
Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

by

Christine L. Valenzuela and Antonia J. Jones

Abstract. Experiments with genetic algorithms using permutation operators applied to the
Travelling Salesman Problem (TSP) tend to suggest that these algorithms fail in two respects
when applied to very large problems: they scale rather poorly as the number of cities n
increases, and the solution quality degrades rapidly. We propose an alternative approach for
genetic algorithms applied to hard combinatoric search which we call Evolutionary Divide and
Conquer (EDAC). This method has potential for any search problem in which knowledge of
good solutions for subproblems can be exploited to improve the solution of the problem itself.
The idea is to use the genetic algorithm to explore the space of problem subdivisions rather
than the space of solutions themselves. We give some preliminary results of this method
applied to the geometric TSP.

Keywords: Evolutionary algorithms, Geometric TSP, Divide and Conquer, Karp’s algorithm.

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE,

TECHNOLOGY AND MEDICINE

UNIVERSITY OF LONDON

180 Queen’s Gate, London, SW7 2BZ

Telephone: 071-589 5111 Ext: 5017/5096
Telefax: 071-581 8024
E-Mail: ajj@doc.ic.ac.uk

Date/version: 12 July 2001
Evolutionary Computation 1(4), 313-333, 1994.
Copyright © 1993. Christine L. Valenzuela and Antonia J. Jones

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

CONTENTS

1. Introduction . 1
TSP algorithms . 1
Genetic algorithms based on Karp’s approach . 3

2. Developing a Divide-and-Conquer approach . 4
Bisection method 1. 4
Bisection method 2 . 4
Bisection method 3 . 4
Solving the subproblems . 4
The simple patching algorithm . 5
Recursive divide and conquer . 5

3. Implementation of a preliminary EDAC algorithm . 7
The genotype representation and crossover . 7
The size of the genotype . 9
Mutation . 9

4. Random Karp-like solutions versus GA Karp-like solutions 9

5. Improving the quality of Karp-like solutions: Recursive-Fast-2-repair. 10

6. Improving the quality of Karp-like solutions: Far-repair. 13

7. Some preliminary results. 15

8. What is the overall contribution of the genetic algorithm? 18

9. Conclusions. 19

References . 23

Appendix . 25

List of figures

Figure 1. Horizontal bisection of a 10 city problem. 4
Figure 2. Subproblems solved. 4
Figure 3. Patched solution. 5
Figure 4. Solution to 50 City Problem using Karp’s deterministic bisection method

1. 6
Figure 5 Relationship between the genotype (top) and the direction of bisection ST. . . 8

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Figure 6. Results of 1000 Random Dissection Experiments on a 500 City Problem
using simple patching. 10

Figure 7. A 2-move on edge E involving a neighbour a. 11
Figure 8. Potential Far-moves. 14
Figure 9. The EDAC (top) and simple 2-Opt (bottom) time complexity (log scales). . . 16
Figure 10. EDAC for 200 Generations on a 5000 City Problem. 16
Figure 11. Random search + repair heuristics for a 500 city problem. The

deterministic Karp + repair heuristics solution yields a tour length 112.33. 18
Figure 12 Comparative scaling plots for EDACII (top) and the previous results

(bottom). The horizontal axis is log cities, and the vertical axis log cpu
secs. 20

Figure 13. The 200-generation EDAC 5% excess solution for a 5000 city problem. . . . 22

3

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Christine L. Valenzuela and Antonia J. Jones

1. Introduction.

Our experience with genetic algorithms using permutation operators applied to the Geometric
Travelling Salesman Problem (TSP) suggests that these algorithms fail in two respects when
applied to very large problems: they scale rather poorly as the number of cities n increases,
and the solution quality degrades rapidly. We shall present detailed results to illustrate these
observations in a more comprehensive discussion. However, our goal here is to describe a
new approach which we are developing that is designed to overcome these problems.

We call our alternative method, for genetic algorithms applied to hard combinatoric search,
Evolutionary Divide and Conquer (EDAC). This approach has potential for any search
problem in which knowledge of good solutions for subproblems can be exploited to improve
the solution of the problem itself. The idea is to use the genetic algorithm to explore the space
of problem subdivisions rather than the space of solutions themselves. We give some
preliminary results of this method applied to the geometric TSP. Essentially we are suggesting
that intrinsic parallelism is no substitute for divide and conquer in hard combinatoric search
and we aim to have both.

Our goal has been to develop a genetic algorithm capable of producing reasonable quality
solutions for problems of several thousand cities, and one which will scale well as the
problem size n increases. ’Scaling well’ in this context almost inevitably means a time
complexity of O(n) or at worst O(nlogn). This is a fairly severe constraint, for example given
a list of n city co-ordinates the simple act of computing all possible edge lengths, a O(n2)
operation is excluded. Such an operation may be tolerable for n = 5000 but becomes
intolerable for n = 100,000.

Given the self-imposed scaling constraint the other two important axes of comparison are the
quality of solutions and the actual run time. To provide some basis for comparison we
contrast our approach with the standard 2-Opt.

TSP algorithms. The best exact solution methods for the travelling salesman problem are
capable of solving problems of several hundred cities [Grötschel 1991], but unfortunately
excessive amounts of computer time are used in the process and, as n increases, any exact
solution method rapidly becomes impractical. For large problems we therefore have no way
of knowing the exact solution, but in order to gauge the solution quality of any algorithm we
need a reasonably accurate estimate of the minimal tour length. This is usually provided in
one of two ways.

