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Abstract

The genetic algorithm (GA) described in this paper breeds permutations of trans-
mitters for minimum span frequency assignment. The approach hybridizes a GA with
a greedy algorithm, and employs a technique called Generalized Saturation Degree to
seed the initial population. Several permutation operators from the GA literature are
compared, and results indicate that position based operators are more appropriate for
this kind of problem than are order based operators. My offspring versus mid-parent
correlation studies on crossovers show Pearson’s correlation coefficient to be a reliable
predictor of performance in most cases. Results presented herein represent improve-
ments over previously published results.

Keywords Genetic algorithms, frequency assignment problem, minimum span, order based
representation, permutation operators, greedy algorithms.

1 Introduction

The electromagnetic spectrum is a finite resource. In recent years the wider use of mobile
communications has greatly increased demand for the spectrum and, as a result, there is
now a growing interest in the development of techniques for using the spectrum efficiently.
Allocation of the spectrum to companies and other users (for example the military) is
normally the responsibility of national and/or local governments. Generally a band of
frequencies is assigned to each organization, and it is then up to the individual organization
to determine how best to use the range of frequencies which have been allocated to it.

If a number of transmitters and receivers are situated close together, interference will
occur if the same or similar frequencies are used by two or more of the transmitters. Ideally
it should be possible to allocate the frequencies to all the transmitters in such a way that
no interference is suffered. In reality the huge demand on the spectrum usually makes this
impossible and the primary objective is then to minimize the total interference.

The extent to which pairs of transmitters interfere with each other largely depends on
the distance between them, the closer they are together the more they interfere with each
other. Transmitters at the same site or within tens of metres away from each other generate
co-site interference. When equipment is at a distance of several kilometres or more, far-site
interference is produced.

Interference can be modeled using a two-dimensional constraint matrix showing, for each
pair of transmitters, the minimum channel separation required to completely eliminate
interference. (For the purpose of frequency allocation, the electromagnetic spectrum is
usually modeled in terms of discrete channels situated at fixed points of the spectrum.)



Table 1: A typical constraint matrix
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Table 1 provides an illustration of a small constraint matrix for a 5 transmitter problem.
The bold numbers heading the columns and rows represent the 5 transmitters. In the body
of the Table n denotes that the transmitters identified by the row and column heading can
be allocated on the same channel, ¢ denotes required co-site separation such that:

|fl - fj‘ Z C,

where f; and f; represent the frequency channels allocated to transmitters ¢ and j respec-
tively, and the integer values in the Table (i.e. 0, 1, 2 and 3) represent far-site interference,
s, such that:

‘fz — f]‘ > s
The frequency assignment problem exists in three forms:

e Minimum Span Frequency Assignment,
e Minimum Order Frequency Assignment, and

e Fixed Spectrum Frequency Assignment.

The Minimum Span Frequency Assignment Problem (MSFAP) involves assigning chan-
nels to transmitters in such a way that interference is completely eliminated and the range
of frequencies used is such that the span = largest channel - smallest channel, is minimized.
The Minimum Order Frequency Assignment Problem (MOFAP) also requires that inter-
ference is completely eliminated. However, the objective here is to minimize the number
of frequency channels used, i.e. the order. The Fixed Spectrum Frequency Assignment
Problem (FSFAP) provides a fixed range of frequencies and the objective here is to assign
channels within the given range in such a way that the total interference is minimized. Of
the three forms the FSFAP is the most important commercially. However the MSFAP is
the form most ideally suited to my hybrid approach and is therefore the form chosen for the
present study. It is worth noting that it is possible to adapt good algorithms for MSFAP
to produce good solutions for the FSFAP and the MOFAP. (The FSFAP will be addressed
elsewhere).

To date most Genetic Algorithms (GAs) in the frequency assignment literature attack
the problem directly by breeding lists of channels mapped in a 1-1 fashion to lists of trans-
mitters [5] [11] [15] [4]. The present paper hybridizes the GA with a simple greedy algorithm
and the GA itself focuses on breeding permutations of transmitters. The greedy algorithm
works as a decoder, transforming the permutation list of transmitters into a channel assign-
ment for each of the transmitters. It does this by stepping through the list of transmitters
output by the GA allocating frequency channels to each of the transmitters in turn in a
simple deterministic way. One very important advantage of the permutation approach over
the direct approach is that the application of the greedy decoder to any permutation guar-
antees a legal channel allocation (i.e. one where there is no interference). On the other
hand the direct approach produces illegal lists of channel allocations with great ease.



