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1 Introduction

Metaheuristic algorithms, such as simulated annealing, tabu search and evolu-
tionary algorithms, are popular techniques for solving optimization problems
when exact methods are not practical. For example, the run times required
to obtain exact solutions to many common combinatorial problems grow ex-
ponentially (or worse) with the problem size, and as a result, solving even a
relatively modest sized problem of this type may require many centuries of
computation time, even on the fastest computer of the day. Such problems are
known collectively as NP-Hard, and include the travelling salesman problem
(TSP), which is probably the best known problem in the class. The present
study will concentrate on a type of NP-Hard combinatorial problem known
as the set partitioning problem. If we have n objects to partition into m sets,
in such a way that each object must be assigned to exactly one set, it follows
that there are mn different ways that the n objects can be assigned to the
m sets, for a straightforward unconstrained problem. It is instructive to note
that every time the problem size of the set partitioning problem is increased
by one object, the corresponding run time for an exhaustive search algorithm
will increase by a factor of m, and thus the run time grows exponentially as
the number of objects – n – increases. While it is true that much better ex-
act methods than exhaustive search have been developed for most NP-Hard
problems, the ‘growth factor’ remains exponential for the run time, and no
one in history has so far managed to change that.

The main focus of the current Chapter is a new hybrid (or memetic) evo-
lutionary algorithm specifically developed to solve set partitioning problems.
This technique incorporates useful solution improvement heuristics into an
evolutionary framework. New genetic operators have been devised to ensure
that parent solutions are able to contribute useful features to their offspring,
and a simulated annealing cooling schedule has been adopted to help maintain
a balance between quality and diversity within the population of candidate
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solutions. The effectiveness and versatility of the new hybrid algorithm will
be demonstrated by applying variations of the technique to hard literature
benchmarks taken from three different set partitioning applications: graph
coloring, bin packing and examination timetabling.

It is well known among researchers that effective evolutionary algorithms are
notoriously difficult to devise for many types of problems, and set partitioning
is particularly challenging, for reasons we will address later. At its best, an
evolutionary algorithm will exploit its population structure to explore differ-
ent parts of the search space for a problem simultaneously, combining useful
features from different individuals during reproduction and producing new
offspring solutions that may be better, on occasions, than either of that off-
spring’s parents. At its worst, an evolutionary algorithm will take a lot longer
than competitive methods to achieve very little. For most other methods the
search is propagated through a single focal point. On the other hand, evolu-
tionary algorithms progress from a population of points. The population has
to ‘earn its living’, otherwise it becomes a burden rather than a bonus.

With the limitations and idiosyncrasies of evolutionary algorithms in mind,
we will critically evaluate the various components of the new hybrid approach
in the present study. In particular, we will endeavor to ensure that every part
of the algorithm is making a useful contribution to its overall performance. The
main goal is to present a new, and reasonably generic, order based framework
that can be applied, with minimum adaptation, to a wide range of set parti-
tioning problems. Although the exact choice of objective or fitness function
will very likely depend on the specific problem, it is envisaged that problem
specific heuristics and costly backtracking will largely be avoided. Throughout
the Chapter a tutorial approach is adopted, to aid newcomers to the field, and
the main aspects of the algorithms and operators are illustrated using simple
examples and carefully designed diagrams. However, it is hoped that the more
experienced researcher will also find the Chapter of interest.

The remainder of the Chapter is organized as follows. We begin with intro-
ductory Sections on evolutionary algorithms, some of which may be safely
skipped by the more knowledgeable reader. Section 2 outlines the historical
development of evolutionary computing, and Section 3 introduces the main
elements of a ‘standard’ genetic approach to problem solving. Section 4 de-
scribes the general features of an order based genetic algorithm and, together
with Section 5 – on steady-state GAs – lays the foundations for the approach
used for set partitioning in the present Chapter. Section 6 introduces the
three test problems: graph coloring, bin packing, and timetabling, and this
is followed by Section 7 which presents the reader with the main points that
motivated the present study. The next Section covers the grouping and re-
ordering heuristics of Culberson and Luo [9]. These heuristics are used in the
present study to improve the effectiveness of the new crossover operators, and
also provide useful local search capability in their own right. Section 9 details
the main features of the new memetic approach, covering all the main aspects
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of the new genetic simulated annealing algorithm (GSA). The Section also
describes new crossover operators and defines the fitness functions that are
used, as well as introducing the simulated annealing cooling schedule. Results
for the literature benchmarks are presented in Section 10 and this is followed
by a Chapter summary. Finally, URL links are provided to all the test data
in the Resources Appendix.

2 A Brief History of Genetic Algorithms

Several groups of researchers, working independently in the 1950s and 60s,
developed optimization techniques inspired by evolution and natural selec-
tion. Rechenberg [37] introduced evolution strategies and used the method
to optimize real-valued parameters for designing aerofoils. Fogel, Owen and
Walsh [17] developed evolutionary programming, a technique that they used
to evolve finite state machines. Most of these early techniques were developed
with specific applications in mind, however. In contrast, John Holland made
an extensive study of adaptation in the natural world and used his insight
to create a sound theoretical framework from which his genetic algorithms
(GAs) emerged [22]. Since these early days, interest in evolutionary-inspired
algorithms has grown year by year, and numerous variants have appeared on
the scene, some of them very different from anything conceived by Rechen-
berg, Fogel or Holland. For example, in the early 1990s, John Koza proposed
genetic programming, an evolutionary style technique for evolving effective
computer programs to undertake particular tasks.

Other popular paradigms to have been derived from the more generic ap-
proach include artificial life [28], evolvable hardware [21], ant systems [12] and
particle swarms [26], to name but a few. In addition, there are many exam-
ples of hybrid (or memetic) approaches where problem specific heuristics, or
other techniques such as neural networks or simulated annealing, have been
incorporated into a GA framework. Indeed, we shall make use of specialized
heuristics and also simulated annealing to improve our results in the present
Chapter. Thus, due to the growth in popularity of search and optimization
techniques inspired by natural evolution during the last few decades, it is
now common practice to refer to the field as evolutionary computing and to
the various techniques as evolutionary algorithms. Inevitably, though, due to
the overwhelming influence of John Holland, the term ‘genetic algorithm’ is
frequently used interchangeably with the more generic term.

3 A Generic Genetic Algorithm

As suggested above, there is no rigorous definition of the term ‘genetic algo-
rithm’ that everyone working in the field would agree on. There are, however,
certain elements that GAs tend to have in common:
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1. a population of chromosomes encoding (in string form) candidate solutions
to the problem in hand,

2. a mechanism for reproduction,
3. selection according to fitness, and
4. genetic operators.

The chromosomes in the population of a GA usually take the form of strings,
which may be encoded in binary, denary (that is, base-10), or in some other
way. As an example, let us consider a simple optimization problem. Suppose
we wish to maximize the following function:

f(x1, x2) = x1
2 − x2

2 + x1x2 (1)

where x1 and x2 are both integers that can vary between 0 and 31. If we use
a 5-bit binary representation for x1 and x2, our GA strings would need to
be 10 bits long. Thus, using this representation the string 0010111101 would
encode x1 = 00101, and x2 = 11101, or 5 and 29 respectively in denary.
The mechanism for reproduction may consist simply of duplicating strings

from the population. However, the choice of strings for reproduction is usu-
ally biased by some measure of fitness associated with each member of the
population. The term ‘fitness’ refers to some estimate of quality allocated to
each population member whereby ‘better’ individuals are assigned higher val-
ues than poorer individuals. In the above optimization problem the objective
function – f(x1, x2) – may be used directly as a fitness function. In other
situations the allocation of fitness values may not be so straightforward: when
solving a minimization problem, for example, or when dealing with qualitative
data.
An essential feature of a successful GA implementation is that the average

fitness value of a population should increase over time, reflecting an improving
trend in the population. To facilitate this improvement we must somehow
ensure that superior individuals have a better chance to contribute to future
generations than do individuals with poorer fitness values. Probably the most
popular way to drive this improvement is to use selection probabilities to bias
the choice of parents for the next generation. Converting fitness values into
probabilities for selection is usually a straightforward matter involving some
simple arithmetic. Random numbers can then be generated and the parents
of the next generation selected in accordance with a probability distribution
derived from the individual fitness values of the population members. Due to
the obvious analogy with a popular casino game, this process is widely known
as roulette wheel selection.
Evolution cannot proceed by selection and reproduction alone, of course. It is

essential that a GA is capable of occasionally producing new individuals that
are better than their parents. In order to achieve this a mechanism to effect
change is needed, and this is the role of genetic operators. Holland describes
three types of genetic operators: crossover, mutation and inversion. Examples
to illustrate all of these are given in Figure 1.
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a) One Point Crossover

Parent 1 0 0 1 0 1 1 1 1 0 1

Parent 2 1 1 0 0 1 0 0 1 1 1

Cut point

Child 1 0 0 1 0 1 0 0 1 1 1

Child 2   1 1 0 0 1 1 1 1 0 1

b) Point Mutation

Before Mutation 0 0 1 0 1 0 0 1 1 1

After Mutation  0 0 1 1 1 0 0 1 1 1

c) Inversion

Before Inversion 1 1 0 0 0 1 1 1 1 1

After Inversion  1 1 0 1 1 1 0 0 1 1

Cut point 1 Cut point 2

Cut point 1 Cut point 2

Fig. 1. Examples of Genetic Operators

One point crossover, shown in Figure 1(a), is a process involving two parental
strings and begins with an alignment of the strings. A cut point is then cho-
sen at random, and the parental material following the cut point is exchanged
between the parents, giving rise to two children. Variants of simple crossover
include two point and multi-point crossover where more cut points are se-
lected. Point mutation is illustrated in Figure 1(b). For a binary string a ran-
domly selected bit is simply flipped. For denary or other encodings suitable
mutation operators are chosen that produce very small changes. An example
of inversion can be seen in Figure 1(c). Here two cut points are selected at
random on a single string, and the sub-string between the cut points is then
inverted and replaced. Inversion, however, is not commonly used in practice
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for simple bit strings and denary chromosomes. Following reproduction, each
genetic operator is applied with its own predetermined probability.

