
A Symmetric Convexity Measure

Paul L. Rosin and Christine L. Mumford
Cardiff School of Computer Science,

Cardiff University,
Cardiff,

UK
{Paul.Rosin@cs.cf.ac.uk, C.L.Mumford@cs.cardiff.ac.uk}

Abstract

A new area-based convexity measure for polygons is described. It has the desirable properties that it is not
sensitive to small boundary defects, and it is more symmetric with respect to intrusions and protrusions than
other published convexity measures. The measure requires a maximallyoverlapping convex polygon, and this is
efficiently estimated using a genetic algorithm (GA1). A second genetic algorithm (GA2) is then used to fine tune
the result. In addition, the convex polygon is used to generate other values, measuring the amount of protrusions
and intrusions that a polygon contains. Furthermore, the scheme can bemodified to find the convex skull, which
yields another new convexity measure. Examples of the measures’ application to medical image analysis are
shown.

1 Introduction

Convexity is a useful attribute of shape, and has applications in classification, image segmentation, figure/ground
separation, etc. Whereas its mathematical definition provides a binary property, in image analysis we prefer a
continuous measure, so that a shape can be assigned a degree of convexity. This provides more information,
enabling classification for example to be more discriminating, and also allows the concept of convexity to be
applied more usefully and robustly to real life irregular and noisy shape data.

Many convexity measures for polygons in the literature are either area [2, 19] or perimeter based [24]. The most
common computes the ratio of the area of the polygon to the area of its convex hull [18],CA = area(P )

area(CH(P )) , where
P denotes the input polygon, andCH(P ) its convex hull. This measure is nominally area-based, and so narrowing
the intrusion (i.e. decreasing its area) in the polygon in the lower row in Figure 1 increases the measured convexity.
In the limit, as the area of the intrusion tends to zero (an infinitely thin cut), the convexity tends to one (perfect
convexity). However, there is an obvious asymmetry in the measure since a similar defect, but in the opposite
sense, namely the protrusion in the upper row in Figure 1 produces a lower measured convexity. Even worse, in
this example as the protrusion narrows the measured convexity decreases rather than increases, disagreeing with
our perception. Thus, the measure inherits the convex hull’s sensitivity to protrusions. Such sensitivity to thin
protrusions is more appropriate to perimeter based convexity measures such asCL = perimeter(CH(P ))

perimeter(P ) , or Žunic
and Rosin’s [24] method (CJ ) which is also sensitive to thin intrusions. While in some applications it desirable to
be sensitive to thin intrusions/protrusions, in others an area-based criterion is more appropriate.

2 The New Convexity Measure

In this paper we propose an alternative area-based convexity measure related toCA which has the advantages
that it is not sensitive to small (in area) boundary defects,and it is symmetric with respect to intrusions and
protrusions. The basic idea is to replace the convex hull of the polygonP by its “robustified” version which we
define as the convex polygonQ that best fitsP in the sense of maximising the overlap ofP andQ, or equivalently
minimising the area ofP XORQ.1 For the two shapes in Figure 1,Q in both cases is the underlying rectangle.
The right column in Figure 1 highlightsP XORQ, which has the same area for the two shapes. To make the
measure scale invariant it needs to be normalised with respect to size. This can be done using either the area of
the input polygon or by the area of the fitted convex polygon. These alternative normalisations give the following

1Thus the convexity measure is similar in spirit to many other shape measures which fit an ideal model of the shape (e.g. rectangle, circle,
ellipse) to the data, and measure the deviations from the fitted model [16].



Figure 1: Measuring convexity of the two shapes in the left column; middle: the standard convex hull based
approachCA has a larger discrepancy in area (shown in dark gray) when theinput polygon has a protrusion
rather than an intrusion; right: the proposed approach fits apolygon (in this case a rectangle) producing similar
discrepancies in area for both protrusion and intrusion.

measures:EP = area(P XORQ)
area(P ) andEQ = area(P XORQ)

area(Q) . The latter ensures greater symmetry (see Figure 1) but
is potentially less robust than the former ifQ is not estimated accurately.

To make the measure maximal for convex shapesEP is modified to form the convexity measure

CP =
1

1 + area(P XORQ)
area(P )

, (1)

lying in the range[0, 1] which replaces our previously published measure [17]CP = 1 − area(P XORQ)
area(P ) . For our

implementation of the convexity measure only an approximation toQ is found in order to improve computational
efficiency. Consequently there is no guarantee thatarea(P XORQ) < area(P ). Thus we found that a small
proportion of shapes (less than 1% of the thousands we have tested) produced negative values for the latterCP

formulation due to a small value ofarea(P ) relative to the overlap. An example is given in Figure 2a in which
our estimated value forQ is especially poor, incorrectly producing a large value ofarea(P XORQ) relative to
area(P ). For better solutions toQ (e.g. Figure 2b) this is avoided.