For a uniform distribution of cities the classic work by Beardwood, Halton and Hammersley
(BHH) [Beardwood 1959] obtains an asymptotic best possible upper bound for the minimum

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

tour length for large n. Let {Xi}, 1 ≤ i < ∞, be independent random variables uniformly
distributed over the unit square, and let Ln denote the shortest closed path which connects all
the elements of {X1,...,Xn}. In the case of the unit square they proved, for example, that there
is a constant c > 0 such that, with probability 1,

where c > 0 is a constant. In general c depends on the geometry of the region considered.

(1)lim
n → ∞

Ln n 1/2 c

One can use the estimate provided by the BHH theorem in the following form: the expected
length Ln

* of a minimal tour for an n-city problem, in which the cities are uniformly
distributed in a square region of the Euclidean plane, is given by

where R is the area of the square and the constant 0.765 has been determined empirically

(2)Ln ≈ 0.765 nR

[Stein 1977]. In all our experiments we fix the area R so that Ln
* = 100 and the percentage

excess of a tour length is the percentage excess relative to this estimate.

A second possibility would be to use a problem specific estimate of the minimal tour length
which gives a very accurate estimate: the Held-Karp lower bound [Held 1970], [Held 1971].
Computing the Held-Karp lower bound is an iterative process involving the evaluation of
Minimal Spanning Trees for n-1 cities of the TSP followed by Lagrangean relaxations.
However, the typical percentage excess of the present version of our algorithm does not really
require us to implement this estimate.

If one seeks approximate solutions then various algorithms based on simple rule based
heuristics (e.g. nearest neighbour and greedy heuristics), or local search tour improvement
heuristics (e.g. 2-Opt, 3-Opt and Lin-Kernighan), can produce good quality solutions much
faster than exact methods. A combinatorial local search algorithm is built around a
’combinatoric neighbourhood search’ procedure, which given a tour, examines all tours which
are closely related to it and finds a shorter ’neighbouring’ tour, if one exists. Algorithms of
this type are discussed in [Papadimitriou 1982]. The definition of ’closely related’ varies with
the details of the particular local search heuristic.

The particularly successful combinatorial local search heuristic described by Lin and
Kernighan [Lin 1973] defines ’neighbours’ of a tour to be those tours which can be obtained
from it by doing a limited number of interchanges of tour edges with non-tour edges. The
slickest local heuristic algorithms1, which on average tend to have complexity O(nα), for
α > 2, can produce solutions with approximately 1-2% excess for 1000 cities in a few
minutes. However, for 10,000 cities the time escalates rapidly and one might expect that the
solution quality also degrades, see [Gorges-Schleuter 1990], p 101.

1 The most impressive results in this direction are due to David Johnson at AT&T Bell Laboratories -
mostly reported in unpublished Workshop presentations.

2

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

An approximation scheme A is an algorithm which given problem instance I and ε > 0 returns
a solution of length A(I,ε) such that

(3)
A(I,ε) Ln(I)

Ln(I)
≤ ε

Such an approximation scheme is called a fully polynomial time approximation scheme if its
run time is bounded by a function that is polynomial in both the instance size and 1/ε.
Unfortunately the following theorem holds, see for example [Lawler 1985], p165-166.

Theorem. If ℘ N℘ then there can be no fully polynomial time approximation scheme for
the TSP, even if instances are restricted to points in the plane under the Euclidean metric.

Although the possibility of a fully polynomial time approximation scheme is effectively ruled
out, there remains the possibility of an approximation scheme that although it is not
polynomial in 1/ε, does have a running time which is polynomial in n for every fixed ε > 0.
The Karp algorithms, based on cellular dissection, provide ’probabilistic’ approximation
schemes for the geometric TSP.

Theorem [Karp 1977]. For every ε > 0 there is an algorithm A(ε) such that A(ε) runs in time
C(ε)n+O(nlogn) and, with probability 1, A(ε) produces a tour of length not more than 1+ε
times the length of a minimal tour.

The Karp-Steele algorithms [Steele 1986] can in principle converge in probability to near
optimal tours very rapidly. Cellular dissection is a form of divide and conquer. Karp’s
algorithms partition the region R into small subregions, each containing about t cities. An
exact or heuristic method is then applied to each subproblem and the resulting subtours are
finally patched together to yield a tour through all the cities.

To date the best genetic algorithms designed for TSP problems have used permutation
crossovers for example [Davis 1985], [Goldberg 1985], [Smith 1985], or edge recombination
operators [Whitley 1989], and required massive computing power to gain very good
approximate solutions (often actually optimal) to problems with a few hundred cities [Gorges-
Schleuter 1990]. Gorges-Schleuter cleverly exploited the architecture of a transputer bank to
define a topology on the population and introduce local mating schemes which enabled her
to delay the onset of premature convergence. However, this improvement to the genetic
algorithm is independent of any limitations inherent in permutation crossovers.

Genetic algorithms based on Karp’s approach. In practice a one-shot deterministic Karp
algorithm yields rather poor solutions, typically 30% excess (with simple patching) when
applied to 500 - 1000 city problems. Nevertheless, we believe it is a good starting point for
exploring EDAC applied to the TSP. Our reasons are two-fold. First, there is some
probabilistic asymptotic guarantee of solution quality as the problem size increases. Second,
the time complexity is about as good as one can hope for, namely O(nlogn). The run time of
a genetic algorithm based on exploring the space of ’Karp-like’ solutions will be proportional
to nlogn multiplied by the number of times the Karp algorithm is run, i.e. the number of
individuals tested.

3

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Thus we have reasonable probabilistic guarantees for both the complexity and the solution
quality. For large enough problems several thousand Karp runs (individuals tested) will be
much faster than a combinatorial local search heuristic algorithm. The practical objection
might very well be that ’large enough’ turns out to be very large indeed but still this would
seem to be an approach worthy of study.

