Heuristics for Large Strip Packing Problems with Guillotine
Patterns: an Empirical Study

Christine L. Valenzuela * Pearl Y. Wang |

* Department of Computer Science, Cardiff University
PO Box 916, Cardiff CF24 3XF, United Kingdom

Email: christine@cf.cs.ac.uk

t Department of Computer Science MS4A5, George Mason University
Fairfax, VA 22030-4444, USA
Email: pwang@cs.gmu.edu

1 Introduction

In this paper we apply a variety of simple heuristics to strip packing problems with guillotine patterns
(also known as slicing floorplans) and compare the results to those obtained using a genetic algorithm
(GA). Although the GA performs well on smaller problem sizes, our results confirm that the simple
heuristics become more effective and outperform the GA as the problem size increases.

1.1 Preamble

We undertake an empirical study in which the performance of a good genetic algorithm is tested against
some well-known bin packing heuristics on a range of two-dimensional bin packing problems. We restrict
our study to problems involving guillotine patterns which are produced using a series of vertical and
horizontal edge—to—edge cuts. Many applications of two-dimensional cutting and packing in the glass,
wood, and paper industries, for example, are restricted to guillotine cutting.

The problem under consideration involves the packing of a set of rectangles into a bin of given width
and infinite height so that no rectangles are overlapping. The goal of this strip packing problem is to
minimize the height of the packing. We compare the performance of our GA, developed for placement
and packing problems [9, 10] with the performance of some level-packing algorithms [1] and the Split
algorithm [3] on data sets of various sizes with a variety of characteristics.

A suite of data generation programs have been developed in [11] that produce data sets with optimal
guillotine packings of zero waste. The software allows a set of basic rectangles to be cut from a large
enclosing rectangle of given dimensions, and options are available which allow the user to control various
characteristics: the number of pieces in the data set, the maximum and minimum height/width ratios
of the pieces, and the ratio of the largest piece to the smallest piece cut.

Several recent comparative studies on strip packing have reported superior performances for meta-
heuristic algorithms over simple heuristic approaches (for examples see [4, 5, 7]). We note, however,
that in most of these cases, the problem sizes are restricted to 100 rectangles or less. Our interests lie
in examining a larger range of problem sizes and types.

MIC’2001 - 4th Metaheuristics International Conference 2

2 Simple Heuristic Algorithms for Guillotine Packing

In this section we review the simple heuristic algorithms used for our comparative study. Typically,
the sets of rectangles to be packed are first preprocessed by arranging them in order of non-increasing
height or width, and then placing them in the bin, one at a time, in a simple deterministic fashion.
Two of the heuristic algorithms we use are based on the so-called level oriented heuristics which were
introduced by Coffmann et al [2]. The third algorithm, first described by Golan [3], relies on repeatedly
splitting the bin into smaller rectangles (or ‘bins’), and packing the pieces, sorted by decreasing width,
into ever narrower bins as the algorithm progresses. All three heuristic algorithms produce guillotine
patterns.

2.1 The Level Oriented Algorithms

To implement a level oriented algorithm, the items are first preordered by non—increasing height, and
then the packing is constructed as a series of levels, each rectangle being placed so that its bottom rests
on one of these levels. The first level is simply the bottom of the bin. Each subsequent level is defined
by a horizontal line drawn through the top of the tallest rectangle on the previous level. In the Next
Fit Decreasing Height (NFDH) algorithm rectangles are packed left justified on a level until the next
rectangle will not fit, in which case it is used to start a new level above the previous one, on which
packing proceeds. The run time complexity of NFDH (excluding the sort) is linear, just placing one
rectangle after another in sequence. The First Fit Decreasing Height (FFDH) algorithm places each
rectangle left justified on the first (i.e. lowest) level in which it will fit. If none of the current levels
has room, then a new level is started. The run time complexity for FFDH is O(nlgn) where n is the
number of rectangles being packed. Figure 1 illustrates a typical FFDH packing for 50 rectangles.

For the level packing algorithms the asymptotic worst case performance is known to be twice the
optimum height for the NFDH algorithm and 1.7 times the optimum height for the FFDH algorithm.