A simple generic GA is outlined in Algorithm 1. Adapting the generic model
to make it effective for a particular problem, however, usually requires con-
siderable effort, as well as a large measure of good luck! First, it is necessary
to devise a suitable representation so that candidate solutions can be satisfac-
torily encoded as chromosomes. For many applications it is not immediately
obvious how this can be done, and simple bit- or denary-valued strings may
not be appropriate. Second, when deviating from a standard bit string or
denary representation, special genetic operators may be needed, to avoid the
production of infeasible offspring, say. Another potential difficulty is choosing
a suitable fitness function for a given problem. Selection bias towards the bet-
ter individuals needs to be strong enough to encourage ‘survival of the fittest’,
but not so strong that all variability is quickly lost from the population (note:
loss of diversity early on in the execution of a GA is often referred to as
premature convergence). Without variability, nothing new can evolve. Finally,
tuning the GA and determining the best values for various parameters – such
as crossover and mutation rates, population size and stopping criteria – can
be a very time consuming process.

Algorithm 1 A Generic Genetic Algorithm (GA)
Generate N random strings {N is the population size}
Evaluate and store the fitness of each string
repeat

for i = 1 to N/2 do
Select a pair of parents at random {The selection probability is in direct
proportion to the fitness}
Apply crossover with probability pc to produce two offspring
if no crossover takes place then

Form two offspring that are exact copies of their parents
Mutate the two offspring at a rate of pm at each locus
Evaluate and store the fitness for the two offspring

Replace the current population with the new population
until stopping condition satisfied

For further reading on genetic algorithms, I recommend the following in-
troductory texts: [20], [32] or [33].

4 Order based GAs

In Section 3 we saw how chromosomes can be encoded, as bit strings or dec-
imal coded lists, and used to directly represent the variables of a problem.
For many combinatorial problems, however, the random processes involved in
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assigning values to the variables make direct representations rather prone to
constraint violations, and as a result a GA can waste a vast amount of time
evaluating infeasible solutions. Consider a set partitioning problem, which in-
volves the assignment of each available item to exactly one set whilst strictly
adhering to any problem specific constraints. For example, with the bin pack-
ing problem various sized items are placed in a minimum number of equal
sized bins. However, it is likely that assigning items to bins at random may
result in some bins becoming overfull. The use of heavy penalty values to
discourage the survival of illegal solutions is an approach favored by some
researchers, while others prefer to use an heuristic repair mechanism to re-
duce or eliminate constraint conflicts, following the initial assignment of the
GA. Yet another alternative is to use an order based approach with a greedy
decoder. This approach will entirely avoid the issue of infeasibility. Starting
with an arbitrary permutation of items, a greedy decoder will sequentially
assign legal values to all the items in the list. Consider the graph coloring
problem (GCP). This involves finding a minimum set of colors for the vertices
of a given graph, so that no two adjacent vertices have the same color. If,
for example, a GCP instance has n vertices, then order based chromosomes
representing potential solutions will consist of permuted lists of the integers
{1, 2, 3, · · · , n}. A decoder will start with the first vertex on the list and work
through assigning, to each vertex in turn, the first available color from an
ordered set (in other words, each color is identified by an integer label, 0, 1,
2, 3, ...), that is possible without causing conflicts.

Figure 2 illustrates possible encodings for a legally colored 12 node graph,
with Figure 2(b) and (c) showing direct and order based representations,
respectively, for the example coloring in Figure 2(a). It is easy to visualize
how disruptive genetic operators could be if applied to a direct representation
such as that shown in Figure 2(b). An order based representation, on the other
hand, will always produce a legal coloring when used in conjunction with a
greedy decoder.

Unfortunately, standard crossover and mutation operators are not appropri-
ate for order based representations, because such operators tend to destroy
the permutation property and produce infeasible solutions. The problem with
crossover is illustrated in the example below, which shows the production of
infeasible offspring with duplicated and deleted values, following application
of a two point crossover.

A = 8 7 6 | 4 1 2 | 5 3
B = 2 5 1 | 7 3 8 | 4 6

Producing:

A′ = 8 7 6 | 7 3 8 | 5 3
B′ = 2 5 1 | 4 1 2 | 4 6
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b) Direct representation of coloring. A one dimensional array 
stores the colors.

a) 12 node graph.

Position = vertex no.

Color

c) Order based representation of coloring. A one dimensional
array stores a permutation of vertices, and a greedy 
algorithm allocates the colors.

Position

Vertex no.

Color

Fig. 2. A direct and order based representation of a coloring for a 12-node graph

Point mutation also produces duplications and deletions. On the other hand,
Holland’s inversion operator respects the permutation property, and can in-
deed prove useful as a reordering operator.

The best known crossovers designed for permutations are probably partially
matched crossover (PMX) [20], order crossover (OX) [10] and cycle crossover
(CX) [35]. OX and CX are explained below along with another more recent
example – merging crossover (MOX) [1]; a description of PMX is omitted
because it is less relevant to the present study than the other examples. We
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will discuss the shortcomings of applying the simple order based approach to
set partitioning problems in Section 6.

Order Crossover (OX)

This operation always produces legal permutations. It starts by selecting two
crossing sites at random:

A = 8 7 6 | 4 1 2 | 5 3
B = 2 5 1 | 7 3 8 | 4 6

Values from the middle segment of one parent are then deleted from the other
to leave holes. For example values 4, 1 and 2 will leave holes, marked by ‘H’
in string B:

B′ = H 5 H | 7 3 8 | H 6

In one version of OX, the holes are filled with a sliding motion that starts
from the beginning of the string.

B′ = 5 7 3 | H H H | 8 6

The substring from string A is then inserted into string B. The final result of
this cross and the complementary cross is:

A′ = 6 4 1 | 7 3 8 | 2 5
B′ = 5 7 3 | 4 1 2 | 8 6

Cycle Crossover (CX)

The cycle crossover operator ensures that each position in the resulting off-
spring is populated with a value occupying the same position in one or other
of the parents. As an example, suppose we have strings A and B below as our
two parents:

A = 8 7 6 4 1 2 5 3 9 10
B = 2 5 1 7 3 8 4 6 10 9
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We now start from the left and randomly select an item from string A. Sup-
pose we choose item 6 from position 3, this is then copied to position 3 of the
offspring we shall call A′:

A′ = – – 6 – – – – – – –

In order to ensure that each value in the offspring occupies the same position
as it does in either one or other parent, we now look in position 3 of string B
and copy item 1 from string A to the offspring:

A′ = – – 6 – 1 – – – – –

Next we look in position 5 of string B and copy item 3 from string A:

A′ = – – 6 – 1 – – 3 – –

Examining position 8 in string B we find item 6. This completes the cycle.
We now fill the remaining positions in A′ from string B thus:

A′ = 2 5 6 7 1 8 4 3 10 9
B′ = 8 7 1 4 3 2 5 6 9 10

The offspring B′ is obtained by performing the complementary operations.

Merging Crossover (MOX)

Merging crossover (MOX) was devised by Anderson and Ashlock [1] for use
on graph coloring problems. Initially two n element parents are randomly
merged into a single 2n element list. The first occurrence of each value in the
merged list gives the ordering of elements in the first child, and the second
occurrence in the second child. MOX is illustrated in Figure 3. Anderson and
Ashlock point out the following property of MOX: if an element, a precedes
another element b in both parents, then it follows that a will precede b in both
children.

Mutation Operators for Permutations

As happens with crossover, standard mutation will produce duplications and
deletions in a chromosome, if an order based representation is used. Fortu-
nately, a number of alternatives have been devised. The simplest of these was
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Fig. 3. MOX Crossover [1], used as a basis for the new MIS crossover

named position based mutation by Davis [11]. This operation, also known as
insertion mutation, simply involves selecting two values at random from a per-
mutation list, and placing the second before the first. Another straightforward
mutation suitable for order based representations is order based mutation [11]
or swap mutation, which selects two values at random and swaps their po-
sitions. Davis also promotes an idea he calls scramble sublist [11], in which
a substring is selected stochastically and its contents randomly shuffled. In
the present work, however, Holland’s inversion operator is used extensively
as a mutation. This operator seems to be particularly effective for certain set
partitioning problems. As we shall see later when we look at the grouping and
reordering heuristics of Culberson and Luo [9], the act of reversing a list (or
sublist) can have a positive effect on the result, following the application of
the greedy decoder.

5 A Simple Steady-State GA

For convenience we will use a simple steady-state GA as a framework for our
present study. There are few parameters to set using this approach: no global
fitness function is used, for example, thus roulette wheel selection is avoided,
and so is the need to manipulate and scale the fitness values. Tuning the fitness
function to get the selective pressure just right can be very difficult, and get-
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ting it wrong can prove a disaster. The present author favors simple pairwise
comparisons to identify whether one individual is better than another, using
the result to determine who shall live and who shall die. With this approach
we are only concerned with whether one individual is better than another, and
not with how much. The crossover rate in this simple GA is always applied at
100%, and mutation (when used) at one per individual. This one-size-fits-all
approach will allow us to concentrate our efforts on representational issues,
genetic operators and performance measures (fitness values), substantially re-
ducing the tuning requirements. Other parameters are not quite so easy to
standardize as selection, crossover, and mutation rates, however. For example,
the population size and stopping criterion are best adjusted to suit the type
and size of problem. The simple steady-state GA is outlined in Algorithm 2.