2. Developing a Divide-and-Conquer approach.

Figure 1. Horizontal bisection of a 10
city problem.

Bisection method 1. Let rectangle R contain m
cities. Let y be the y-coordinate of the [m/2]th
closest city to the top edge of R. A horizontal cut
through y subdivides R into two rectangles, a upper
rectangle and a lower rectangle. The situation is
illustrated in Figure 1. The effect is to place half the
cities either side of the bisecting line with at least
one city on the bisector. In a similar fashion, a
vertical cut could be applied to bisect the cities
through x, which is the x-coordinate of the [m/2]th
closest city to the left edge of R. In Karp’s first
algorithm the direction of the cut is always parallel
to the shorter side of the rectangle. Karp showed
that by minimizing the lengths of the perimeters of the rectangles he was able to minimise
the expected lengths of the tours. The preliminary results reported in section 4 used this
method of bisection.

Bisection method 2. Karp’s second algorithm

Figure 2. Subproblems solved.

partitions the problems by exactly bisecting the area
of the rectangle parallel to the shorter side. This
produces, however, a more complex situation for the
patching algorithm as there is no shared city.

Bisection method 3. In order to keep the patching
algorithm simple, the original bisection method 1
was replaced by the following bisection rule:

• Rectangles are bisected through the city
nearest to the true area bisection line.

In this way a shared city is maintained and to some degree the simplest features of the first
and second method are combined. The main advantage of this modified bisection method is
the fact that the cities in the region of bisection need not be sorted, they are simply
partitioned into two sets either side of the bisection line, producing either a left-hand set and
a right-hand set, or an upper set and a lower set, depending upon the direction of bisection.
The complexity of a single application of this operation is O(n) (instead of O(nlogn)) and the
total cumulative effect is O(nlogn).

Solving the subproblems. The subproblem size t is kept as small as possible, typically 5 ≤ t
≤ 8. We tried various techniques for solving the subproblems, including exhaustive search.

4

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

However 2-Opt was chosen as the main method for this preliminary work because of its speed
and simplicity and the fact that it can be applied to larger subproblems, without large time
penalties, if required.

The simple patching algorithm. Figure 1 shows the bisection technique resulting in a shared
city occurring on the line separating each adjacent pair of subproblems. After the subproblems
have been solved, as in Figure 2, the four incident edges to the shared city must be reduced
to two. This is achieved by the removal of two of the incident edges, one from each
subproblem, and the creation of a new edge between the two "stranded" cities. As there are
only four possible ways this patching can be done, they are all tried and one that results in
the shortest patched tour is selected. For later purposes the new edge can be added to an edge
list L as a candidate for repair.

Figure 3 illustrates the best patching obtained in this

Figure 3. Patched solution.

way for the 10 city problem used in Figure 1 and
Figure 2.

Recursive divide and conquer. In Karp’s algorithms
the bisection technique is repeated recursively until
the individual subproblem sizes are at or below
some predetermined maximum value, this is
illustrated in Figure 4. When the resulting subtours
have been solved Karp then patches the solutions
globally using two operations called Loop and Pass.

The final EDAC algorithm described here differs
from Karp’s in three important respects:

• A genetic algorithm determines the direction of bisection (horizontal or vertical) used
at each stage.

• The patching technique described above is used to join the subproblem solutions
recursively in pairs instead of patching globally as Karp does.

• Because simple patching turns out in practice to be a major source of error the new
edges created by patching (on the list L) are reviewed for repair. The repair
procedures ultimately used are called Recursive-Fast-2-repair and Far-repair. These
will be described later.

5

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Figure 4. Solution to 50 City Problem using Karp’s deterministic bisection method 1.

6

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

3. Implementation of a preliminary EDAC algorithm.

For this study we chose an extremely simple genetic algorithm based on Cavicchio’s
preselection paradigm, in which a child either replaces a weaker parent or dies (in the latter
case we still count this evaluation as a trial). Cavicchio’s technique in the form used has the
virtue of extreme simplicity and low computational overhead while successfully maintaining
diversity in the relatively small population of 100. Gorges-Schleuter, for example, reports
excellent results for a closely related algorithm, in which the superior offspring replace one
or other parent [Gorges-Schleuter 1990].

Our main initial objective is to demonstrate that genetic algorithms have potential in this area
and we leave work on improving the genetic algorithm to a later date. The Genetic Algorithm
used for the present is outlined in Algorithm 1. Here there is no need to tune such factors as
the crossover rate or the relationship between tour length and fitness.

The genotype representation and crossover. The data structure for the genotype required some

Algorithm 1. The Genetic Algorithm.

begin
Generate N random structures {N is the population size}
Evaluate tour length produced by each structure and store each one
store best-so-far
repeat

select next (first) structure
select a second structure stochastically from a uniform distribution
apply crossover to produce offspring
apply mutation to offspring
evaluate tour length produced by offspring
if offspring better than weaker parent then it replaces it in population
if offspring better than best-so-far then it replaces best-so-far

until stopping condition satisfied
print best-so-far

end.

thought. Our initial view favoured a binary tree structure in which each node in the tree is
labelled with either a ’vertical’ or ’horizontal’ cut instruction. This structure lends itself
naturally to the recursive nature of both the bisection and the construction of the resulting
tour. However, as the tree becomes deeper the link between a cut instruction at a node and
the geometrical region to which that instruction applies becomes progressively more tenuous.
Performing a crossover between two binary trees (by exchanging subtrees, for example) could
easily produce a child where the subtrees were dissecting completely different geometrical
regions for the child than they were for the parents.