Use of a permutation based (i.e. an order based) representation with a decoder generally
cuts down the number of possible solutions that the genetic algorithm will consider. In the
case of the MSFAP illegal solutions are eliminated, as explained above. Regarding the
optimum solution, however, the following question arises: “Is it possible to encode the
optimum solution to the MSFAP using an order based representation?” The answer to this
question is “yes”, as will be proved in section 4.

The work described herein extends the work documented in previous papers in two ways.
Firstly it expands the comparative study of the various permutation operators started in
[18]. Secondly it presents excellent results for a larger set of problems than [19].

An interesting study by T. Clark and G. D. Smith [3] uses an order based approach to
the FAP with a simulated annealing algorithm as the search engine. The greedy decoder
consists of two sequential assignment algorithms, which are applied one after the other.
Excellent results are reported for the FSFAP using this approach, indicating the versitility
of an order based representation for frequency assignment.

2 Sequential Assignment Algorithms

Sequential assignment methods mimic the way that the MSFAP may be solved manually.
The transmitters are considered one at a time, successively assigning allowable frequencies
as we proceed, until either we have assigned all the transmitters or run out of frequencies.
We may generate a series of assignment methods based on three components:

e initial ordering,
e choice of next transmitter, and

e assignment of frequency.

Initial ordering techniques usually order transmitters according to the number and ex-
tent of their constraints, so that the most heavily constrained transmitters appear earliest
on the list. The simplest way to choose the next transmitter is sequentially, picking the next
one on the list produced by the initial ordering. A more complicated method, which has
proved more effective than sequential selection with the various initial ordering methods,
is called generalized saturation degree. In this method the choice of the next transmitter
is influenced by the constraints imposed by all those transmitters which have already been
chosen. One could view the more complicated process as a mechanism for correcting those
mistakes which have been made by the initial ordering technique.

The simplest assignment technique is to assign to the chosen transmitter the smallest
feasible channel, i.e. the lowest numbered channel which can be assigned without violating
any constraints. Variations upon this technique attempt to assign channels that have already
been used in favor of those that have not been used as the sequence of transmitters is stepped
through. A detailed description of sequential assignment methods can be found in [11].

In the present paper a genetic algorithm is used to search the state-space of initial
orderings. The choice of the next transmitter is made sequentially, and the smallest feasible
channel is assigned to each chosen transmitter. Initial populations of permutations are
produced in two different ways:

e at random, and
e by seeding the population.

GAs incorporating a range of permutation operators for testing are tried on both random
and seeded initial populations. Random permutations are produced using a pseudo-random
number generator which effectively builds up each permutation list one transmitter at a



time, selecting the next one for the list from a uniform distribution of those not yet chosen
for the list. The seeded population is produced by first generating a population of random
permutations, and then applying the generalized saturation degree (GSD) algorithm to
each of the permutation lists, to produce a new set of permutation lists. Details of the GSD
algorithm are given below.

2.1 Generalized Saturation Degree Algorithm

Let V be a set of transmitters and V, be the transmitters of V' already assigned frequencies.
Frequency n is said to be denied to the unassigned transmitter v if there is a transmitter u
in V, assigned to frequency n such that transmitter v and v would interfere, i.e., assuming
an edge exists between u and v in the constraint graph then there is insufficient frequency
separation between them. If frequency n is denied to transmitter v, the influence of fre-
quency n, denoted by I,,, is the largest weight of any edge connecting v to a transmitter
assigned to frequency n. The number
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(where the sum is taken over all frequencies n denied to v) is called the generalized saturation
degree of v. The technique for selecting the next transmitter is as follows: Select a trans-
mitter with maximal generalized saturation degree (break ties by selecting the transmitter
occurring earlier in the initial ordering).