Algorithm 2 A Simple GA
Generate N random strings {N is the population size}
Evaluate the performance measure for each string and store it
Apply local search to the offspring {optional}
repeat

for all strings in the population do
Each string, in turn, becomes the first parent
Select a second parent at random
Apply crossover to produce a single offspring
Apply mutation {optional}
Apply local search to the offspring {optional}
Evaluate the performance measure for the offspring
if the offspring passes its performance test then

Then it replaces its weaker parent in the population
else

the offspring dies
until stopping condition satisfied

At the start of the procedure a population of N random strings is generated.
Once the initial population is created, the individual members are evaluated,
according to some performance measure (or fitness value). Within the main
generation loop, each member of the population is selected in turn and paired
in crossover with a second individual, selected (uniformly) at random. The
performance measure of the resulting single offspring is then compared to
that of its weaker parent. In the simplest version of this algorithm, the new
offspring replaces its weaker parent if it is better, otherwise it dies. Later on
in the Chapter, when the simulated annealing schedule is introduced, the con-
ditions upon which a new offspring is accepted will be relaxed, in an attempt
to maintain diversity within the population. A simple stopping condition is
applied throughout the present work whereby the GA runs for a fixed number
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of generations specified in advance, a generation being defined as N trials of
crossover, one led by each member of the population in turn.

6 Set Partitioning Problems

Set partitioning problems (also known as grouping problems [15]) were first
introduced in Section 1, and two examples – graph coloring and bin pack-
ing – have been referred to briefly as examples in Section 4. Recall that the
generic version involves partitioning n objects into m sets, without violating
problem specific constraints, so that each object is assigned to exactly one set
and the objective function is optimized. The precise nature of the constraints
and objective function will vary depending on the variant concerned. In the
following Subsections we shall look at some examples of set partitioning prob-
lems. To start with we will cover the three main problems addressed in the
current Chapter: graph coloring, bin packing and examination timetabling.
The Section will then conclude with a brief overview of some other important
set partitioning problems.

6.1 The Graph Coloring Problem

As mentioned in Section 4, the graph coloring problem (GCP) involves finding
a minimum set of colors for the vertices of a given graph, so that no two adja-
cent vertices have the same color. The optimum set of colors for a particular
graph coloring instance is often referred to in the literature as its chromatic
number. A legal coloring for a graph with 12 nodes is illustrated in Figure 4.
Thus, we aim to partition a set of vertices into the minimum number of color
classes, so that each vertex belongs to exactly one color class. The restric-
tion that imposes different colors on adjacent vertices is an example of a hard
constraint, because no coloring where this condition is violated is allowed.

In many ways the GCP is the archetypal set partitioning problem, because
it has probably attracted more interest than any other problem of its type.
Indeed, the field is highly competitive and in 1993 the problem was the sub-
ject of a Discrete Mathematics and Theoretical Computer Science (DIMACS)
implementation challenge [24]. This involved pitting the best algorithms of the
day against each other on a collection of large and specially devised difficult
benchmark instances. The GCP provides a useful test bed for techniques ap-
plicable more widely to real world problems such as timetabling [4], frequency
assignment [42], and many others.

6.2 The Bin Packing Problem

Bin packing problems are concerned with packing a given number of items,
having different sizes, into a minimum number of equal-sized bins. In this
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Fig. 4. A legal coloring for a graph with 12 nodes; color labels appear inside the
vertices and vertex labels outside

Chapter we shall consider only the simplest of these problems, known as the
one-dimensional bin packing problem [30]. In this version of the problem we
are concerned only with weights of the items, and not with their areas, volumes
or shapes. The goal is to partition a set of items, of differing weights, into a
minimum number of bins with equal weight capacity. Like graph coloring,
the bin packing problem imposes a hard constraint: the total weight of items
occupying any bin must not exceed its weight capacity.

6.3 The Examination Timetabling Problem

The examination timetabling problem involves scheduling a set of examina-
tions into a number of time slots in such a way that the schedule obeys any
given constraints and also gives due consideration to any other issues con-
ducive to producing a ‘good’ timetable. Many different variants exist for this
important real-world problem, and the choice of practical solution method
will depend on the types of constraints involved and also on the objectives
that need to be optimized (see [4] and [40] for more details). In its most basic
version, the examination timetabling problem is identical to the graph color-
ing problem, with the colors representing time slots and vertices representing
examinations. In this model, an undirected edge between vertices indicates
that at least one student is taking both exams. The goal of this basic version
is to schedule all the examinations in the minimum number of time slots, so
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that there are no clashes – that is, no student is scheduled to take more than
one exam in any time slot.
In practice available resources are finite and additional hard constraints are

usually imposed, over and above the need to schedule examinations with no
clashes. A university has an upper limit on the number of candidates it can
seat in a time slot, for instance. It is instructive to note that the seating
capacity limitation is identical to the bin packing constraint: items of various
sizes being replaced with examinations with various numbers of candidates.
Thus, a feasible solution to the timetabling problem that seats all students
and avoids all clashes requires the simultaneous solution to the underlying
graph coloring and bin packing problems. Other common constraints include:

• Candidates taking a particular exam must not be split across rooms.
• Exam A must be scheduled before exam B.
• Exam A must be scheduled at the same time as exam B (because they

contain similar material).
• Exam A must take place in a particular room (because special resources

are needed).

In addition to the various hard constraints imposed by different institutions,
universities have different views as to what constitutes a ‘good’ timetable,
as opposed to simply a feasible one. Most commonly these desirable but not
essential properties (sometimes called soft constraints) include some measure
of a ‘fair spread’ of examinations for the students taking them. For example,
scheduling students to take two examinations in consecutive time slots is usu-
ally avoided if possible. Indeed, some institutions will go much further than
this to ensure that as many students as possible have good revision gaps be-
tween their examinations. Other desirable properties may consider efficiency
or convenience related to the staff involved in marking the papers. For exam-
ple, examinations with large numbers of candidates may be scheduled early
to give more time for marking the scripts. The present study is confined to
two hard constraints:

1. avoiding clashes, and
2. keeping within the total seating capacity.

Thus, the version of the examination timetabling problem addressed here is
a simple combination of graph coloring and bin packing, our other two test
problems.

6.4 Other Set Partitioning Problems

There are many set partitioning problems with great practical application.
Here are a few examples:

• Equal piles and assembly line balancing.
• Frequency assignment problem.
• Vehicle scheduling problem.
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The equal piles problem was first studied by Jones and Beltramo [25] and
involves partitioning N numbers into K subsets, such that the sums of the
subsets are as near equal as possible. When applied to assembly lines [38],
the equal piles problem seeks to assign assembly tasks to a fixed number of
workstations in such a way that the workload on each workstation is nearly
equal.

The frequency assignment problem involves the assignment of radio frequen-
cies to reduce interference between transmitters. It can be derived from the
graph coloring problem, but the level of conflict (that is, interference) between
the nodes is related to their distance apart rather than a simple adjacency
conflict [23, 42]. Vehicle scheduling involves assigning customers to vehicles
for the pickup and/or delivery of goods [36].

7 Motivation for the Present Study

Set partitioning problems are very challenging for genetic algorithms, and
designing effective crossover operators is notoriously difficult. We have already
explored some of these issues in Section 4. There are two main challenges:

1. solution infeasibility, and
2. representational redundancy.

Solution infeasibility occurs when candidate set partitions violate problem
constraints. As an example, consider the twelve node graph coloring problem
illustrated in Figure 2(a) and a direct representation of a legal coloring as
shown in Figure 2(b). It is easy to imagine a simple one point (or multi-point)
crossover producing an illegal coloring, with some adjacent nodes having the
same color. Infeasible solutions to the bin packing problem are easily generated
in a similar way, producing overfull bins. Representational redundancy can also
be a serious problem in set partitioning problems in which the class labels are
interchangeable. The arbitrary allocation of color labels for the GCP and bin
labels for the BPP establish these two problems in this category. Represen-
tational redundancy can artificially inflate the size of the search space and
also reduce the effectiveness of crossover operators. Given these difficulties,
it is probably not surprising that, despite the predominance of population-
based methods, crossover plays a very minor role in many state-of-the-art
approaches to solving set partitioning problems. Standard crossover opera-
tors are just not very effective at propagating meaningful properties about set
membership from parents to offspring.

Of special note, however, are two evolutionary techniques that have re-
cently appeared in the literature. These, unlike their predecessors, include
crossover operators that appear to contribute significantly to the overall suc-
cess of the algorithms. Furthermore, both of these techniques have produced
world-beating results for hard literature benchmarks in their respective fields
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of application. The first of these, known as the grouping genetic algorithm
(GGA) was developed by Falkenauer [16] for the bin packing problem. The
second algorithm, the hybrid coloring algorithm (HCA), by Galinier and Hao
[18], was written for the graph coloring problem.

A common feature shared by the two novel crossover operators used in these
methods, is the focus on propagating complete partitions, or sets, from parents
to offspring. Essentially, both algorithms rely on a direct encoding scheme to
assign set membership to items in the manner of Figure 2(b). However with
the GGA this direct representation is augmented with a grouping part, which
encodes each group (that is, set) with a single gene, and it is to the grouping
part only that the genetic operators are applied. In the GGA, the standard
part of each chromosome merely serves to identify which items belong to which
group. On the other hand, the greedy partition crossover (GPX) used in the
HCA works on the direct encoding explicitly. The parents take it in turns to
contribute a complete color class to the offspring. GPX will always select the
largest remaining color class from the chosen parent (hence the term ‘greedy’
in GPX), and following its transfer to the offspring, all copied vertices will be
removed from both of the parents to avoid any duplication of vertices in the
offspring.