The representation actually used was a p by p binary array which is correlated with the
geometrical regions by imagining the array superimposed on the TSP square. Given some
rectangle to be bisected, the partitioning algorithm selects the array component which most
closely corresponds to the centre of the rectangle, and this component (1/0) determines the

7

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

direction of the current cut (horizontal/vertical). This maintains a close correspondence
between the chromosomes of the genotype and the geometrical locality of the centre of the
rectangle. In the current study we used 40 ≤ p ≤ 80.

1

C

A

U V

WX

S

11

1

111

1

00

00

0

000

Figure 5 Relationship between the genotype (top) and the direction of
bisection ST.

Figure 5 illustrates the geometrical relationship between the genotype with p = 4 (top) and
the direction of bisection of the rectangle UVWX (bottom). The centre of the rectangle
UVWX is C which corresponds to the square indicated in the genotype. The genotype entry
of ’1’ denotes a horizontal bisection of the area. The city nearest to the bisector through C
is A, and the horizontal line ST through A is the bisector actually constructed by method 3
(section 2).

8

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Given that the genotype is a binary array the crossover becomes relatively trivial, requiring
only the swapping of binary elements between two parent arrays. In our current
implementation we select the x or y axis with equal probability and then choose two cut
points at random on the selected axis with the proviso that the distance between the two
points must be more than a third and less than two thirds along this axes of the genotype. The
reason for the 1/3, 2/3 restriction is to ensure that each offspring contains a reasonable
proportion of genetic material from each parent thus attempting to avoid the early
proliferation of a few superior individuals.

The first cut relates to the whole region and, as bisection progresses, the region corresponding
to a single array element becomes geometrically smaller and the cities within the region less
uniformly distributed. Since the genotype is a binary array one can envisage that a suitably
modified schema theorem may possibly apply. Although a schema theorem by itself would
be no guarantee of progress [Grefenstette 1989], it might be useful in the overall scheme of
things if the optimal decision to cut horizontally or vertically near any rectangle centre is
correlated with the distribution of cities. It seems likely that this is the case.

The size of the genotype. The array acts as a look-up table for the genetic algorithm with only
a few points being accessed for each application of the partition algorithm. In this respect it
is analogous to the DNA in natural chromosomes for which only a small part is active in each
cell, the remainder being "switched off". Certainly p must be at least √(n/t-1), but for extreme
distributions of cities a given value of p may not provide sufficient resolution and a larger
value may be required. Although suitable array sizes for TSP problems of different
magnitudes is an obvious area for investigation, it is worth noting that whilst a population of
large arrays would occupy much more memory than a population of small arrays it would not
consume significantly more computing time. More copying would obviously be required to
produce the offspring and more mutations to achieve a given mutation rate, but the number
of times the genotype is accessed as a look-up table is dependent only upon the number of
partitions required for a particular problem and is completely independent of the genotype
size.

Mutation. A random point of the array is inverted such that a horizontal instruction becomes
a vertical instruction and vice versa. For each genotype created by the genetic algorithm 0.1%
of array components were mutated.

4. Random Karp-like solutions versus GA Karp-like solutions.

If we maintain the subproblem size, t, and increase the number of cities in the TSP, then a
partition better than Karp’s becomes progressively harder to find by randomly choosing a
horizontal or vertical bisection at each step. If the problem size is n ∼ 2kt, where 2k is the
number of subsquares, then the corresponding genotype requires at least n/t - 1 bits. The size
of the partition space is 2 to the power p2, which for p = 80 (the value we used for n = 5000)
is approximately exp(4436). For n = 5000 the size of permutation search space, roughly
estimated using Stirling’s formula, is around exp(37586). Thus searching partition space is
easier than searching permutation space but still the hard nature of the bisection problem
provides sufficient motivation for exploring genetic algorithms as a possible adaptive search
technique.

9

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

In Figure 6 we present the results of 1000 attempts at dissecting a 500 city problem "tossing
a coin" at each stage to determine whether to perform a horizontal or vertical bisection and
then using bisection method 1. Again the subproblem size is about 6. Not one of the thousand
random trials produced a solution as good as the deterministic Karp bisection technique which
gave 127.96.

Figure 6. Results of 1000 Random Dissection Experiments on a 500 City Problem using
simple patching.

A single run of EDAC using the same bisection method, for 100 generations with a population
of 100 (10000 individuals examined), produced a solution of 122.58 thus at n = 500 the
EDAC approach proved capable of improving upon the deterministic Karp algorithm. This
was reassuring since it demonstrated that the method had some hope of success. Nevertheless,
the solution quality was still unsatisfactory and this led us to search for ways to improve the
quality of the Karp-like solutions produced by EDAC.

5. Improving the quality of Karp-like solutions: Recursive-Fast-2-repair.

Using bisection method 3 (see section 2) gives a overall improvement in run time without
seeming to affect the solution quality much either way, and all subsequent results reported
herein used this method. It became clear that in order to eliminate the more obvious defects
introduced by patching it would be necessary to weaken the link between genotype and
phenotype by using a repair mechanism on the Karp-like solutions generated by the genetic

10

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

algorithm. We have not yet explored all the

Figure 7. A 2-move on edge E involving a
neighbour a.

options in this direction, but in this study
we initially opted for a method we called
Global-Fast-2-repair which we subsequently
modified to Recursive-Fast-2-repair.

The constraints on the repair technique are
fairly obvious: it should address errors
typical of Karp-like solutions, it should
ideally be O(n), and it should use
information which can be acquired at low
time cost.