3 The Genetic Algorithm

Algorithm 1 Procedure GA1
generate N random permutations {N is the population size}
if appropriate apply the GSD algorithm to each structure
evaluate the span produced by each structure and store each one
store best-so-far
repeat
for each member of the population do
this individual becomes the first parent
select a second parent using roulette wheel selection on ranks
apply crossover to produce offspring
apply mutation to offspring
evaluate span produced by offspring
if offspring better than weaker parent then
it replaces it in population
if offspring better than best-so-far then
it replaces best-so-far
until stopping condition satisfied
print best-so-far

The simple genetic algorithm (GA) used here is based on that which has appeared in
[17]. It is derived from the model of [10] and is an example of a ‘steady state’ GA (based on
the classification of [16]). It uses the ‘weaker parent replacement strategy’ first described
by [2]. The GA outlined in Algorithm 1 applies the genetic operators to permutations of
transmitters. The fitness values are based on the spans produced when the simple sequen-
tial assignment algorithm is applied to each permutation list produced by the GA. In 1 the
first parent is selected deterministically in sequence, but the second parent is selected in a
roulette wheel fashion, the selection probabilities for each genotype being calculated using



the following formula:

selection probability = (Rank) / ¥ Ranks

where the genotypes are ranked according to the values of the spans that they have produced,
with the worse ranked 1, the second worse 2 etc.. and the best ranked highest.

The GA breeds permutations of transmitters and channels are assigned to the resulting
lists of transmitters using the smallest feasible channel technique. Experimental results are
presented which compare results obtained by application of the GA to unseeded and seeded
populations. (I refer the reader back to section 1 for a description of the smallest feasible
channel assignment technique and for details of how the initial population is produced.)

4 Genetic Operators for Permutations

The standard mutation and crossover operators designed for bit-strings and parameter lists
produce illegal offspring when applied to permutation lists. To combat this problem a
number of special operators have been developed which produce legal permutation lists
for offspring. Many of these operators were first developed and tested on the Traveling
Salesman Problem (TSP), where the permutation represents a (circular) list of cities in a
TSP tour. Some important features implicit in the TSP permutation lists are:

e adjacent cities in the TSP permutation list represent edges of the tour,
e absolute positions of cities in the list are irrelevant, and

e reversing the list does not change the tour.

For the MSFAP the positions of transmitters in the list determine the order in which they
are allocated channels by the simple greedy algorithm. What is important in an ordering of
transmitters that allows the greedy algorithm to produce a good channel allocation? Clearly
the absolute position of a transmitter in the list is important. The closer a transmitter is to
the front of the list, the earlier it will be allocated a channel. The identities of transmitters
preceding a particular transmitter on the list are also important, since it is these which
impose constraints upon which channel can be allocated to the current transmitter being
processed. The features implicit in the permutation representation for the MSFAP are
clearly very different from those previously identified for the TSP, for example:

e adjacent transmitters in the list do not represent edges in the solution
e absolute positions in the list are relevant, and

e reversing the list is likely to change the solution considerably.

We will now examine a number of genetic operators.

4.1 Crossover

Crossover involves combining elements from two parents into one or more children. Crossover
operators can be classified in the following way:

e position based crossover,
e order based crossover, and

e edge based crossover.



Position based crossover maintains in the offspring absolute positions of transmitters oc-
curring in the parents. Order based crossover maintains relative positions of transmitters
and edge based crossover maintains adjacency information, so that transmitters which are
adjacent in the parents’ lists tend to be adjacent in the offspring list.

A very large number of permutation crossovers exist in the literature, many of which
have been developed specifically for the TSP, which remains the most popular of the testbed
problems involving permutations (for example see [9] [20] [13]). In the present study some
non problem specific position based and order based crossovers are chosen for testing. Edge
based crossovers are not considered here because transmitters which are adjacent to each
other in a permutation list do not relate to edges in the resulting solution (i.e. channel
allocation) in the way that adjacent cities in a TSP list map to edges in the resulting tour
(see discussion above). Complicated variants of position and order based crossover which
incorporate problem-specific knowledge relating to the TSP (or any scheduling problem not
related to MSFAP) are also omitted. A recent review of permutation crossovers can be
found in [21].

The crossovers chosen for study on the MSFAP are Cycle Crossover (CX), Partially
Matched Crossover (PMX), Order Crossover (OX) [14] and Uniform Order Based Crossover
(UOBX) [6]. CX and PMX are examples of position based crossovers, and OX and UOBX
are order based. A brief description of each crossover used in this study is given below.