A disadvantage shared by both the above techniques is their need to repair
the infeasible solutions that are inevitably produced by the genetic operators.
In addition, successful implementations of these methods also make extensive
use of local search to further improve the quality of the solutions. The GGA,
for example, uses a powerful backtracking technique adapted from [30] to
unpack items from some bins and attempt to repack them more favorably in
others. The HCA algorithm of [18] relies on small populations of just five or ten
individuals and typically applies several thousand iterations of a tabu search
algorithm to each new offspring produced by the evolutionary algorithm (one
could speculate on the relative contribution evolutionary part to the methods
as a whole). Nevertheless, the researchers in each case present convincing
evidence to support the inclusion of their evolutionary components.

Interestingly, the GGA has been adapted by various authors for several other
set partitioning problems, including the graph coloring problem [13, 14], the
equal piles problem [15], and the course timetabling problem [29]. For each
application the choice of problem specific repair and local search heuristics
has probably had a major influence on its level of success. To the best of this
author’s knowledge the HCA algorithm has not yet been adapted for other
applications.

Having now introduced the reader to arguably the best known and most suc-
cessful evolutionary approaches to set partitioning for which crossover plays
a significant role, I will now move on to outline the motivation for the present
work. It is clear that a major weakness is shared by all evolutionary tech-
niques that rely on direct encoding for set partitioning problems – this being
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their need to repair infeasible solutions. In addition, we have also noted an
extensive use of problem specific local search heuristics in the algorithms we
have reviewed above. These are not only time consuming, but they also call
into question the relative contribution of the evolutionary algorithm. Further-
more, the repair and local search heuristics used by these methods are not very
portable from one set partitioning problem to another, and success seems to
be quite variable, depending heavily on the quality of supporting heuristics.

The main aim of the present Chapter is to present a new, and reasonably
generic, order based framework suitable for application, with minimum adap-
tation, to a wide range of set partitioning problems. The clear advantage of
using an order based approach is that every permutation is decoded as a fea-
sible solution, meaning no costly repair mechanisms are required following a
crossover event, however heavily constrained the problem. On the other hand,
it is conceivable that techniques that employ direct encoding will find it in-
creasingly difficult to repair the result of a crossover, the more heavily (or
multiply) constrained a problem becomes. Historically the downside of order
based genetic algorithms is that, to the best of this author’s knowledge, no-
body has so far been able to come up with a really effective crossover capable
of transmitting useful features from parents to offspring for set partitioning
problems. It is hoped that the new crossover operators presented in the present
work do something to redress the balance and make order based approaches
more competitive. Indeed, the new operators share a key property inspired
by the GGA and GPX crossovers: they tend to propagate whole partitions or
sets from parents to their offspring.

Perhaps the most innovative feature of the new order based approach is the
inclusion of some simple grouping and reordering heuristics to preprocess the
chromosomes prior to crossover. The idea is to encourage the transmission of
whole set partitions, when a suitably designed crossover is used, in a way that
is normally not possible with order based crossovers. We shall see in the next
Section that the grouping and reordering heuristics of [9], used in the present
study to preprocess the chromosomes prior to crossover, can be applied readily
to a range of different set partitioning problems and, unlike many of the repair
mechanisms used by direct encoding methods are not restricted to one type.
Furthermore, no lengthy local search procedures are required and only a very
few iterations of Culberson and Luo’s heuristics are needed for preprocessing,
Thus, although the exact choice of objective or fitness function will very likely
depend on the specific set partitioning application, it is envisaged that the
complicated problem specific heuristics and costly backtracking, typical of
many other approaches, can largely be avoided. The next Section introduces
the heuristics of [9], and explains their power and versatility. It is the opinion
of the present author that these very elegant techniques have been rather
neglected by researchers.
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8 Culberson and Luo’s Grouping and Reordering
Heuristics

Culberson and Luo’s (CL) heuristics were originally devised to solve the graph
coloring problem and belong to a family of methods that use simple rules to
produce orderings of vertices (or items). Once created, the orderings are pre-
sented to a greedy decoder for transformation into legal colorings (or set par-
titions). Successful ordering heuristics are distinguished by the production of
high quality solutions. The simplest and fastest ordering heuristics, unlike the
CL heuristics, generate a solution in one go. For the graph coloring problem
the best known one-shot techniques determine the orderings by placing the
most heavily constrained vertices (namely, those with many edges connecting
them to other vertices) before those that are less constrained. While most of
these techniques can be described as static, because the orderings remain un-
changed during the greedy color assignment process [31, 43], a somewhat more
sophisticated technique, known as DSatur [2] operates dynamically. Starting
with a list ordered in non-ascending sequence of vertex degree, DSatur assigns
the first vertex to the smallest color label, then it reorders the remainder of
the list to favor vertices adjacent to the newly assigned vertex. The algorithm
continues in this way, sequentially assigning the lowest available color label
to the next vertex on the list, then reordering the remainder, until every ver-
tex has received a color. Thus, DSatur assigns colors to unassigned vertices,
giving priority to the vertices with the most neighbors already colored, using
vertex degree to break the ties.

One-shot ordering heuristics have also been developed for other set parti-
tioning problems, and they operate in a similar fashion to the graph coloring
heuristics discussed above. Ordering heuristics for the frequency assignment
problem (the assignment of radio frequencies to reduce interference between
transmitters), for example, are almost identical to those used for graph color-
ing (see [23] for a survey). This is probably not surprising, given that frequency
assignment is a derivative of the graph coloring problem. Simple versions of
the examination timetabling problem also make use of graph coloring heuris-
tics [4]. A popular method for ordering items for the bin packing problem is
to place them in non-ascending sequence of their weights. A simple greedy
algorithm can then be used to assign the items to the first available bin, bins
being identified by consecutive integer labels. This scheme for bin packing is
know as the first fit decreasing weight(FFD) algorithm [7].

Despite their attractiveness in terms of speed and simplicity, however, one-
shot ordering heuristics do not always perform very well in practice, although
there are exceptions. FFD can solve many large benchmark bin packing in-
stances to optimality, for example, and DSatur works well on certain graph
coloring instances. In other cases though, such algorithms are only useful to
supply upper bounds or provide a starting point for a more sophisticated
method.
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In a different category are the ordering heuristics of Culberson and Luo (CL)
[9]. These methods group and rearrange whole color classes (or sets of items),
rather than sequencing the vertices individually. Unlike the one-shot methods
discussed above, the CL heuristics can be applied repeatedly, leading to the
gradual improvement of a solution. Of particular significance is a rare property
of the CL heuristics which ensures that it is impossible to get a worse coloring
by applying any of their reordering techniques to the GCP, and it is possible
that a better coloring (using fewer colors) may result (see [9] for details). They
apply a random mix of various reordering heuristics and call the composite
algorithm iterated greedy (IG).

Two main stages of IG can be identified:

1. grouping, and
2. reordering.

Figure 5 illustrates some key operations from IG applied to a small graph with
12 vertices and 14 edges. Figure 5(b) gives a typical random permutation of the
vertices from Figure 5(a) and also the resulting greedy coloring. Figure 5(c)
shows the grouping operation used to sort the list in non-descending sequence
of color label, and 5(d) gives the arrangement following the application of one
of the CL reordering heuristics called largest first. The largest first heuristic
rearranges the color classes in non-ascending sequence of their size. Note that
the positions of color classes 1 and 2 have been reversed in Figure 5(d). This
follows advice in [9] to interchange positions of equal sized color classes. In
Figure 5(f) vertices are randomly ‘shuffled’ within (but not between) the color
classes. (Note: shuffle, although mentioned, does not appear to have been
extensively used by [9] in the IG algorithm. However it is included here because
of its value in the present study). Finally, the greedy algorithm is applied to
the new arrangement – Figure 5(f) – and the result is shown in Figure 5(g).
Note that vertices 4 and 1 are reassigned lower color labels, leading to a
reduction in the size of color class 2. Thus, given an initial permutation of
vertices, the IG algorithm can be defined by the following repeating sequence:

1. greedy assignment,
2. grouping of color classes,
3. reordering of complete color classes,
4. shuffle within each color class (optional).

Various properties of the color classes were assessed by [9] as criteria for
reordering:

1. Reverse: reverse the order of the color classes
2. Random: place the groups in random order
3. Largest first: place the groups in order of decreasing size (Figure 5(d))
4. Smallest first: place the groups in order of increasing size
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a) Graph with 12 vertices

Fig. 5. Various operations by [9] used in the local search procedure
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5. Increasing total degree: place the groups in increasing order by the total
degree of the group

6. Decreasing total degree: place the groups in decreasing order by the total
degree of the group

The favored combination turned out to be largest first, reverse and random,
used in the ratio 50:50:30. Although [9] applied their IG algorithm to the
GCP, many of the reordering heuristics are equally applicable to other set
partitioning problems. Reverse, random, largest first and smallest first, for
instance, can be used for the bin packing problem. Note however, that heuris-
tics based on vertex/item degrees have no meaning in this context, so the
increasing and decreasing total degree heuristics are not appropriate for bin
packing. Nevertheless, an alternative measure can be used: the total weight of
items in each bin. In this way the two CL heuristics that sequence on the total
degrees for each group can be replaced with heuristics that do their ordering
on the basis of the total weights of items in each bin. CL heuristics can also be
applied to a simple version of the examination timetabling problem where the
only considerations are to avoid clashes and/or seating capacity violations.
As mentioned in Section 6.3, clash avoidance and seating capacity compli-
ance simply represent underlying graph coloring and bin packing problems,
respectively.