The most basic of the combinatorial tour
repair heuristics is 2-Opt which proceeds by
a series of pairwise edge exchanges called
2-moves. Figure 7 illustrates a 2-move for the intuitive edge-crossing case, but it is possible
to effect a 2-move improvement even in cases where the two replaced edges do not cross.

To find a 2-move which decreases the tour length a simple 2-Opt must consider all edge pairs
for a possible exchange, which itself requires a O(n2) calculation. If a 2-move leads to a
decrease of the tour length the edge exchange is accepted and this requires inverting and
rewriting part of the tour. Once accepted a single 2-move therefore costs an amount of
computation time d(n), which depends on the length of the segment to be inverted, i.e. the
quality of the current tour.2 If the current tour is very bad, d(n) is proportional to n. For
good tours d(n) can be much less, proportional to nα, where α < 1. This leads to an overall
time complexity of O(n2d(n)) and it is easy to prove that the worst case analysis is O(n3) (see,
[Lawler 1985], p 164).

First described in [Martin 1992], Fast-2-Opt is a modification of the standard 2-Opt which
restricts the number of 2-moves considered. For the geometric TSP, when using 2-Opt it is
silly to consider pairs of edges which are far apart in the physical space of the problem. One
way in which Fast-2-Opt makes this idea precise is by maintaining a list for each city of the
edge lengths to (say) the 10 nearest neighbours, and restricting 2-moves to these edges.
Unfortunately constructing these lists is itself at least a O(n2) operation if one is not given
all the edge lengths to begin with. Fortunately, as shortly described, in the context of an
evolutionary search this problem is easily overcome.

To further encourage rapid termination Martin et al introduced the guard condition which
depends on Min, the minimum edge length of all edges, and Max, the maximum edge length
of the current tour. The guard condition is the essence of their Fast-2-Opt since it introduces
an element of geometrical locality which restricts the number of cases to be considered. The
original guard condition requires that one calculates the minimum possible edge length, a
O(n2) calculation. We replaced this by an estimate based on the initial population, which

2 It might appear at first sight that this cost is implementation dependent, and may possibly be avoided
by skilful use of pointers. However, a number of experiments convinced us that the more tempting alternatives
yielded longer run-times in practice.

11

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

means we may have missed some 2-move improvements. This estimate could be updated as
the evolutionary search progressed.

Since we already have a list L of potential edges for repair, which is generated by the simple
patching process, our first attempt at a repair algorithm consisted of a modification of Fast-2-
Opt which, in addition to the nearest neighbour lists, also used the list L. Algorithm 2
contains outline pseudocode for this procedure which we called Global-Fast-2-repair. A
similar routine is also considered in [Gorges-Schleuter 1990].

The initial version of Global-Fast-2-repair did not require the n2 nearest neighbour
calculations. Instead the nearest neighbours to each city are estimated from the initial
population of patched solutions, where each city’s neighbours in the tour are candidates for
insertion into the nearest neighbour lists found so far (the lists are sorted in increasing order
of edge lengths). As the evolutionary search progresses and further neighbourhood information
becomes available these lists could be progressively updated. However, comparisons between
the initial lists and those generated by the full O(n2) calculation were quite favourable. Once
the initial neighbour lists have been constructed and prior to the start of the genetic algorithm,
the initial set of tours was itself subjected to Global-Fast-2-repair, and the tour lengths
recorded. Subsequently each new tour generated by the genetic algorithm was subjected to
Global-Fast-2-repair using the edge list L described in section 2.

Plainly Algorithm 2 terminates (each improvement decreases the tour length and there are
only finitely many tour lengths), the important issue is how quickly. The initial length of the
active list L is at most n/t - 1, where t is the number of cities in each subproblem, but L can
sometimes get longer, since the edge (a, next(a)), or (prev(b),b), which is subtracted if present
in L, may not (in fact) be in L. If we do not add the second edge then a much faster, but less
accurate procedure, results.

However initial experiments showed that, whilst Global-Fast-2-repair was successful in lifting
the quality of solution from 13% (using slightly more elaborate patching) to 4-5% excess, the
scaling was poor. Up to n = 5000 Global-Fast-2-repair was scaling at around O(n1.7) and the
exponent seemed to be increasing as n got larger. Not adding the second edge improved the
scaling to approximately O(n1.3) but the solution quality was around 10% excess. The next
step towards improving the situation was to attempt to get as much benefit from 2-moves as
possible whilst limiting the combinatoric growth of cases considered.

We modified Global-Fast-2-repair to become a local procedure, Recursive-Fast-2-repair,
which is applied to repairing subsolutions rather than the whole tour. Recursive-Fast-2-repair
succeeds each simple patching operation in the recursive construction of the global tour.
Whilst the function of Recursive-Fast-2-repair is essentially the same as its global
counterpart, its implementation is subtly different. Recursive-Fast-2-repair expends most of
its efforts repairing small subproblems, where accepted 2-moves require only short subtour
inversions. In addition each call to Recursive-Fast-2-repair is initiated with an edge list L
containing just one edge, the rogue edge produced by a single simple patching algorithm.
Global-Fast-2-repair, on the other hand, is characterised by longer subtour inversions and is
initiated with an edge list containing all the rogue edges resulting from all the simple
patching operations.

12

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Some results obtained from single runs of EDAC with Recursive-Fast-2-repair are presented
in Table 2 (Appendix). A least-squares analysis reveals an empirical scaling of O(n1.07), and
a linear plot results from time vs nlogn. Thus the scaling properties meet our requirements.
Unfortunately the quality of the solutions at 8-10% excess are considerably worse than those
obtained using Global-Fast-2-repair at 4-5% excess.

