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Abstract - A simple steady-state, Pareto-based
evolutionary algorithm is presented that uses an
elitist strategy for replacement and a simple uni-
form scheme for selection. Throughout the genetic
search, progress depends entirely on the replacement
policy, and no fitness calculations, rankings, sub-
populations, niches or auxiliary populations are re-
quired. Preliminary results presented in this paper
show improvements on previously published results
for some multiple knapsack problems.

I. INTRODUCTION

Multi-objective optimization problems involve the si-
multaneous optimization of several (often competing) ob-
jectives, and usually there is no single optimal solution.
Instead, multi-objective optimization problems tend to
be characterized by a set of alternative solutions, each
of which must be considered equivalent in the absence
of further information regarding the relative importance
of each of the objectives in the solution vectors. Such a
solution set is called the Pareto-optimal set, and the ob-
jective values in the set are located at the Pareto front.
Pareto-optimal solutions are non-dominated solutions in
the sense that it is not possible to improve the value of
any one of the objectives, in such a solution, without si-
multaneously degrading the quality of one or more of the
other objectives in the vector.

Evolutionary algorithms (EAs) are ideally suited for
multi-objective optimization problems because they pro-
duce many solutions in parallel. However, traditional
approaches to EAs require scalar fitness information and
converge on a single compromise solution, rather than on
a set of viable alternatives. When a set of viable alterna-
tives is required, it is essential to incorporate the concept
of Pareto dominance into the EA. This is usually achieved
by using some form of Pareto-based selection. Pareto-
based fitness assignment was first proposed by Goldberg
[6], the idea being to assign equal probability of repro-
duction to all non-dominated individuals. The method
consisted of assigning rank 1 to all non-dominated indi-

viduals and removing them from contention, then finding
a new set of non-dominated individuals, ranked 2, and so
on.

Fonseca and Fleming [5] have proposed a slightly dif-
ferent scheme for fitness assignment, whereby an individ-
ual’s rank corresponds to the number of individuals in the
current population by which it is dominated. Tourna-
ment selection based on Pareto dominance has also been
proposed (see Horn, Nafpliotis, and Goldberg [8]). How-
ever, Pareto-based ranking does not, on its own, guaran-
tee that the Pareto set is uniformly sampled. Indeed, fi-
nite populations tend to converge to a single solution, due
to stochastic errors in the selection process, known as ge-
netic drift. The addition of fitness sharing [6] and niches
to the multi-objective domain was implemented by (Fon-
seca and Fleming [5]) and (Horn, Nafpliotis and Goldberg
[8]) in an attempt to reduce the effect of genetic drift.
In addition, Zitzler and Thiele [13] and Corne, Knowles
and Oates [3] have introduced an element of elitism into
their EAs in the form of auxiliary or archive populations.
An external population used in this way comprises non-
dominated individuals copied from the regular popula-
tion during the genetic search. Individuals can be se-
lected for mating from either population. A simpler ap-
proach to elitism is used in [2]. Here the population is
divided into a number of subpopulations or ¢ribes and fit-
ness is evaluated on the basis of dominance relationships.
Each new pair of offspring that are generated replace the
weakest individuals in their tribe. No fitness sharing,
niche calculations or other elaborate diversity maintain-
ing routines are used by this algorithm.

The present paper proposes an even simpler approach
than [2]. It disposes of all selection mechanisms based on
fitness values and instead uses a straightforward uniform
selection procedure (i.e. each population member has
an equal chance of being selected). Thus no dominance
ranking is required. In the new approach improvements
to the population and progress of the genetic search de-
pend entirely upon a replacement strategy that follows a
few simple rules:



1. parents can be replaced only by their own offspring,

2. offspring can only replace parents if the offspring
are superior — thus the scheme is elitist,

3. duplicates in the population are deleted.

This evolutionary algorithm depends on rules 1 and 3
to maintain diversity and prevent premature convergence
and on rule 2 to ensure that the best solutions are not
lost. As with other EAs, finding good solutions in the
first place depends largely on the quality of the repre-
sentation, the choice of genetic operators and the various
settings for the EA search parameters, such as population
size, crossover and mutation rates etc.. The EA itself is
elistist, thus no archive population is needed.