The crucial feature that determines the applicability of the CL reordering
heuristics to a particular set partitioning problem is whether a solution is
changed if the groups are simply re-labelled. For convenience, groups are usu-
ally identified by integer labels, to represent their color class, bin ID or time
slot, and so forth. With graph coloring and bin packing it does not matter
which integer label is assigned to which group – it will not change the total
number of colors or bins required. On the other hand, if revision gaps are
required in examination timetables, the sequence of integer labels will be rel-
evant, and will correspond to a sequence of time slots; by contrast, time slots
can be shuffled into any sequence to avoid clashes and comply with seating
arrangements. Interestingly, the reverse heuristic maintains the relative posi-
tions of time slots. The frequency assignment problem has similar limitations,
and the applicability of reverse has been proven in [42].

We will now look at some new crossover variations that attempt to pre-
serve color classes, when used in conjunction with the grouping and sorting
heuristics described above.

9 Modifications to a Standard Order Based GA for Set
Partitioning

Genetic algorithms require crossover techniques that preserve building blocks
[19] appropriate to the problem at hand. A building block can be viewed
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as a group of elements on a chromosome that ‘work together’ to produce or
influence some identifiable feature in the solution. For example, the ‘sets’ in
set partitioning problems come into this category, and thus it makes sense to
use a crossover that preserves them. In the present work CL grouping and
reordering heuristics are used to preprocess the order based chromosomes to
make it easier to preserve the set groupings. Two new crossover operators,
POP and MIS (first described in [34]), seem to be particulary effective in
maintaining this group integrity when used in conjunction with CL heuristics.
Indeed, results for these operators are impressive when compared to those
obtained using other order based crossovers for the graph coloring problem
[34]. Further evidence in support of these operators is presented later in the
Chapter. Note that no special modifications were necessary for order based
mutations, and that inversion and insertion mutations proved the most useful
in the present study.
The new crossover operators are compared with three selected order based

operators of historical importance: cycle crossover (CX) [35], uniform order
based crossover (UOBX) [11], and merging crossover (MOX) [1]. CX, OX and
MOX have already been described in Section 4. UOBX was developed from
OX by [11] with the GCP in mind and is good at preserving relative positions
and orderings. CX is good at preserving absolute positions of vertices, and
every vertex in the offspring list will occur in exactly the same position in one
or other of its parents. CX has proven effective for the frequency assignment
problem [42]. As mentioned previously, MOX is good at preserving relative
positions. I will now outline the two new crossover operators, POP and MIS.

Permutation Order Based Crossover (POP)

Permutation order based (POP) crossover uses ideas from the well known
order crossover (OX) [35], described earlier, but at the same time it tries to
emulate the basic one point crossover of the ‘standard’ bit string GA, which
simply selects two parents and a cut point. The first portion of parent 1 up to
the cut point becomes the first portion of offspring 2. However, the remainder
of offspring 2 is obtained by copying the elements absent from the first portion
of the offspring in the same sequence as they occur in parent 2 (see Figure 6).
The same idea was used in [8], although the crossover was not given a specific
name. However, the present implementation relies on the CL heuristics for
preprocessing the chromosomes, without which it did not work very well, as
demonstrated in [34]. We will identify two variants of POP: POP1 and POP2.
These differ slightly in the way the cut point is selected: for POP1 it is chosen
at random and can appear anywhere in the list, but for POP2 the cut point
is restricted to a boundary between two set groupings. Of course application
of POP2 is dependent on having previously sorted the color classes.

Merging Independent Sets Crossover (MIS)

Merging independent sets (MIS) is a new crossover, adapted from MOX. It
requires that the color sets are first grouped together in both of the parents,
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as illustrated in Figure 7(a). MIS then proceeds in the same way as MOX,
but whole color sets are copied from the parents to the merged list in one
go (Figure 7(b)), rather than individual vertices. The merged list is split in
exactly the same way as for MOX, with the first occurrence of each vertex
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appearing in the first offspring and the second occurrence in the second off-
spring, reapplying the greedy decoder to the new offspring (Figures 7(c)). The
idea of MIS is to better preserve the parents’ color classes than MOX.

9.1 Performance Measures/Fitness Values

The objective function (namely, the value we are trying to optimize) is not
always the best measure of progress for an optimization algorithm to use.
For example, a common objective function for set partitioning problems is
to count the number of classes – for instance, the number of colors and bins
respectively – for graph coloring and bin packing. Unfortunately, as previously
mentioned, representational redundancy can mean that for a given number of
classes, a very large number of different assignments (of vertices to colors, or
items to bins) is possible. For this reason, we will use progress measures that
attempt to distinguish between ‘good assignments’ and ‘bad assignments’,
for a given class count. We will start by looking at a performance measure
that is generally applicable to most set partitioning problems, and then we will
examine some more specific measure that can be used for particular problems.

General Set Partitioning

The performance measure in Eqn.(2) was introduced by [9] for the GCP.
However, it is equally applicable to other set partitioning problems.

P1 =
n∑
1

ci + nc (2)

Interpreting this formula for the GCP, Eqn.(2) shows the coloring sum (that
is,

∑n
1 ci, where ci is the color assigned to vertex i) added to the term nc, where

n is the number of vertices and c the number of colors. For bin packing,
∑n

1 ci

represents the ‘bin sum’, with the bins numbered consecutively, {1, 2, 3, ..., c},
and item i assigned to bin number ci. The other term in Eqn.(2), nc, is simply
the number of items multiplied by the number of bins. A disadvantage of this
performance measure is that it is sensitive to color (or bin) class labelling,
and color classes or bin assignments need be sequenced so that the smallest
integer label is assigned to the largest class, and the second smallest integer
to the second largest class, and so on, for the measure P1 to work effectively.
This performance measure was used in an earlier study by the present author
[34].

Graph Coloring

The following equation was devised by Erben [14].

P2 =
1
c

c∑
1

D2
j (3)
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In Eqn.(3) Dj =
∑

i∈Sj
di represents the ‘total degree’ for group j with di

denoting the vertex degree of the ith node. Unlike P1, P2 is insensitive to class
labelling, and in Eqn.(3) color classes having a high total degree are favored.

Bin Packing

The final formula we will consider is due to Falkenauer [16].

P3 =
∑c

1(Wj/C)2

c
(4)

Eqn.(4) has a similar structure to Eqn.(3), but the important class measure-
ment is total weight of items in bin j,

∑
i∈Sj

wi, where wi is the weight of
item i in bin j. The bin capacity is denoted by C.

9.2 Comparing Order based Crossovers

Experiments were conducted to assess the viability of the various crossover
operators for the GCP and the BPP. The simple steady-state GA, outlined
in Algorithm 2, was used as a framework for this, omitting mutation. Two
DIMACS (Discrete Mathematics and Theoretical Computer Science Imple-
mentation Challenge) benchmarks – DSJC500.5 and le450 25c – were used
to demonstrate the performance of the crossovers on the GCP, and N4C3w2 A
and N4C3W4 A from Scholl and Klein were used for the BPP (see the resources
Section for the data sets). The fitness function devised by Erben (Eqn.(3)) was
used for the GCP and Falkenauer’s fitness function was chosen for the BPP. A
population size of 300 was used for each experiment, and the GA run for 250
generations. A single iteration of local search steps, similar to those illustrated
in Figure 5, immediately followed each application of crossover. Recall that
local search is based on the CL heuristics and consists of a ‘grouping’ and a
reordering phase. However, the ‘largest first’ heuristic was changed to reflect
features of the different fitness functions that were used for the GCP and the
BPP. In the case of the GCP, the classes were sequenced according to the sum
of vertex degrees in each color class (that is, decreasing total degree), rather
than just counting the number of vertices belonging to each group. For the
BPP the classes (which correspond to the contents of the various bins) were
sequenced in non-ascending order of bin weights.

Results for all the experiments are displayed graphically as ‘best-so-far’
curves averaged over 10 replicate runs (see Figures 8 and 9). Clearly the best
results are obtained with MIS on the GCP and POP1 on the BPP. Analysis
of variance tests show highly significant differences in the performance of the
various crossover operators at the 0.01% level.

The reader is referred to [34] for a more rigorous set of comparisons for the
GCP. Results presented in this earlier paper also demonstrate the important
contribution of the grouping (or sorting) and reordering heuristics.
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9.3 The Genetic Simulated Annealing Algorithm

Having assessed the relative performance of the various crossover operators,
the next stage is to apply a suitably adapted GA to literature benchmark
instances for various set partitioning problems, to see how the approach will
compete with other published algorithms. In order to obtain really good solu-
tions, it is necessary to balance population diversity with GA convergence, and
consider larger populations and/or longer runs than were needed for compar-
ing the crossovers. Clearly, the addition of a mutation operator will probably
help maintain diversity within the population, giving a better opportunity to
explore the search space and helping to avoid premature convergence. Mu-
tation was deliberately left out of the previous experiments when we were
assessing the crossovers.

Several of the mutation operators discussed in Section 4 were tried in some pi-
lot studies: insertion and swap mutation, as well as scramble sublist. Of these,
insertion produced the best results with the successful crossovers, producing
good solutions quickly. Unfortunately these results were not quite world class,
and despite the useful contribution of the mutation operator, the population
tended to lose its variability towards the end of the run. In an attempt to im-
prove matters, different ways of injecting extra variability into the population
were explored.