Algorithm 2. Global-Fast 2-repair.

Procedure Global-Fast-2-repair(T, L, Neighbourhood lists)
{T is the current tour, L = L(T) is list of edges of T to be considered. Max is the
maximum edge length of the current tour, Min is the estimated minimum edge
length of all edges. l is the length of the neighbour lists (l = 10 in these
experiments). s(E) is start city of edge E, f(E) is final city of edge E. next(a) and
prev(a), for city a, are next city and previous city, respectively of current tour
T}

begin

while L Ø do
select edge E = (s(E), f(E)) ∈ L
m := 1: improvement := false

while m ≤ l and (improvement = false) do {check neighbours of s(E) & f(E)}
a := neigh(s(E),m): {mth neighbour of s(E) on list}
b := neigh(f(E),m) {mth neighbour of f(E) on list}
if (d(s(E),a) + Min > d(s(E),f(E)) + Max) and

(d(f(E),b) + Min > d(s(E),f(E)) + Max) then break inner while loop
{check neighbour of s(E)}
if d(s(E),a) + d(f(E),next(a)) < d(s(E),f(E)) + d(a,next(a)) then

L := L - {E,(a,next(a))} + {(s(E),a),(f(E),next(a))}
make 2-move on T {see Figure 4}
update Max
improvement := true

{check neighbour of f(E)}
if d(s(E),prev(b)) + d(f(E),b) < d(s(E),f(E)) + d(prev(b),b) then

L := L - {E,(prev(b),b)} + {(s(E),prev(b)),(f(E),b)}
make 2-move on T
update Max
improvement := true

m := m + 1 {no 2-moves, check next neighbour}
end while {take next edge in L}

L = L - {E} {delete edge from the active list}
end while

end

6. Improving the quality of Karp-like solutions: Far-repair.

13

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

With a view to further improving the solution quality we developed a low-cost tour
improvement heuristic. In essence the scheme deletes cities from their positions in the current
tour and inserts them in new positions whenever this move produces a reduction in the tour
length. The algorithm, which we call Far-repair, is applied globally following the
construction of the initial tour by simple patching and Recursive-Fast-2-repair.

Figure 8. Potential Far-moves.

Algorithm 3 details Far-repair which obviously has time complexity O(n). Far-repair
involves exchanging three edges (a 3-move) and so will repair defects which are beyond the
scope of any 2-move.

The lists of nearest neighbours accumulated for the 2-move procedures are employed by Far-
repair to ensure that the algorithm does not waste valuable time evaluating potential moves
that have little chance of success. Figure 8 shows how a city is tested as a candidate for a
Far-move. It is tried first one side of a near neighbour, then the other. The term ’far’ repair
refers to the fact that individual cities can be moved to new positions in the current tour that
are "far away" from their present positions in terms of where they are on the permutation list
defining the tour.

14

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Algorithm 3. Far-repair.

Procedure Far-repair(Tour, Position, Which_Slot, Nbhd)

{Attempts to move individual cities - see Figure 5.
Position[] is an array of pointers to the location of the city in the tour.
Which_Slot[] defines which city is in a given tour position.
Nbhd[] specifies the l nearest neighbours of each city.}

begin

for each city in Problem do {check neighbours of city}
a := Position[city] {pointer to city in tour}
prev_city := Which_Slot[a-1]
next_city := Which_Slot[a+1]
i := 1

while i ≤ l do {each near neighbour}
nbr = Nbhd[city][i]
b = Position[nbr] {pointer to neighbour in tour}
prev_nbr = Which_Slot[b-1]
next_nbr = Which_Slot[b+1]
{investigate move}
if d(prev_city,next_city) + d(prev_nbr,city) + d(city,nbr)

< d(prev_city,city) + d(city,next_city) + d(prev_nbr,nbr) then
delete city from current position
insert it between prev_nbr and nbr
break while loop

else if d(prev_city,next_city) + d(nbr,city) + d(city,next_nbr)
< d(prev_city,city) + d(city,next_city) + d(nbr,next_nbr) then

delete city from current position
insert it between nbr and next_nbr
break while loop

i := i + 1 {no far-moves, check next neighbour}
end while {take next city in problem}

end for

end

7. Some preliminary results.

In practice the simplest 2-Opt has a time complexity of slightly more than O(n2), see Figure 9
- bottom trace. Here each data point represents the average for 100 random tours subjected
to 2-Opt for fixed problems of size of n = 100, 200, 500, 1000, 2000, and 5000 respectively.
The line represents the least squares fit and has slope 2.028. Accuracy for the simple 2-Opt
is around 8-9% excess.

15

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Figure 9. The EDAC (top) and simple 2-Opt (bottom) time complexity
(log scales).

Figure 10. EDAC for 200 Generations on a 5000 City Problem.

16

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Table 3 (Appendix) gives some results for EDAC with Recursive-Fast-2-repair + Far Repair.
These results are plotted in the top trace of Figure 9. The least squares slope is about 1.04
and the accuracy is at worst 6%. It may seem counter-intuitive that the scaling exponent 1.04
(using both repair techniques) is less than 1.07 (when only one is used). Of course, for
sufficiently large n the larger exponent must dominate. However, when n is small Far-repair
takes up a high proportion of the total cpu time and as n gets larger this proportion decreases
rapidly.

Although these are preliminary results it is quite clear that the general method of approach
is viable. Our initial attempt succeeded in the goal of designing a genetic algorithm capable
of reliably giving solutions with around 5-6% excess for geometric TSP problems involving
several thousand cities within 100 generations (10,000 individuals tested).