Cycle Crossover

The cycle crossover operator ensures that each position in the resulting offspring is occupied
by a transmitter occupying the same position in one or other of the parents. As an example,
suppose we have strings A and B below as our two parents:

A=87641253

B=25173846

We now start from the left and randomly select a transmitter from string A. Suppose
we choose transmitter 6 from position 3, this is then copied to position 3 of the offspring
we shall call A’:

In order to ensure that each transmitter in the offspring occupies the same position as
it does in either one or other parent, we now look in position 3 of string B and copy trans-
mitter 1 from string A to the offspring:

A=--6-1---

Next we look in position 5 of string B and copy transmitter 3 from string A:

A=--6-1--3

Looking at position 8 in string B we find transmitter 6. This completes the cycle. We
now fill the remaining positions in A’ from string B thus:

A=25671843

B'=87143256



The offspring B’ is obtained by performing the complementary operations.

Partially Matched Crossover

Two strings are aligned and two crossing sites are picked uniformly at random along the
strings. These two points define a matching section that is used to effect a cross using
position by position exchange operations:

A=87641253

B=25173846

In each string 4 changes places with 7, 1 with 3 and 2 with 8 producing;:

A'=24673851

B"'=85341276

Order Crossover

Order crossover starts in the same way as PMX, selecting 2 crossing sites at random:
A=87641253

B=25173846

Order crossover uses a sliding motion to fill the holes left by transferring the mapped
positions from one string into the other. For example transmitters 4, 1 and 2 will leave
holes, marked by “H” in string B:

B=H5H738H6

These holes are then filled with a sliding motion that starts from the second crossing point:
B=738HHHG65

The substring from string A is then inserted into string B. The final result of this cross and
the complementary cross is:

A'=41273856

B"=73841265

Uniform Order based Crossover

This crossover maintains the absolute positions of the transmitters taken from one parent,
and the relative positions of the transmitters taken from the other parent. It proceeds by
first generating a bit string, S, which is the same length as the parents:
A=87641253

B=25173846

§=01100101



Fill in some of the positions in child A’ by copying them from parent A wherever the
bit string contains a “1”, and fill in the positions in child B’ from parent B wherever the
bit string contains a “0”:

A'=-76--2-3
B =2--73-4-

Fill in the rest of the positions in child A’ from the elements associated with a “0” in
parent A. Permute these elements so that they appear in the same order they appear in
parent B, and fill the gaps in child A’ from this list of permutated elements. Carry out a
similar process for child B’:

A'=57618243

B=28673145

4.2 Mutation

The main function of a mutation operator in a traditional GA is to maintain diversity. In
addition mutation can work as a search operator in its own right, and it is thought to be
particularly valuable in the latter generations of a genetic search when genetic diversity is
much reduced and as a consequence the crossover operator is much less effective. We will
consider three mutation operators for the MSFAP:

e position based mutation,
e order based mutation, and

e scramble mutation.

Position based mutation involves selecting two transmitters at random and placing the
second transmitter immediately before the first in the list. For order based mutation two
transmitters are selected, again at random, and their positions are interchanged. Scramble
mutation [6], operates by selecting a sublist randomly and scrambling the order of the
transmitters within that sublist.

4.3 Can we guarantee that the optimum solution can be encoded by the
order based representation?

Can we be sure that a sequence of transmitters exists, which upon application of our smallest
feasible channel algorithm, will produce an optimum solution? In [19] although optimal
solutions for several instances of the MSFAP were produced using a GA and an order based
encoding, we did not prove that it is always possible to encode optimal solutions in this
way. A proof for this is outlined below. Recall that the smallest feasible channel decoder,
which transforms the permutation lists into channel allocations, operates as follows:

1. Take the first transmitter on the list and allocate channel 1.

2. Take the next transmitter on the list and allocate the smallest feasible channel which
will not generate interference with any transmitter previously allocated a channel.

3. Repeat from 2) until the list is exhausted.

The proof that follows verifies that it is always possible to encode a channel allocation of
minimum span for an instance of the MSFAP.



Represent the transmitters by the vertices, V(G) of a constraint graph G . Definitions
1, 2 and 3 below are based on definitions which appear in [1].

Definition 1 A constraint graph G is a finite, simple, undirected graph in which each
edge vvj(viv;€ V(G), i and j are positive integers) has a non-negative integer label ¢y;.

Definition 2 A feasible channel assignment (or frequency assignment) on a constraint
graph G is a mapping f : V(G) — F (where F is a set of consecutive integers m,..., n) such
that the constraints

|f(vi) = f(o)] > iy

are satisfied for all vivje E(G). This is referred to a zero-violation assignment. The el-
ements of the set F, can be referred to as channels (or frequencies), where for each vertex
vi € V(G), v; — f(vi), represents a channel assignment of a vertez, v;.