Periodic restarts was the first of these ideas to be tried. This involved tem-
porarily halting the GA, once it stagnated. Various ‘super-mutation’ oper-
ations were then selected stochastically and applied to the individual per-
mutations in the population, in an attempt to inject some new variability.
Operations that were tried include Davis’ scramble subset and Holland’s in-
version (see Section 4) as well as a simple ‘delete-and-append’ operation, which
deletes part of a string and then appends this deleted section to the end of
the string. Once this super-mutation stage had been completed, the GA was
restarted. Although this approach proved to be very successful on some in-
stances, it required unacceptably long run times on others. A more efficient
approach was subsequently found which involves making a small change to the
replacement criterion in Algorithm 5: instead of simply replacing the weaker
parent by its offspring when offspring is better than its parent, a simulated
annealing cooling schedule was introduced, which allows a parent to be re-
placed occasionally by a poorer offspring. The main features of a simulated
annealing cooling schedule are outlined below.

What is Simulated Annealing?

In physics the term ‘annealing’ refers to the very slow cooling of a gas into a
crystalline solid of minimum energy configuration. Simulated annealing algo-
rithms (SAs) [27] attempt to emulate this physical phenomenon. The process
usually begins with the generation of a random solution, and this will act as
the initial focus of the search. The SA will then make a very small change to
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a copy of this solution, generating a neighborhood solution, in an attempt to
produce an improvement. If a better solution is found, then the improved so-
lution will replace the original as the focus. However, it is well known amongst
researchers that a simple hill climbing search such as this (accepting only ‘for-
ward’ moves and never ‘backward’ ones) can easily become trapped in a local
optimum. The main strength of an SA algorithm is its potential to escape from
such traps. This is achieved by the occasional acceptance of a neighborhood
solution that is somewhat worse than the current focus. The rate at which
this is allowed to occur is carefully controlled using an acceptance probability,
and this is used to determine whether or not a newly generated neighborhood
solution will replace the current focus solution. In general, the poorer the new
solution, the less likely it is to be accepted. However, the analogy with the
physical situation requires that inferior solutions should be less likely to be
accepted as the search progresses. Initially the algorithm will probably ac-
cept almost anything, but towards the end of the search, the algorithm will
behave more like hill climbing, accepting inferior solutions only on very rare
occasions. Values for the acceptance probability – prob – for a minimization
problem, are evaluated using Eqns.(5) and (6). ∆ represents the difference
between the objective functions (or costs) of the new solution, C(S′), and the
focus solutions, C(S). Note that the value of prob depends on the value of ∆
and also on T , the current temperature, which is determined by the cooling
schedule.

∆ = C(S′)− C(S) (5)
prob = min(1, e−∆/T ) (6)

The new solution is accepted with probability 1 if ∆ ≤ 0 (in other words,
if the neighborhood solution is better than S) and with probability e−∆/T if
∆ > 0 (that is, if the neighborhood solution is worse than S). Throughout the
execution of an SA algorithm, the temperature T is progressively lowered.

The Genetic Simulated Annealing (GSA) Implementation

For the present GSA implementation for set partitioning problems, the precise
annealing schedule is determined from user-specified values for the number of
cooling steps and the initial and final solution acceptance probabilities. We
use n cooling steps to correspond to the number of generations, so that the
temperature is decreased between each generation. Thus, knowing n and the
initial and final acceptance probabilities, P0 and Pn, as well as an additional
parameter M that signifies an initial number of random trials, the starting
temperature T0, the final temperature Tn, and the cooling factor α can be
calculated, as indicated below.

∆i = Perform(offspring)− Perform(weaker) (7)
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∆ave =
∑i=M

i=1 | ∆i |
M

(8)

T0 = − ∆ave

log P0
(9)

Tn = − ∆ave

log Pn
(10)

α = exp
log Tn−log T0

n (11)

Please note that ∆ave (Eqn.(8)) is obtained by applying the genetic opera-
tors and also local search, if appropriate, to M randomly selected pairs of
individuals from the initial population. In this way the performance measures
of M offspring are compared with those of their weaker parents to obtain an
estimate of ∆ave. This estimate is then used to determine the starting temper-
ature, the final temperature and the cooling schedule. The offspring generated
during this initialization phase are discarded.

Algorithm 3 provides an outline of the GSA. Although the exact implementa-
tion details for the GSA, such as choice of crossover and mutation operators,
and type of local search, vary according to the nature of the problem, the
basic framework remains the same. Worthy of note is the simple adjustment
made to the calculation of ∆i, necessary because all the fitness functions
(in other words, objective functions) used for the problems in the present
study involve maximization, yet simulated annealing requires that the ob-
jective functions are minimized. We simply set ∆i = Perform(weaker) −
Perform(offspring) instead of Perform(offspring)− Perform(weaker).

10 Results on Literature Benchmarks

The versatility of the new techniques will now be demonstrated on some lit-
erature benchmarks for graph coloring, bin packing and timetabling. Except
where otherwise stated, the following parameter settings were used for the
GSA: M = 100 (the number of preliminary trials to help establish the start-
ing temperature), P0 = 0.999 and Pn = 0.0001 (the starting and ending
probabilities, respectively, of accepting an inferior offspring with an average
magnitude of deviation in value from its weaker parent). Population sizes of
200 were used and ten replicate runs carried out on each benchmark instance,
with average and best values quoted for the solutions in the results tables.
Values of n, the number of generations, vary with different problem instances,
as do precise details of the genetic operators and CL heuristics used.
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Algorithm 3 Genetic Simulated Annealing (GSA)
Generate N random strings {N is the population size}
Evaluate the performance measure for each string and store it
Apply local search to the offspring {optional}
Initialize data, {obtaining T0, Tn and α}
S = S0

T = T0

for n generations do
for all strings in the population do

Each string, in turn, becomes the first parent
Select a second parent at random
Apply crossover to produce a single offspring
Apply mutation to the offspring
Apply local search to the offspring {optional}
Evaluate the performance measure for the offspring,
∆ = Perform(weaker)− Perform(off)
Pt = min(1, exp−∆/T )
if random(0, 1) ≤ Pt then

offspring replaces weaker parent
else

the offspring dies
T = α× T

10.1 Graph Coloring

The previously mentioned DIMACS benchmarks [24] provide most of the test
instances for the present study, and are dealt with first. Further experiments
are then reported on two special types of graphs, based around cliques. All
test instances were chosen because they have been reported as ‘difficult’ by
previous researchers.

The DIMACS Benchmarks

Seven benchmark instances were taken from the DIMACS challenge bench-
mark set, [24]. D250.5, D500.5 and D1000.5 are random graphs with edge
density 0.5 and unknown chromatic number. Le450 15c and le450 25c are
Leighton graphs with 450 vertices, and flat300 28 and flat1000 76 are flat
graphs with 300 and 1000 vertices, respectively. The flat and Leighton graphs
are structured with known chromatic numbers of 15, 25, 28 and 76, as indi-
cated.

MIS crossover was selected because it worked well in the GSA for most of the
instances. However, POP1 proved better for le450 25 so this crossover was
used for this instance only. ‘Inversion’ acted as the mutation operator, which
involved inverting the substring between two randomly selected cut points.
Erben’s fitness function (Eqn.(3)) provided the performance measure, and
three iterations of the local search, based on Figure 4, seemed to be sufficient
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for the GCP. Increasing the number of iterations slowed the algorithm down
considerably without improving the results. The local search was modified a
little from Figure 4 however (as was the case when comparing the crossovers),
with the ‘decreasing total degree’ heuristic replacing the ‘largest first’. This
was done to make the reordering criterion tie in better with Erben’s fitness
function: both encourage the formation of classes with high values for total
vertex degree. Results for the seven DIMACS benchmarks are presented in
Table 1.

Table 1. Results for Genetic Simulated Annealing on graph coloring Instances

Instance Order Based GSA Mut GSA It Greed DSat Best
# Gens Time Mean Min Mean Min Mean Min known

DSJC250.5 2000 314 29.1 29 31.6 31 30.0 30 37 28
DSJC500.5 3000 1895 49.9 49 56.4 56 53.8 53 65 48
DSJC1000.5 5000 11706 87.2 87 101.0 100 98.0 97 115 83

le450 15c 500 190 15 15 24.9 24 24.0 24 23 15
le450 25c 2000 854 29.3 29 29.9 29 29.0 29 29 26

flat300 28 1000 205 32.6 32 36.0 36 34.3 34 42 31
flat1000 76 5000 11711 86.3 85 100.0 99 97.4 96 114 83

In Table 1 results for the GSA (columns 4 and 5) are compared with those
obtained running a mutation only version (columns 6 and 7), which incor-
porates all the same parameters and features of the GSA but does not have
the crossover. The iterated greedy algorithm was also tried, and the results
for this can be found in columns 8 and 9. The penultimate column contains
the Desatur result for each instance and the best known results are listed,
for comparison purposes, in the final column. The best known results were
obtained by [18] using their hybrid evolutionary algorithm for graph coloring
(HEA). Ten replicate runs were carried out for the GSA, mutation only GSA
and also iterated greedy on each benchmark instance.
In more detail, column 2 gives the number of generations for the GSA (and

also the mutation only version), and column 3 the average run time in seconds.
The average and best results for the GSA and the mutation only version are
presented in columns 4, 5, 6 and 7. The results for iterated greedy in columns
8 and 9 are produced by running this algorithm for the same length of time
as the GSA, namely 314 seconds for DSJC250.5, 1895 seconds for DSJC500.5,
and so forth. Bold font is used to highlight where the best results have been
obtained for the current set of experiments, and italic font indicates the best
known results.
Clearly, the GSA outperforms Desatur and iterated greedy on most in-

stances, and the version with crossover works much better than the one with-
out. However, the GSA results do not quite match the results obtained by
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the HEA algorithm, which is clearly state-of-the-art. Nevertheless, the bench-
marks are tough and the results are generally very good, when compared to
many other published results for these benchmarks. The HEA algorithm uses
several thousand tabu search iterations following the creation of each new off-
spring in the population, thus it is a very different type of algorithm from the
current order based GSA. The new order based approach introduced in the
present Chapter is presented largely for its generic qualities, and its potential
for a wide range of set partitioning problems.