Figure 1: A FFDH packing for 50 rectangles

2.2 The Split Algorithm

The Split Packing algorithm is more complicated than the level oriented algorithms. It packs the pieces
in order of non—increasing width. We can imagine that for each piece that is packed the original bin
is split into two, and then into two again when the next piece is packed, and so on. As the rectangles
to be packed are sequenced according to width, after packing some pieces, those left to be packed are
narrower and thus easy to fit into one of newly created bins. If possible we pack pieces side by side with
previously packed pieces, when this is not possible we pack pieces on top of previously packed pieces.
When pieces are packed next to each other, closed bins are created in which no further pieces can be
packed. The worst—case performance of Split pack is three times the optimum height. Full details of
the Split algorithm can be obtained from [3]. Figure 2 illustrates a typical Split algorithm packing for
50 rectangles.

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 3

siipeiepioinlBilin)

THEEE

Figure 2: A Split algorithm packing for 50 rectangles

3 Our Genetic Algorithm

Our genetic algorithm (GA) for solving packing and placement problems is based on a normalized postfix
representation, which offers a unique encoding for each guillotine pattern and covers the search space
efficiently. The postfix representation provides a blueprint for the recursive bottom—up construction of
a packing or placement, by combining rectangles together in pairs. Our approach has proven effective
for the VLSI floorplanning problem, and we refer the interested reader to our earlier papers [9, 10].
Most of the details given earlier for our representation, decoder, and GA apply equally to the current
study. There are a few minor modifications to note, however. Firstly, the GA described in our earlier
papers was designed for placing so—called soft modules, which are rectangles which have a fixed area
but flexible height and width dimensions. The earlier GA includes an area optimization routine which
optimizes the height and width dimensions of the soft modules. This routine is not needed for the
present study. Secondly, the GA handles the fixed width constraint in the strip packing problem by
rejecting packings that are too wide, and repeatedly generates new ones until the width constraint is
satisfied. Finally, for the present study we have incorporated a rotation heuristic into our GA. This
performs rotations where this is locally effective, and produces better results than the earlier version

of our GA.

Figure 3: GA packings for 25 and 50 rectangle problems from [6]: width = 40, height = 16

Our current aim is to compare the performance of a good genetic algorithm with the classical strip
packing heuristics on a range of data sets of different sizes with different characteristics. Evidence that
our GA is a good one is provided by the excellent results we obtained in [10], and also by the results we
were able to attain using the 25 and 50 rectangle problems from [6]. Our solutions matched the best
obtained by Liu and Teng in a recent paper [8]: a height of 16 is obtained for both problems using a GA
and a free orientation approach. We obtained these results despite the use of a much more restrictive
search engine — in [8] the non-guillotine Bottom Left heuristic [1] is used; our search space was confined
to guillotine patterns. Figure 3 shows some typical packings obtained by our GA for these problems.

3.1 Results

The tables in this section give some results for strip packing on guillotine patterns cut from 100 x 100
enclosing rectangles. Thus the width of the strip is 100 and the optimum height is 100. All our results

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 4

are quoted in heights.

For each Nice.n data set, the height/width ratio of all n rectangular pieces in the set lies in the
range 1/4 < H/W < 4 and the maximum area ratio is 7. This value is the limiting ratio of the areas
of the largest and smallest rectangles in the data set. For the Path.n (i.e. pathological) data, the H/W
ratio is in the range 1/100 < H/W < 100 and the maximum area ratio also 100. All the results are
rounded to the nearest integer.

Table 1: Results for Heuristics on Nice Data (optimum height is 100)

[Problem | NFDH | FFDH | SPLIT |
| |Raw | W>H |H>W |[Raw | W>H | H>W [Raw | W>H [H>W |
Nice.25 147 133 137 145 118 132 162 138 143
Nice.50 127 120 127 125 119 126 139 134 142
Nice.100 | 117 112 118 115 111 116 145 137 137
Nice.200 | 122 110 117 121 108 117 141 139 138
Nice.500 [109 108 108 108 107 107 140 139 141
Nice.1000 | 110 105 108 109 105 107 138 140 140

Table 2: Results for Heuristics on Pathological Data (optimum height is 100)

[Problem | NFDH [FFDH [SPLIT |
| |Raw | W>H |H>W |[Raw [W>H [H>W [Raw | W>H | H>W |
Path.25 171 132 160 158 120 159 182 136 176
Path.50 143 153 152 131 136 146 184 154 158
Path.100 | 157 120 161 154 109 155 174 137 181
Path.200 | 145 128 139 140 116 138 151 138 155
Path.500 | 143 112 141 141 105 141 154 141 158
Path.1000 | 131 110 129 129 107 128 147 137 139

Tables 1 and 2 are concerned with the level algorithms and the Split algorithm only, and cover the
Nice.n and the Path.n data sets, respectively. The Raw data column gives results for sets of rectangles
sorted in decreasing height for the level algorithms and decreasing width for the Split algorithm. The
column headed ‘W > H’ refers to preprocessing of the sets of rectangles so that tall rectangles are
rotated through 90°. The column headed ‘H > W’ indicates that the preprocessing rotates wide
rectangles through 90°. Following this preprocessing, the level and Split algorithms sort the rectangles
on decreasing width or height as before.