II. THE 0-1 MULTIPLE KNAPSACK
PROBLEM

The 0-1 multiple knapsack problem (0-1 MKP) is a
generalization of the 0-1 simple knapsack problem, and is
a well known member of the NP-hard class of problems.
In the simple knapsack problem, a set of objects O =
{01, 02,03, ...,0,} and a knapsack of capacity C are given.
Each object o; has an associated profit p; and weight w;.
The objective is to find a subset S C 0 such that the
weight sum over the objects in S does not exceed the
knapsack capacity and yields a maximum profit. The 0-1
MKP involves m knapsacks of capacities ¢, ¢, €3, ..., Cp.
Every selected object must be placed in all m knapsacks,
although neither the weight of an object 0; nor its profit
is fixed, and will probably have different values in each
knapsack. The present study is confined to problems
involving two knapsacks, i.e. m = 2.

III. THE EVOLUTIONARY ALGORITHM
A. The Representation and Decoder

Several approaches have been suggested for representing
solutions to knapsack problems for EAs. Michalewicz
[9] identifies three classes: algorithms based on penalty
functions, algorithms based on repair methods, and al-
gorithms based on decoders. The main challenge with
the knapsack problem is to ensure that the EA does not
waste vast amounts of its time in generating illegal solu-
tions with over-full knapsacks.

In the present paper, solutions are represented as sim-
ple permutations of the objects to be packed. A decoder
then packs the individual objects, one at a time, starting
at the beginning of the permutation list, and working
through. For each object that is packed, the decoder
checks to make sure that none of the weight limits is
exceeded for any knapsack. Packing is discontinued as
soon as a weight limit is exceeded for a knapsack, and
when this is detected the final object that was packed is

removed from all the knapsacks. Thus, each knapsack
contains exactly the same objects as required, and each
solution that is generated is a feasible solution. Cycle
crossover [10] is used as the recombination operator, and
the mutation operator swaps two arbitrarily selected ob-
jects within a single permutation list. Cycle crossover
was selected as the recombination operator because it
transmits absolute positions of objects in the permuta-
tion lists from the parents to the offspring. Neither edge
based nor order based operators would seem to be appro-
priate here, for a set membership problem such as this.

B. SEAMO

The Simple Evolutionary Algorithm for Multi-objective
Optimization (SEAMO), is outlined in Figure 1.

Procedure SEAMO
begin
Generate N random permutations {/V is the population size}
Evaluate the objective vector for each structure and store it
Record the best-so-far for each objective function
Repeat
For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by offspring
If offspring’s objective vector improves on any best-so-far
Then it replaces one of the parents
and best-so-far is updated
Else If offspring dominates one of the parents
Then it replaces it
(unless it is a duplicate, then it is deleted)
Endfor
Until stopping condition satisfied
Print all non-dominated solutions in the final population
End

Fig. 1. Algorithm 1 A Simple Evolutionary Algorithm for
Multi-objective Optimization

For the purposes of the present, preliminary study, the
four test problems of Zitzler and Thiele [13] with two
knapsacks are used to demonstrate the viability of the
new approach. The test problems can be obtained from:

http:/ /www.tik.ee.ethz.ch/zitzler/testdata.html

and consist of 100, 250, 500 or 750 objects. Restricting
the test-bed to two knapsacks means that solutions can
be plotted using standard 2D graphics, and their quality
easily visualized.

When two knapsacks are used, SEAMO’s objective
vector for each population member contains two values:
the profits associated knapsack 1 and knapsack 2 respec-
tively. The idea is to breed a diverse population of solu-



tion pairs that is as close to the Pareto front as is pos-
sible. The dual aims pursued during the search process
are: (1) to move the current solutions in the population
ever closer to the Pareto front, and (2) to extend the
diversity of the solution set by improving on the individ-
ual global best profits for knapsack 1 and knapsack 2.
Improvements in both (1) and (2) are achieved by the
replacement strategy used in SEAMO, and not by the
selection process.

The selection procedure for SEAMO is very simple and
does not rely on fitness calculations or dominance rela-
tionships. Each individual in the population serves as
the first parent once, and the second parent is then se-
lected at random (uniformly). Objective values and dom-
inance relationships are only considered at the replace-
ment stage, and it is here, rather than during selection,
that the pressure for improvement is applied.