Some Further Experiments

In addition to the DIMACs benchmarks, further experiments were undertaken
on two special types of graphs first presented by [39] and used by [14] to test
his version of the grouping genetic algorithm. These instances are all arranged
around cliques – that is, complete subgraphs (with each vertex connected to
every other vertex by an edge) present within each instance. The two types
are called the pyramidal chain and the sequences of cliques. In all cases the
chromatic number c is known beforehand. A simple order based GA (in other
words, without the GSA cooling schedule) easily solved all instances tried: one
pyramidal chain instance with c = 6, 20 cliques, 60 nodes and 200 edges; seven
instances of sequences of cliques with c = 6, 20 cliques and 120 nodes. All the
instances that could be found were kindly supplied by Erben, using email at-
tachment. The pyramidal chain example needed about 1,300 evaluation steps
of the order based GA, a similar number to that was reported by [14] for the
grouping genetic algorithm. For the 7 sequence of cliques examples, however,
the order based approach needed a maximum of 10,000 evaluations, which is
less than the 150,000 reported in [14].

10.2 Bin Packing

Two sources of data provide the benchmark instances for the bin packing
tests. Once again, an order based GSA is used with inversion providing the
mutation operator. POP1 is chosen as the crossover operator for bin packing,
because it produced better results than MIS in some preliminary tests. The
fitness function adopted for bin packing is the one devised by Falkenauer (see
Eqn.(4)) which favors bins that are as full as possible. A single iteration of
local search, following each crossover, seems to be sufficient for bin packing.
This time the ‘largest first’ reordering heuristic in Figure 4 is replaced by a
reordering scheme based on largest total bin weight (or fullest bin).

Many authors have noted the efficiency of the simple bin packing heuristic
algorithm, first fit decreasing weight, FFD, (briefly discussed earlier in Section
8). For large numbers of items the worst case solution is 11

9 ×OPT , [7], where
‘OPT ’ refers to the optimum solution. However, best case and average case
behavior tend to be very much better than this, with FFD easily solving
many problems to optimality. Schwerin and Wäscher [41] coined the phrases
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FFD-easy, FFD-hard and extremely FFD-hard to help classify problems with
different properties according to the proportion solved by FFD:

• FFD-easy: 80 - 100 % solved
• FFD-hard: 20 - 80 % solved
• extremely FFD-hard: 0 - 20 % solved

The Data Sets of Scholl and Klein (SK)

Scholl and Klein provide three data sets (see the resources section at the end of
the Chapter) with a total of 1,010 bin packing instances on their web site, with
optimum solutions (that is, minimum number of bins) given for each. All these
instances have been generated in groups of either 10 or 20, so that instances
within groups have the same properties regarding bin capacities, numbers of
items and ranges of weights for the items. The majority of these instances are
easily solved, however. Indeed, the present author found optimum solutions
to 781 of the 1,010 instances using FFD. All the test data selected for this
Chapter belong to classes where FFD has solved zero instances. The first
two instances, N4C3W2 A and N4C3W4 A, are taken from SK’s first data set.
N4C3W2 A has N = 500 items, bin capacity C = 150, and item weights varying
uniformly between 20 and 100. N4C3W4 A has the same values for N and C,
but the item weights are between 30 and 100. The next six instances are all
taken from the second SK data set. All these instances have N = 500 items
and bin capacity = 1,000. The average weight per item varies according to W,
with W1 = 1000/3, W2 = 1000/5, W3 = 1000/7, and W4 = 1000/9. Thus,
for N4W1B1R0 we would expect to find a maximum of 3 items in each bin,
and for N4W2B1R0 about 5 items per bin, and so on. The value of B indicates
the maximum deviation of single weight values from the average weight. B1
= 20%, B2 = 50%, and B3 = 90%. For the remaining instances (HARD0 -
HARD9 from data set 3) the parameters are: N = 200 items, capacity C =
100,000, and weights range from 20,000 to 35,000. The number of items per
bin lies between 3 and 5.

Results presented in Table 2 show that the both the GSA and mutation only
GSA are able to solve most of the instances to optimality, and get very close for
the others. For the SK data, crossover does not appear to make a significant
contribution however, although the GSA clearly produces better solutions
than FFD and iterated greedy. Bold and italic font is used as previously, to
highlight the best results for the current experiments and the best known
results, respectively.

Falkenauer’s Data Sets

Falkenauer’s data sets are also included here to make comparisons possible
with state-of-the-art algorithms, such as the MTP algorithm by Martello and
Toth [30] and the hybrid grouping genetic algorithm (HGGA) of Falkenauer
himself [16]. Falkenauer generated two type of data:



36 Christine L. Mumford

Table 2. GSA results on Bin Packing Instances

Instance Order Based GSA Mut GSA It Greed FFD Optimum
# Gens Time Mean Min Mean Min Mean Min

N4C3W2 A 2000 324 204 204 204 204 204.6 204 206 203
N4C3W4 A 2000 340 217 217 217 217 219 219 220 216

N4W1B1R0 1000 134 167 167 167 167 184 184 184 167
N4W2B1R0 1000 89 102 102 102 102 107.3 105 109 101
N4W3B1R0 1000 73 71 71 71 71 73 73 74 71
N4W3B2R0 1000 73 71 71 71 71 71 71 72 71
N4W4B1R0 1000 63 56 56 56 56 56.8 56 58 56

HARD0 1000 30 56 56 56 56 59 59 59 56
HARD1 1000 30 57 57 57 57 58.7 57 60 57
HARD2 1000 30 57 57 57 57 59 59 60 56
HARD3 1000 30 56 56 56 56 57.7 57 59 55
HARD4 1000 30 57 57 57 57 58.9 58 60 57
HARD5 1000 30 56 56 56 56 57.8 57 59 56
HARD6 1000 30 57 57 57 57 58.6 57 60 57
HARD7 1000 30 55 55 55 55 58 58 59 55
HARD8 1000 30 57 57 57 57 58.8 58 60 57
HARD9 1000 30 56 56 56 56 58.7 58 60 56

1. uniform item size distribution, and
2. triplets.

Both types were produced along similar lines to the hard instances in the SK
data sets. For the first set of data, items are uniformly distributed between 20
and 100, with bin capacity 150. Falkenauer generated instances with varying
numbers of items (120, 250, 500 and 1,000), producing 20 examples of each,
making 80 instances of this type in total.

With the second set of data, item weights were drawn from the range 0.25
to 0.5 to be packed in bins of capacity 1. Given the improbability of finding
four items of weight exactly 0.25, it follows that a well-filled bin will normally
contain one big item (larger than a third of the bin capacity) and two small
ones (each smaller than a third of the bin capacity), which is why the instances
are referred to as ‘triplets’. What makes this class difficult is that putting two
big items or three small items into a bin is possible but inevitably leads to
wasted space, because the remaining space is less than 0.25, and thus cannot
be filled. Falkenauer generated instances with known optima, based on a bin
capacity of 1,000, as follows. An item was first generated with a size drawn
uniformly from the range [380, 490], leaving space s of between 510 and 620 in
the bin. The size of the second item was drawn uniformly from [250, s/2]. The
weight of the third item was then chosen to completely fill the bin. This process
was repeated until the required number of items had been generated. The
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number of bins needed was subsequently recorded. Triplets were generated
with 60, 120, 249 and 501 items – 20 instances of each. Optimum solutions
are 20, 40, 83 and 167 bins, respectively.

Table 3 compares the results obtained by running the GSA with those pub-
lished in [16]. Results for FFD and iterated greedy are also included. Each
algorithm was run only once on each instance, and population sizes for the
GSA were set at 100, the same as was used for HGGA. The GSA was run for
the same number of generations as the HGGA, 2,000 for the first two data
sets, 5,000 for the next two, 1,000 for the first two triplet groups, and 2,000
for the last two.

Once again, the GSA clearly outperforms FFD and iterated greedy (run
for the same length of time as the GSA), and it would appear that POP1
crossover makes a useful contribution because the GSA with crossover does
slightly better than the GSA without it. The GSA clearly performs better
than MTP in all columns. However, apart from the uniform instances with
120 items, the HGGA performs slightly better than the GSA. It is worth
noting, however, that the HGGA employs specialized backtracking in its local
search, that will unpack up to 3 items per bin and try to repack. On the
other hand the order based GSA does not use backtracking and runs very
fast – requiring one or two seconds for the smaller problems and up to a
maximum of about 22 minutes for some of the uniform problems with 1,000
items. Furthermore, the representation, operators and CL heuristics used in
the GSA are more generic, and can equally be applied to other set partitioning
problems, as previously mentioned.