From Tables 1 and 2 we can see that, of the three heuristics, FFDH performs the best. Furthermore,
it is clear that preprocessing the data by rotating rectangles to ensure W > H improves the results
significantly for both NFDH and FFDH. In addition, we can observe that the level heuristics (NFDH
and FFDH) become more effective as the problem size increases, but the Split algorithm performs
relatively poorly throughout the range of problem instances under test. Run times for NFDH, FFDH
and the Split algorithm take less than one second for the data sets on a Pentium IIT computer.

Table 3 shows the results of our GA compared to the results obtained from the best simple heuristic
algorithm, which is the FFDH algorithm, with W > H. The GA is run until there has been no
improvement to the best solution for 100 generations. Where feasible, 5 replicated runs have been
carried out for the GA and the solutions have been averaged. Single runs have been carried out for the
500 rectangle problems and for Nice.200 because of its lengthy run time. We have not attempted to
run the GA on the 1,000 rectangle problems. Run times for the GA, using a population size of 1,000,
take only a few minutes for the smaller problems of up to 100 rectangles, but are unpredictable because
of our stopping condition and can take several hours or even days for the larger problems.

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 5

Table 3: Comparison of GA with Results from FFDH (optimum height is 100)
Problem | GA: mean 5 runs | GA: best | FFDH: W > H |

Nice.25 108 106 118
Nice.50 108 105 119
Nice.100 111 108 111
Nice.200 - 108 108
Nice.500 - 108 107
Nice.1000 - - 105
Path.25 109 106 120
Path.50 108 106 136
Path.100 112 109 109
Path.200 123 112 116
Path.500 - 136 105
Path.1000 - - 107

From Table 3 it is clear that the GA produces superior solutions for problems of about 100 rectangles

or less, but for larger problems the FFDH heuristic outperforms the GA.

References

[1]

2]
(3]
[4]

[10]

[11]

E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation Algorithms for Bin Packing — An
Updated Survey. In G. Ausiello, N. Lucertini, and P. Serafini, editors, Algorithm Design for Computer
Systems Design, pages 49-106. Springer-Verlag, Vienna, 1984.

E.G. Coffman Jr., M.R. Garey, D.S. Johnson, and R.E. Tarjan. Performance bounds for level-oriented
two-dimensional packing a lgorithms. SIAM Journal of Computing, 9:808-826, 1980.

I. Golan. Performance Bounds for Orthogonal, Oriented Two-Dimensional Packing Algorithms. SIAM J.
Comput., 10(3):571-582, 1981.

E. Hopper and B.C.H. Turton. An empirical investigation of meta-heuristic and heuristic algorithms for a
2D packing problem. European Journal of Operational Research, 128:34-57, 2001.

S.M. Hwang, C.Y. Kao, and J.T. Horng. On solving rectangle bin packing problems using genetic al-
gorithms. In Proceedings of the 199 IEEE International Conference on Systems, Man and Cybernetics,
pages 1583-1590, 1994.

Stefan Jakobs. On Genetic Algorithms for the Packing of Polygons. European Journal of Operational
Research, 88:165-181, 1996.

Berhold Kroger. Guillotineable bin packing: A genetic approach. Furopean Journal of Operational Re-
search, 84:645—661, 1995.

Dequan Liu and Hongfei Teng. An improved BL-algorithm for genetic algorithm of the orthogonal packing
of rectangles. European Journal of Operational Research, 112:413-420, 1999.

C. L. Valenzuela and P.Y. Wang. VLSI Placement and Area Optimization Using a Genetic Algorithm to
Breed Normalized Postfix Expressions. Under review.

C. L. Valenzuela and P.Y. Wang. A Genetic Algorithm for VLSI Floorplanning. In Parallel Problem
Solving from Nature — PPSN VI, Lecture Notes in Computer Science 1917, pages 671-680, 2000.

P.Y. Wang and C.L. Valenzuela. Data set generation for rectangular placement problems. Furopean Journal
for Operational Research, 2001. To appear.

Porto, Portugal, July 16-20, 2001