Definition 3 If K = n - m (where m is the smallest channel used, and n is the largest
channel used) is a minimum over all zero-violation assignments then the assignment is a
minimum assignment. This minimal value of K is the minimum span of G, denoted sp(G).

Definition 4 establishes the properties of a smallest feasible channel assignment; i.e. the
properties possessed by a channel assignment which has been produced by the application
of the smallest feasible channel algorithm to a sequence of vertices (transmitters).

Definition 4 Let Sy (g) be an arbitrary sequence, vo,v1,....... UV (@)|-1, of all vertices in
V(G). A smallest feasible channel assignment is a channel assignment, g : Sy gy — F (where
F is a set of consecutive integers m,....,n, as before) such that the following constraints are
satisfied:

Constraint 1: |f(v;) — f(v;)| > ¢ij. for viv; € E(G) : j < i (where ¢ and j represent
positions in the sequence, Sy (q))-

Constraint 2 :in addition, for each vertez v; € Sy (), exactly one of the following statements
must be true:

statement 1: |f(v;) — f(vj)| = @i + 1, for at least one edge, viv; € E(G) with j < i,
if at least one edge, v;v;, exists with j < 1,

statement 2: f(v;) = m, the smallest channel available, if ¥V j< i vivj¢ E(G).

In other words a smallest feasible channel assignment will be the result produced by apply-
ing the smallest feasible channel assignment algorithm to a list of vertices (transmitters) in
sequence. As the algorithm progresses through the sequence of vertices, it will assign the
smallest channel possible to each one; i.e. the smallest channel which does not violate any
constraints imposed by channel allocations to vertices which appear earlier in the sequence.

Theorem 1 Given a constraint graph G with a set of vertices V(G), there exists some
sequence of vertices, Sy (q), such that the application of the smallest feasible channel assign-
ment algorithm to that sequence will produce a minimum assignment, where the difference
between the smallest and largest channels used will be sp(G), the minimum span.

Proof For any chosen minimum span assignment f of G generating a mapping f : V(G) —
F such that F' is a set of consecutive integers m,....,n, number the vertices in non-descending



order of their channel assignment, f(v;) for v;€ V(G), to produce a sequence vy, v1,....... V(@) —1-
Call this sequence Sy,;. Next, convert the minimum channel assignment to a smallest fea-
sible channel assignment in the following way:

Starting at v, step through the sequence, vo,v1,....,vjy (@)1, reassigning a vertex, v;, to
a smaller frequency channel where it is necessary to do so in order to avoid violating con-
straint 2 in Definition 4.

Using the smallest feasible channel procedure to allocate a smaller channel to some ver-
tex, v; € Spmin, when this is possible, avoids violation of constraints 1 and 2 of definition
4 for viv; € V(G) when j < i (given). However, it is necessary to prove that allocating a
smaller channel to v; cannot result in the violation of constraint 1 for v;u; € V(G) when
j > 4. If this were to happen we could finish with a channel assignment which is not a
minimum channel assignment. (It does not matter if constraint 2 is temporarily violated
for some edge, v;v; for j > ¢, when some vertex, v; has a lower channel allocated to it. The
violation will be corrected later on when the smallest feasible channel procedure allocates
a new channel to v;.)

By definition of Spin, f(vi) < f(v;) for all v;u; € E(G) when j > i, so making f(v;)
smaller, f’(v;) say, it follows that

|f (vi) — f(vj)] > |f(vi) - f(v;)] > 5. for all v;v; € E(G) when j > 1,

thus establishing that constraint 1 holds at all times during the application of the smallest
feasible channel procedure to the sequence, Sy,n.

The smallest feasible channel assignment on Sy,;, will be an assignment of minimum span,
because:

1. the span cannot be larger than sp(G), as the smallest feasible channel procedure
applied to the sequence Sy, cannot assign a larger channel to any vertex in the
sequence, without violating constraint 2 of Definition 4.

2. the span cannot be smaller than sp(G) by definition.

5 Do the crossovers pass useful information from parents to
offspring?

The starting point is an initial population of 1,000 individuals produced by applying the
generalized saturation degree algorithm to 1,000 random permutations of the set of trans-
mitters for the problem in question. One thousand pairs of parents are selected using the
selection mechanism defined in 1, and from those parents 1,000 offspring are generated using
the various crossovers and no mutation. It is important to establish that offspring resemble
their parents and produce solutions with similar values for the span. If this turns out not to
be the case, the GA is likely to perform even worse than random search (because random
search maintains diversity, and a GA does not).