Table 3. Results for Falkenauer’s data sets

Type # items FFD MTP HGGA GSA Mut GSA IG

Uniform 120 49.75 49.15 49.15 49.1 49.45 49.4
Uniform 250 103.1 102.15 101.7 101.9 102.5 102.3
Uniform 500 203.9 203.4 201.2 201.5 202.5 202.65
Uniform 1000 405.4 404.45 400.55 401.3 402.7 403.7

Triplets 60 23.2 21.55 20.1 21 21 22.25
Triplets 120 45.8 44.1 40 41 41 44.95
Triplets 249 95 90.45 83 84 84.15 93.7
Triplets 501 190.15 181.85 167 168 169.1 188.6

10.3 Timetabling

Recall the version of the timetabling problem addressed here combines bin
packing with graph coloring. The maximum number of seats per time slot
corresponds to the BPP constraint, and the avoidance of clashes to the GCP
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constraint. Given a set of students to be examined for different courses, we
wish to schedule the examinations so that all clashes are avoided and the
seating capacity is not exceeded in any time period. A selection of real world
instances from Carter’s benchmarks, [6] (see resources section), was thought
to provide a suitable challenge for the new order based approach. Only those
instances for which maximum seating capacity has been specified by Carter
have been chosen, and the main characteristics of these six problems are sum-
marized in Table 4. The first five columns of this table are self explanatory,
and column 6 lists the best known solutions to the underlying graph coloring
instances. The uta-s-92 best GCP is taken from [5], pur-s-92 from [3], and
the other four graph coloring solutions from [6]. Column 7 presents solutions
to the underlying bin packing instances, as calculated with a simple FFD al-
gorithm by the present author. Interestingly, every one of the BPP solutions
obtained by FFD match the so called ‘ideal solutions’, found simply by count-
ing the total number of student-examination events and filling up the seats in
consecutive time slots, ignoring all other information, until all the events are
used up. Thus, all the solutions in column 7 are optimal for the underlying
bin packing problem. Assuming that the graph coloring solutions in column 6
are also optimal, we can say that the larger solutions of GCP and BPP gives
a lower bound for the corresponding timetabling problem (indicated with a
‘*’, in Table 4).

Table 4. Characteristics of Timetabling Problems

Instance # exams # students # edges s̃eats GCP slots BPP slots

car-f-92 543 18419 20305 2000 28* 28*
car-s-91 682 16926 29814 1550 28 37*

kfu-s-93 461 5349 5893 1955 19* 13
pur-s-93 2419 30032 86261 5000 30* 25
tre-s-92 261 4362 6131 655 20 23*
uta-s-92 622 21266 24249 2800 30* 22

Results for the GSA on Carter’s instances are presented in Table 5. The
table also shows results for a mutation-only version of the GSA and a pure
iterated greedy algorithm. As before, the same run time was used for the
GSA and iterated greedy algorithm. We set the population size to 200 for
both versions of the GSA, and each experiment was run for 2000 generations.
The form of local search used for the previous experiments in graph coloring
and bin packing was altered slightly for the timetabling problem. Recall that
we used one to three iterations of a local search based on reordering the
classes according to some form of ‘largest first’ criterion – either ‘decreasing
total degree’ (for the GCP) or the ‘fullest bin first’ (for the BPP). Preliminary
experiments with the timetabling instances showed that better results could
be obtained if 5 iterations of iterated greedy were used, instead of the usual
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local search, with largest:reverse:random set at 50:50:30. The ‘fullest bin first’
approach, as used for the BPP replaced the ‘largest first’ reordering heuristic
in the iterated greedy routine, for the GSA and the iterated greedy proper.
Here the fullest bin corresponds to the time slot with the largest number of
students taking examinations. Additionally, Falkenauer’s bin packing fitness
function of (see Eqn.(4)) was used for the timetabling instances, which favored
full time slots. POP1 crossover was used, together with insertion mutation.

Table 5. Results for Timetabling Problems

Instance Order Based GSA Mut GSA It Greed
# Gens Time Mean Min Mean Min Mean Min

car-f-92 2000 1513 30.5 30 30.7 30 30.9 30
car-s-91 2000 2254 38.0 38 38.0 38 38.0 38

kfu-s-93 2000 1130 19.0 19 19.0 19 19.0 19

pur-s-93 2000 22527 33.6 33 33.3 33 33.7 33

tre-s-92 2000 376 23.8 23 23.4 23 23.8 23

uta-s-92 2000 2277 30.8 30 30.8 30 30.8 30

It is clear examining Table 5 that the results are very similar for both versions
of the GSA and also iterated greedy. The values highlighted in italics denote
optimum solutions. It would appear that these particular instances may be
easy for all three algorithms.

11 Summary

This Chapter has introduced a new and generic order based framework suit-
able for application, with minimum adaptation, to a wide range of set par-
titioning problems. The approach contrasts with other state-of-the-art tech-
niques that rely mostly on direct representations. A clear advantage of using an
order based approach is that every permutation is decoded as a feasible solu-
tion, meaning no costly repair mechanisms are required, following a crossover
event, however heavily constrained the problem. Perhaps the most innova-
tive feature of the new order based approach is the inclusion of some simple
grouping and reordering heuristics to preprocess the chromosomes and make
them more amenable to crossover. The idea is to encourage the transmission
of whole set partitions, from parent to offspring, in a way that is not usually
possible with an order based approach. Results presented herein indicate that
the new memetic algorithm is highly competitive, yet no lengthy problem spe-
cific local search procedure is required. Only a very few iterations of Culberson
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and Luo’s heuristics are required for preprocessing the chromosomes prior to
crossover. Thus, although the exact choice of objective or fitness function will
vary according to the specific set partitioning application, problem specific
heuristics and costly backtracking – so common in other approaches – can
largely be avoided.

A detailed examination of the results reveals that different components of
the GSA framework are more or less effective, depending on the nature of the
test instances. The six timetabling instances, for example, seem to be rather
easy for the iterated greedy algorithm to solve, making it difficult to assess
the potential of the GSA – it is possible that more challenging instances are
needed here. On the other hand, the GSA with crossover proved very effective
on the DIMACS graph coloring instances and also on the bin packing instances
supplied by Falkenauer. Yet the need for crossover was not particulary well
established for the bin packing data sets of Scholl and Klein.

Future work will concentrate on improving results for set partitioning bench-
marks, and undertaking further investigations into the relative contributions
of genetic operators versus simple reordering heuristics. The challenge will
be to make improvements to the approach, while keeping the techniques as
generic as possible, avoiding time-consuming backtracking and repair wher-
ever possible. The present author also plans to extend the new approach to
more realistic timetabling problems, incorporating additional hard constraints
as well as a range of soft constraints. Order based approaches have a distinct
advantage over techniques that use a direct representation when dealing with
multiply constrained problems: a suitable greedy decoder can ensure that
only feasible solutions are generated. On the other hand, a directly encoded
method may struggle to find any feasible solution in similar circumstances.
Multi-objective optimization is of particular interest when several soft con-
straints conflict. For example, a favorable spread of examinations to allow
students revision gaps may conflict with the interests of the teaching staff
who may prefer examinations with many students to be held early on, to give
sufficient time for marking. Extending the order based techniques to other set
partitioning problems is another interesting priority for the future.

A Resources

A.1 Key Books

De Jong, K.A. (2006) Evolutionary Computation: a Unified Approach (Com-
plex Adaptive Systems). MIT Press, Cambridge MA.

Eiben, A.E. and Smith, J.E.(2003) Introduction to Evolutionary Computing.
Springer-Verlag, New York.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, Boston, MA.
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Holland, J.H. (1992) Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge MA.

Mitchell, M. (1998) an Introduction to Genetic Algorithms. MIT Press, Cam-
bridge MA.

Zbigniew, M. (1996) Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, New York.

A.2 Key International Conferences

EvoCOP 2006: 6th European Conference on Evolutionary Computation in
Combinatorial Optimization.
http://evonet.lri.fr/eurogp2006/?page=evocop

GECCO 2006: Genetic and Evolutionary Computation Conference.
http://www.sigevo.org/gecco-2006/

IEEE WCCI 2006: World Congress on Computational Intelligence.
http://www.wcci2006.org/

PATAT 2006: The 6th International Conference for the Practice and Theory
of Automated Timetabling.
http://www.asap.cs.nott.ac.uk/patat/patat06/patat06.shtml

PPSN IX 2006: Parallel Problem Solving from Nature.
http://ppsn2006.raunvis.hi.is/

A.3 Interest Groups/Web sites

SIGEVO: ACM Special Interest Group on Genetic and Evolutionary Compu-
tation.
http://www.sigevo.org/

IEEE CIS: IEEE Computational Intelligence Society.
http://ieee-cis.org/pubs/tec/

A.4 (Open Source) Software

GAGS: A genetic algorithm C++ class library
http://kal-el.ugr.es/GAGS/

GAlib: A C++ Library of Genetic Algorithm Components
http://lancet.mit.edu/ga/

GAJIT: A Simple Java Genetic Algorithms Package
http://www.micropraxis.com/gajit/index.html

GA Playground (Genetic Algorithms Toolkit): Java genetic algorithms toolkit.
http://www.aridolan.com/ga/gaa/gaa.html
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JAGA: Java API for genetic algorithms
http://www.jaga.org/

Java genetic algorithms package
http://jgap.sourceforge.net/

GATbx: Genetic Algorithm Toolbox for use with MATLAB.
http://www.shef.ac.uk/acse/research/ecrg/gat.html

GAOT: The Genetic Algorithm Optimization Toolbox for use with MATLAB.
http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/

A.5 Data Sets used in the Chapter

1. Timetabling: http://www.cs.nott.ac.uk/˜rxq/data.htm
2. Bin Packing: Scholl and Klein: http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm
3. Bin Packing: Falkenauer: http://people.brunel.ac.uk/m̃astjjb/jeb/orlib/binpackinfo.html
4. DIMACS Challenge GCP: ftp://dimacs.rutgers.edu/pub/challenge/graph/
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