(ρH−W )2−4ρ area(R0)/q

2ρ
and t2 =

−(ρH−W )+
√

(ρH−W )2−4ρ area(R0)/q

2ρ

which are both negative becauseρH ≥W and, by assumption,(ρH −W )2− 4ρ area(R0)/q ≥ 0.

Similarly, the quadratic inh on the right hand side of (15) has roots

v1 =
(ρW−H)−

√
(ρW−H)2−4ρ area(R0)/q

2
and v2 =

(ρW−H)+
√

(ρW−H)2−4ρ area(R0)/q

2

which are both positive becauseρW ≥ H and, by assumption,(ρW −H)2− 4ρ area(R0)/q ≥ 0.

On inspection, we note that the quadratic expressions in inequalities of (12) and (14) describe

the same concave up parabola reflected on theh = 0 axis. The range ofh valuesr1 ≤ h ≤ r2 will

satisfy both inequalities. Correspondingly, the same is true for the expressions in inequalities (13)

and (15). Hence, the range ofh valuesv1 ≤ h ≤ v2 will satisfy both inequalities.

Combining these restrictions forh with those for rectangle 4 and the ranges needed to preserve

area ratios, we define a set ofh values which would yield a symmetric partition ofH×W in which

all subrectangles would have legal aspect and area ratios.�
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