To be more precise, the replacement of a parent by its
offspring is considered whenever an offspring is deemed to
be superior to that parent. This idea, called pre-selection
when it was first suggested in [1], was originally used for
EAs with scalar objective functions. The technique easily
extends to multi-objective optimization, however. In the
present study, the superiority test is applied first of all
to the first parent, and then to the second parent if that
fails. Usually superiority is measured as a dominance
relationship, i.e. if an offspring dominates its parent, it
replaces it in the population. The replacement of pop-
ulation members by dominating offspring ensures that
the solution vectors move closer to the Pareto front as
the search progresses. To additionally ensure improved
coverage of the Pareto set, the dominance condition is re-
laxed whenever a new global best value is discovered for
the total profit in either of the knapsacks. Care has to be
taken, however, to ensure that the global best value for
the other knapsack is not lost when a dominance condi-
tion is relaxed. As a final precaution the solution vector
for a dominating offspring is compared with all the so-
lution vectors in the current population before a final
decision is made on replacement. If the solution vector
produced by the offspring is duplicated elsewhere in the
population, the offspring dies and does not replace its
parent. The deletion of duplicates helps maintain diver-
sity in the population and thus helps to avoid the pre-
mature convergence of the population to identical sets of
a small number of solution vectors. The final action of
SEAMO is to save all the non-dominated solutions from
the final population to a file.

IV. RESULTS

Results are presented for four multiple knapsack prob-
lems taken from Zitzler and Thiele [13]. These were

chosen because the previous authors have already car-
ried out an extensive set of comparisons for various EAs
and shown that their algorithm, the strength Pareto evo-
lutionary algorithm (SPEA), is superior to others such
as the vector evaluated genetic algorithm (VEGA) [11],
Hajela’s and Lin’s genetic algorithm (HLGA) [7], the
niched Pareto genetic algorithm (NPGA) [8] and the non-
dominated sorting genetic algorithm (NSGA) [12]. In ad-
dition, Zitzler and Thiele have calculated optimal Pareto
sets for three of the problems using integer linear pro-
gramming together with the epsilon-constraint method.

The results produced using the SEAMO algorithm are
compared graphically with SPEA and with the Pareto
optimal values (where available). For all the experiments
in section IV-A the total number of evaluations is the
same for SEAMO and SPEA. The results for SPEA were
obtained from the Zitzler and Thiele web site (URL given
earlier) and comprise solution sets for 30 replicate runs
(held in 30 separate files) for each of the problems. Im-
portant parameter settings are given in Table I for three
of the four test problems.

For the purposes of the present study, the 30 solution
sets for the replicate runs of SPEA were combined for
each problem and all non-dominated solutions were
then extracted from the combined files. Thus the total
numbers of evaluations required to produce the final
non-dominated solutions sets for each problem are given
by:

(population size) x (number of generations) x 30

A. Initial Comparative studies

TABLE 1
PARAMETER SETTINGS FOR SPEA.

Number of Number of Population  Number of

objects knapsacks size generations
250 2 150 500
500 2 200 500
750 2 250 500

In the first set of experiments the performance of
SEAMO and SPEA are compared on the 500 and the
750 object two knapsack problems, using the same popu-
lation sizes and numbers of generations for SEAMO that
were used for SPEA (see Table I). The results for 30
replicate runs for each problem are combined for SEAMO
and the non-dominated solutions extracted in exactly the
same way as was done for the SPEA results. Individual
runs of SEAMO took about 12 seconds each for the 500



objects problem and about 23 seconds for the 750 ob-
jects problem, on a Pentium III processor with 128 Mb
of RAM. The plots for these experiments are shown in
Figures 2 and 3.
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Fig. 2. Non-dominated solutions from 30 replicate runs of
SEAMO and SPEA for the 2 knapsack problem with 500
objects

Clearly, the results for SEAMO are better than those
for SPEA, and this is particularly noticeable for the 750
object problem.