In Figure 10 the EDAC algorithm has been allowed to run for 200 generations (as opposed
to the normal 100) and although the tour quality is still improving it is clear that, without
more effective repair heuristics, further tour quality improvement will be marginal.

This particular 200-generation run produced a tour having a 5% excess - see Figure 13. On
the downside it is clear that, whilst viable, the method is probably not yet practical3. The
natural comparison would perhaps be with iterated Lin-Kernighan. However, in reviewing the
compute-time figures one should bear in mind that we were interested in scaling and made
no attempt to optimise the EDAC code.

3 For example, wildly extrapolating our figures gives the breakeven point with 2-Opt at around n =
422,800 requiring some 74 cpu days! Of course, other things would collapse before then.

17

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

8. What is the overall contribution of the genetic algorithm?

In order to assess the contribution of the genetic algorithm over and above both random
search and Karp’s deterministic bisection method, we ran some control experiments.

Figure 11 shows a distribution of 10000 Karp-like random trials on a 500 city problem.
Recursive-Fast-2-repair + Far-repair are used here, and other parameters are set to make the
10000 trials comparable to a single run of EDAC with these heuristics. (EDAC has a
population size of 100, and runs for 100 generations).

Table 1 summarizes random search experiments on 1000 and 2000 city problems as well as

Figure 11. Random search + repair heuristics for a 500 city problem. The deterministic Karp
+ repair heuristics solution yields a tour length 112.33.

the 500 city results, and compares these with the results obtained by running EDAC and
recording the best solution produced. Entries in the EDAC column represent the mean of 5
runs of EDAC for the 500 and 1000 city problems, and the mean of 2 runs for the 2000 city
problem.

Examining the table, for n = 500 the mean of the distribution of randomly generated Karp-like
solutions plus repair heuristics is 118.87. The best of 10000 such trials gives a solution 2.13
Standard Deviations (SD) better than the mean, whereas the same number of evaluations using
the EDAC algorithm plus repair heuristics yields an improvement 2.90 SD better than the

18

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

mean, a difference of 0.77 SD between the two. For 1000 cities this difference is 1.38 SD and
for 2000 cities it is 1.82 SD. The EDAC algorithm is steadily improving its performance
relative to random search as the problem size increases. Since the distribution is skewed the
relative improvement using the genetic algorithm is actually better than these figures indicate.

It is interesting to note that the one-shot Karp deterministic algorithm plus repair heuristics
yielded a solution of 112.33 on the 500 city problem. Random search plus repair heuristics
did better than this with a best of 108.91. It would appear that Karp’s deterministic rule for
deciding the direction of bisection becomes less effective as more repair heuristics are added.
Fortunately, the same does not seem to be true of the EDAC algorithm.

Table 1 Comparing 10000 random Karp-like solutions + repair heuristics with EDAC
+ repair heuristics.

Problem size Mean Standard
Deviation

Best EDAC

500 118.87 4.66 108.91 105.34

1000 120.15 4.35 110.66 104.65

2000 120.12 4.16 112.20 104.66

9. Conclusions.

Evolutionary divide and conquer offers a new approach for genetic algorithms applied to hard
combinatoric search. We have applied this idea to the geometrical TSP and shown it to be
viable if not yet practical. The genotype represents a division of the original problem into
subproblems and the process of constructing a phenotype (tour) from the genotype is
analogous to the growth of an individual. To meet the goal of an algorithm with good scaling
it is necessary that this growth process scales at O(n) or, at worst, O(n(logn)α) for some
α > 0. Since the standard combinatorial local repair heuristics scale at O(n2) or worse, to
satisfy this requirement for an acceptable tour quality we have been obliged to develop
geometrically local repair heuristics one of which, Far-repair, is presented here. We feel
confident that the overall accuracy can be improved by a more sophisticated combination of
geometrically local heuristics, and we have a number of promising approaches yet to be
explored. In addition we expect modifications to our genetic algorithm, currently a very
simple but non-standard form, will also yield some improvements.

Once the model is refined, an obvious direction for further work is to parallelise the EDAC
algorithm. It is clear that the overall design lends itself to parallelisation at several levels and
in a number of different ways depending upon the parallel architecture. We plan to explore
these possibilities when algorithm refinement is complete.

Added in revision.

19

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Subsequent experiments reveal that using repair combinations of Recursive-Fast-2-repair and
an Enhanced-Far-repair the EDACII algorithm consistently produces solutions at the 1%
level. For example for a 2000 city problem we obtained a solution of 100.00 and in other
large problems solutions with a negative excess. For this variation of the algorithm the scaling
is preserved (the least squares line has slope 1.014), see Figure 12 and Table 4 for
preliminary results. However, the overall run times are approximately 5 times higher.

Figure 12 Comparative scaling plots for EDACII (top) and the
previous results (bottom). The horizontal axis is log cities, and the
vertical axis log cpu secs.

We are thus moving into a phase where we need more accurate estimates of the optimum tour
length and have implemented variations of the Held-Karp lower bound. Similarly, it would
be extremely useful to have a more accurate estimate of Stein’s constant. The difficulty in
approaching this empirically is that so few exact solutions are known for very large problems
of the right type (uniformly random distributions of cities).

The Enhanced-Far-repair heuristics in version EDACII attempt to gain improvements by
moving very small groups, as well as individual cities. Despite their obvious success in
buying an improved solution quality, we have recently come to consider our recipes of global
Far-repair combinations to be the least elegant part of the implementation.