Table 2 shows the values of Pearson’s Product Moment Correlation Coefficient, 74y,
for offspring (y coordinate) versus mid-parent (z coordinate) values of the span for 1,000
samples. The value of r;, is +1 for perfect direct correlation and -1 for perfect inverse
correlation. Values of 7., close to zero indicate that there is no direct relationship between
the = and y values. (I refer the reader to a statistics text, for example chapter 8 of [7], for
more details of r,, ) Results are shown for eight problems with the numbers of transmitters
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varying between 95 and 726. The values of ‘¢’ in the third column represent the co-site
constraints making up part of the constraint matrix.

Table 2: Offspring versus mid-parent correlation for test problems
Problem No. transmitters c¢ CX PMX 0OX UOBX

P1 95 4 0.3460 0.2159  0.1653 0.1562
P1 95 5 0.2067  0.1823  0.2391 0.0805
P2 190 5 0.2089 0.1520  0.1229 0.1614
P3 225 - 0.0385 -0.0184 -0.0108 - 0.0051
P4 410 5 0.2801 0.1172 0.1117  0.1762
P5 481 - 0.2993 0.1504  0.1182 0.0091
P6 726 4 0.3512 0.2162 0.1463 0.3415
P6 726 5 0.2970 0.0468  0.0985 0.2850

The values for the correlation coefficient in the table indicate that CX is more successful
than other crossovers in passing on useful parental characteristics to offspring. (Observe
that values of r,, are larger in the CX column than anywhere else.) A significance test
shows that under CX the 7, values are highly significant at the 0.0001% level for 7 out of
the 8 problems, indicating that parental features that contribute to their span values are
indeed passed on to their offspring. Results for the problem P3, however, would indicate
that none of the crossovers is able to pass on useful features from parents to offspring in
this instance, suggesting that the GA is unlikely to be effective in solving this particular
problem. Uniform Order Based Crossover would appear to be almost as successful as Cycle
Crossover for problem P6.

6 Results

Table 3 gives the characteristics of the test problems used. P1, P2, P4 and P6 are all
computer generated realistic examples. Problem P5 is the so-called Philadelphia problem,
a cellular phone problem used in [19] and previously studied by many other authors, par-
ticularly [8] and [15]. P3 is also a cellular phone example. This example can be generated
from the ideas that appear in [12] (with dg = 25, d;= 13).

Table 3: Test data characteristics
No. transmitters No. co-site constraints No. far-site constraints Edge density

P1 95 90 1124 0.27
P2 190 160 4882 0.28
P3 225 0 8163 0.32
P4 410 411 22346 0.27
P5 481 0 97835 0.85
P6 726 711 74595 0.29

6.1 Comparing the crossovers

All 4 crossovers (CX, PMX, OX and UOBX) are tested on the 726 transmitter problem
P6 with co-site = 4. Populations of 1,000 are used and averages of 5 runs recorded with
one mutation (order based) per individual, running for 500 generations. Figure 1 plots
the best-so-far curves obtained using the 4 different crossovers with a starting population
of random permutations. Figure 2 plots the best-so-far curves obtained using the same
crossover operators on a starting population seeded with GSD orderings.

The relative performance of the GA using the four alternative crossover operators on
a random starting population is much as would be predicted by the offspring verses mid-
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parent correlation coeflicients. CX performs best, with UOBX second, PMX third and OX
last. Using a GSD seeded population, however, the performance of the GA incorporating
CX retains its superiority, but the relative performance of UOBX is exceedingly poor. For
this set of experiments CX is best, with PMX second followed by OX, with UOBX last. One
could speculate that perhaps the GSD algorithm and the UOBX crossover somehow work
together to reduce the ‘novelty value’ produced during the genetic search. (Recall that the
steady state GA used here replaces a ‘weaker parent’ with a ‘stronger offspring’. Thus in
situations in which the genetic search fails to generate any ‘stronger offspring’, no progress
will be made by the GA, however promising the offspring versus mid-parent correlation
coefficients may appear). This is worthy of further investigation.