For the second set of experiments the total number of
evaluations is kept the same but single runs of SEAMO
generate the non-dominated solutions instead of replicate
runs. Each run, in this set of experiments, consists of 30
times more evaluations than were used for the same prob-
lem in the previous set of experiments. The purpose of
these experiments is to see whether the results improve
when more effort is put into running the individual EAs.
For the 500 object problem the total number of evalua-
tions is 200 x 500 x 30 = 3,000, 000, and for 750 objects,
250 x 500 x 30 = 3, 750, 000.

Figure 4 shows the results of running SEAMO on the
500 object, two knapsack problem. For the first SEAMO
run, a population of 200 was used and the EA was run for
15,000 generations. For the second run, SEAMO used a
population of 500 for 6,000 generations, and in the final
run the population size was 1,000 and SEAMO was run
for 3,000 generations.

Figure 5 illustrates the runs for SEAMO on the 750 ob-
ject, two knapsack problem. Once more the total number
of evaluations is the same for all experiments. This time
SEAMO population sizes of 250, 500 and 1,000 were tried
and run for 15,000, 7,500 and 3,750 generations, respec-
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Fig. 3. Non-dominated solutions from 30 replicate runs of
SEAMO and SPEA for the 2 knapsack problem with 750
objects
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Fig. 4. SEAMO results for the 2 knapsack problem with 500
objects using various population sizes

tively.

Clearly, the results for SEAMO are better using single,
longer runs rather than the 30 replicate runs. The new
results are closer to the Pareto front and they are also
more diverse. Results for long runs with small popula-
tions tend to be more diverse than results for short runs
with large populations. However, the results where larger
populations are used seem to be closer to the Pareto front
than the results for the smaller populations. The SPEA
results are included in the two diagrams for comparison



x 10° Plots for 750 objects in 2 knapsacks
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Fig. 5. SEAMO results for the 2 knapsack problem with 750
objects using various population sizes

as before.

B. Further Ezperimental Results

For the final set of experiments SEAMO is run on all four
test problems, using an (arbitrarily) large population of
10,000. In each case the EA is halted after 40 gener-
ations have elapsed with no replacements being made
in the population. The purpose of these final runs is
to show what SEAMO is capable of. Once more the
SPEA results are included in all the plots to aid visual-
ization, although in this case it should be remembered
that SEAMO used massive numbers of evaluations in or-
der to obtain the results in these final plots. The run
times for these problems vary between half an hour for
the 100 object problems and about 26 hours for the 750
object problem (about 50,000 generations) on a Pentium
IIT processor with 128 Mb RAM. The results are pre-
sented in Figure 6.

Clearly, increasing the number of evaluations for
SEAMO improves the results for the 500 and 750 object
problems. In particular the results for these problems lie
on a smoother curve. SEAMO results for the 100 and 250
object problem are not so impressive, and barely improve
on the SPEA results obtained using far fewer evaluations.

V. CONCLUSIONS

A new evolutionary algorithm, SEAMO, has been
presented for multi-objective optimization. It is much
simpler than other approaches and has produced some
promising results for the multiple knapsack problem, out-

performing many state-of-the-art Pareto-based EAs com-
pared in [13]. The algorithm uses a steady-state elitist
strategy for replacement and a simple uniform scheme for
selection. Throughout the genetic search, progress de-
pends entirely on the replacement policy, and no fitness
calculations, rankings, sub-populations, niches or auxil-
iary populations are required.

Establishing the new approach as a general technique
for multi-objective optimization, however, requires its
extension beyond knapsack problems to other domains.
Work in progress includes the application of SEAMO to
the function optimization problems described in [14]. To
solve these problems the author has replaced the per-
mutation representation, operators and decoder used for
the multiple knapsack problem with a string of real vari-
ables, and appropriate recombination and mutation op-
erators. Further plans include comparing SEAMO with
the latest Pareto-based EAs such as SPEA2 [14], PESA
[3] and NSGA-II [4] for multiple knapsack and function
optimization problems. Initial studies suggest SEAMO
may need to undertake more objective function evalua-
tions, in order to equal or surpass the very best results ob-
tained elsewhere. Direct comparisons of computational
effort are difficult, however, given the relative simplic-
ity of SEAMO and the more elaborate calculations un-
dertaken by competing EAs. Given that the routines
in SEAMO are computationally cheap, the approach is
surely worthy of serious consideration and further inves-
tigation.
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