The idea behind Recursive-Fast-2-repair is to exploit the recursive structure of a Karp-like
tour, and so limit the combinatorial growth of 2-moves when Fast-2-repair is called. This
seems to us more in keeping with the divide-and-conquer paradigm. Moreover, this idea is
capable of generalisation in the sense that it can be applied to any combinatorial repair
heuristic. With this in mind we are now considering more powerful recursive repair
mechanisms. Hopefully, the mix-and-match combinations of various types of 2-repair and 3-

20

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

repair can then be discarded and the resulting algorithm will be more accurate and less time
consuming.

Acknowledgements.

We should like to thank Heinz W. Muhlenbein of GMD for first stimulating our interest in
parallel algorithms for very large TSP problems, and Martina Gorges-Schleuter for her
continued encouragement and many illuminating discussions. We are also grateful for the
helpful comments of the referees.

21

Figure 13. The 200-generation EDAC 5% excess solution for a 5000 city problem.

22

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

References

[Beardwood 1959] J. Beardwood, J. H. Halton and J. M. Hammersley. The shortest path
through many points. Proc. Cambridge Philos. Soc. 55:299-327, 1959.

[Davis 1985] L. Davis. Job shop scheduling with genetic algorithms. Proceedings of an
International Conference on Genetic Algorithms and Their Applications, pp136-140. Ed. J.
Grefenstette, Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.

[Goldberg 1985] D. E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman
problem. Proceedings of an International Conference on Genetic Algorithms and Their
Applications, pp154-159. Ed. J. Grefenstette, Lawrence Erlbaum Associates, Hillsdale, NJ,
1985.

[Gorges-Schleuter 1990] Martina Gorges-Schleuter. Genetic Algorithms and Population
Structures, A Massively Parallel Algorithm. Ph.D. Thesis, Department of Computer Science,
University of Dortmund, Germany. August 1990.

[Grefenstette 1989]. John J. Grefenstette and James E. Baker. How Genetic Algorithms Work:
A critical look at Implicit Parallelism. Proceedings of the Third International Conference on
Genetic Algorithms, pp 20-27, San Mateo, CA, Ed. J. D. Schaffer, Morgan Kaufmann, 1989.

[Grötschel 1991] M. Grötschel and O. Holland. Solutions of large-scale symmetric traveling
salesman problems. Mathematical Programming 51:141-202. North Holland, 1991.

[Held 1970] M. Held and R. M. Karp. The travelling salesman problem and minimum
spanning trees. Oper. Res. 18:1138-1162, 1970.

[Held 1971] M. Held and R. M. Karp. The travelling salesman problem and minimum
spanning trees: part II. Math. Programming 1:6-25, 1971.

[Karp 1977] R. M. Karp. Probabilistic analysis of partitioning algorithm for the Travelling-
Salesman Problem in the plane. Mathematics of Operations Research, 2(3):209-224, August
1977.

[Lawler 1985] Ed. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.
The travelling salesman problem - A guided tour of combinatoric optimisation. John Wiley
& Sons, 1985.

[Lin 1973] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the travelling
salesman problem. Oper. Res. 21:498-516, 1973.

[Martin 1992] O. Martin, S. W. Otto, and E. W. Felten. Large-Step Markov chains for the
TSP in cooperating local search heuristics. Operations Research Letters, 11(4):219-224, 1992.

23

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

[Papadimitriou 1982] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimisation:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, N.J., 1982.

[Smith 1985] D. Smith. Bin packing with adaptive search. Proceedings of an International
Conference on Genetic Algorithms and Their Applications, pp202-206. Ed. J. Grefenstette,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.

[Steele 1986] J. M. Steele. Probabilistic algorithm for the directed Travelling Salesman
Problem. Mathematics of Operations Research, 11(2):343-350, May 1986.

[Stein 1977] D. Stein. Scheduling Dial-a-Ride transportation systems: an asymptotic
approach. Ph.D. thesis, Harvard University, Cambridge, MA. 1977.

[Whitley 1989] Darrell Whitley. Scheduling Problems and Travelling Salesman: The Genetic
Edge Recombination Operator. Proceedings of the Third International Conference on Genetic
Algorithms, pp 133-140, San Mateo, CA, Ed. J. D. Schaffer, Morgan Kaufmann, 1989.

24

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

Appendix.

Table 2 EDAC with Recursive-Fast-2-repair (Sparc 10) - single runs.

n log n p time (secs) log time best

100 2 40 706.8 2.8493 101.07

200 2.3010 40 1504 3.1772 109.47

500 2.6990 40 3718.5 3.5704 108.39

1000 3 60 8992.9 3.9539 108.75

2000 3.3010 80 16908.4 4.2281 109.24

5000 3.6990 80 46825.2 4.6705 110.35

* denotes average of 2 runs.

Table 3 EDAC with Recursive-Fast-2-repair + Far-repair (Sparc 10) - average of 5
runs.

n log n p time (sec) log time best

100 2 40 1085.298 3.0355 99.27

200 2.3010 40 2205.258 3.3435 105.41

500 2.6990 40 5473.458 3.7383 105.34

1000 3 60 11679 4.0674 104.65

2000* 3.3010 80 23444.4 4.3700 104.66

5000* 3.6990 80 65012.4 4.8129 105.90

25

Evolutionary Divide and Conquer (I): a novel genetic approach to the TSP.

* single run.

Table 4 EDACII with Recursive-Fast-2-repair + Enhanced-Far-repair (Sparc 10) -
average of 4 runs.

n log n p time (sec) log time best

200 2.3010 40 11089.9 4.04493 101.81

500 2.6990 40 28013.2 4.4474 100.71

1000 3 80 57071.5 4.75642 99.62

2000* 3.3010 80 114127.2 5.05739 100.00

26