6.2 Comparing the mutations

The three mutations described in section 4 are all tried on problem P6, ¢ = 4, using CX as
the crossover operator. Populations of 1,000 are used and the GA allowed to run for 500
generations with 500 x 1,000 individuals processed. One mutation is applied per individual.
The maximum size of sublist scrambled in the third type of mutation is 8 items. The
number of items scrambled at each mutation is selected from a uniform distribution on
z: 2 < x < 8. The results, presented in Table 4, indicate position based mutation produces
the best results, with order based mutation a close second.

Table 4: Comparison of mutation operators

Mutation Average of 5 runs Best of 5 runs
Position based 233 231
Order based 234.2 233
Scramble sublist 240.6 238

6.3 Results for GA with CX on larger problem set

The GA with CX crossover and position based mutation performed best in the above
tests and is thus chosen for experiments on the larger problem set. For the experiments
a population size of 1,000 is used with one mutation per offspring. Cycle crossover is
the recombination operator. The GA stops after 100 generations have elapsed with no
improvement to the best-so-far.

The population is initially seeded with 1,000 random permutations. These permuta-
tions are then subjected to the Generalized Saturation Degree algorithm, and it is the new
orderings produced by the application of this algorithm which form the starting population
for the GA.

In Table 5 column 3 records the mean best span for the sets of 5 replicate runs, and
column 4 gives the best result obtained by the GA in each case. Column 5 displays the
best result from a set of control experiments performed by generating large numbers of
random permutations and applying the GSD algorithm to each structure. The stopping
criterion for the algorithm used for the GSD on random orderings (column 5) halts when
100 x 1,000 individuals have been processed in which no improvement has been observed to
the best-so-far. The idea here is to make the stopping criterion for the random search the
same as the stopping criterion for the GA. (The 100 x 1,000 individuals correspond with
100 generations of the GA with 1,000 trials in each generation.) Column 6 presents the best
results obtained by trying all combinations of various state-of-the-art sequential ordering
algorithms (see [11]). The previously best published results can be found in column 7. The
numbered superscripts in column 7 refer to the following publications:

1: [15],

2: [18].
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The solution of span = 47 obtained for problem P1 (¢ = 4, and ¢ = 5) matches the best
lower bound for the 95 transmitter problem described in [15].

Table 5: Genetic algorithm on a larger problem set using CX and position based mutation
Problem ¢ Mean 5 Best GA Random 4+ Best sequential Previously best

runs GSD published
P1 4 47.6 47 49 51 4711
P1 5 47.8 47 51 54 4822
P2 5 75.4 74 79 87 7622
P3 — 42 42 41 43 —
P4 5  146.4 145 150 158 15422
P5 - 426 426 462 449 42611
P6 4 233 231 243 249 -
P6 5 2382 237 247 255 -

Some experiments have been tried by using larger populations for problem P6, ¢ = 4.
The best solution I have obtained using the GA is span = 229, with a population of 8,000.

7 Conclusions and Future Work

The genetic algorithm which breeds permutations for minimum span frequency assignment
has produced some promising results, beating results produced by state-of-the-art sequen-
tial assignment methods and also some previously best published results. The approach
hybridizes a GA (for breeding permutations) with a greedy algorithm (for doing the channel
assignment to the permutations). The technique would appear to be particularly successful
when it incorporates a position based crossover, indicating that it is the absolute positions
rather than the relative positions of transmitters on the list which are important for the
greedy channel allocation algorithm. Results are improved if the initial population is seeded
with ‘good permutations’ prior to invoking the GA, using a generalized saturation degree
algorithm as a pre-processor for the population. It is noticeable, however, that the GA is
not successful on all problems. It performs very badly for example on P3 (a problem in
which the constraints are very evenly distributed). An offspring versus mid-parent correla-
tion appears to be a good predictor of success in most instances, it predicts failure for P3,
and success elsewhere, accurately forecasting that CX will out-perform the other crossover
operators. The relatively high value of the correlation coefficient for UOBX on P6 (¢ = 4),
however, (it is nearly as high as for CX on this problem), does not translate into a good
performance for the GA when GSD seeding is used. In fact the UOBX performs worse than
any other crossover, suggesting that other factors are also involved here. Thus although
I recommend offspring versus mid-parent correlation as a very useful tool, some caution
should be observed in its application.
Work is currently in progress to extend the approach in the following ways:

1. to try incorporating mixes of several of the most promising genetic operators in a
single GA,

2. to solve larger problems,
3. to implement the algorithm on parallel hardware, and

4. to extend the technique to the Fixed Spectrum Frequency Assignment Problem.
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