(a) (b)

Figure 2: The fitted convex polygonQ in (a) has little overlap with the input polygon, which in combination with a
low value ofarea(P ) leads to a negative value of the convexity measure1− area(P XORQ)

area(P ) . This is avoided using

the normalisationCP = 1

1+
area(P XORQ)

area(P )

. Neither normalisation yields negative values when a better solution for

Q is found; for comparison the optimalQ is shown in (b).

Just asEP can lie outside[0, 1], so canEQ, which is not bounded from above. This can be demonstrated by
the star shaped polygon in Figure 3. For a star with very shortarmsQ is a regular polygon centred on the star.
However, as the arms grow outwards the space between them grows much faster than the increased area of the
arms. This leads toQ flipping to fit one of the arms, and so for ann-sided star (n is odd)EQ ≈ n − 1. We
therefore normaliseEQ to form the measure

CQ =
1

1 + area(P XORQ)
area(Q)

(2)

2



Figure 3: The convex polygonQ is fitted to one arm of the star.

(a) (b) (c) (d) (e)

Figure 4: Set operations applied to polygons. (a) input polygonP , (b)Q overlaid onP , (c)P XORQ, (d)Q\P ,
(e)P\Q.

to keep it in the range[0, 1].
Given the polygonQ it is now also possible to use it to define two new shape measures. The amount of

protrusions and intrusions can be quantified byarea(P\Q)
area(Q) andarea(Q\P )

area(Q) . Only the former needs to be normalised,
and so the measures of protrusiveness and intrusiveness are

Cprot =
area(P\Q)

area(P\Q) + area(Q)
(3)

Cint =
area(Q\P )

area(Q)
. (4)

Figure 4 demonstrates the various quantities obtained by performing the set operations between a polygon and its
fitted polygonQ.

The protrusiveness and intrusiveness measures make intuitive sense, as demonstrated on the comb shapes
in Figure 5. A small gap between the teeth (Figure 5a) resultsin the top edge ofP being treated as a solid
with indentations, i.e. zero protrusiveness and a non-zerointrusiveness. Making the gaps larger than the teeth
(Figure 5b) reverses the interpretation, i.e. non-zero protrusiveness and zero intrusiveness.

The protrusiveness and intrusiveness measures are not exactly symmetric due to the normalisation required
to keep their values in the range[0, 1]. However, the extra termarea(P\Q) in (3) is small w.r.t. area(Q) –
otherwise the regionP\Q would be treated as part ofQ rather than external toQ. Therefore, the protrusiveness
and intrusiveness values will be similar in symmetric situations. For instance, if the intrusions in Figure 5a are
reflected out to form protrusions as in Figure 5c, such that the area ofQ remains constant, then the intrusiveness
(Figure 5a) and protrusiveness (Figure 5c) values only differ by less than10%. These two shapes also demonstrate
that the protrusion and intrusion measures provide significantly different information compared to the convexity
measure. While Figures 5a and 5c have identical convexity values, they are very distinct according to both their
protrusion and intrusion measure values.

3 The Genetic Algorithms

We have developed two genetic algorithms (GAs) to compute our new convexity measure. For a given input
polygon,P , both of the GAs attempt to minimizearea(P XORQ) as their objective function, this being the key
component in our new convexity measure. The first algorithm,GA1, is of primary importance and is applied before
the second, GA2. GA2 can be regarded as a “fine tuner” that may be applied, if desired, to the output produced
by GA1, and it will attempt to improve on it. GA1 is confined to adiscrete search space consisting entirely of
non-empty subsets of vertices selected fromP , but GA2 is not restricted in this way. Indeed, starting fromthe
vertex subset produced by GA1, GA2 will perturb the coordinates of these vertices, and cause them to “drift,” in
an attempt to find a convex polygon that more closely matches the outline ofP . Thus, the search space for GA2

3



CQ = 0.89 0.81 0.89
CP = 0.88 0.84 0.90
Cprot = 0.00 0.19 0.11
Cint = 0.12 0.00 0.00

Figure 5: Protrusion and intrusion values for comb-like shapes.

is continuous, and although (slower) exact alternatives exist for GA1 (see Section 5.1), we cannot conceive of an
exact solution method that would replace GA2.

The general framework for GA1 and GA2 is the same and is outlined in Figure 6. The two GAs differ in their
representations, however: GA1 uses a bit-string chromosome to encode the presence/absence of vertices fromP

(see Section 3.2), while GA2 encodes the coordinates of the vertices from the estimate ofQ output from GA1 (see
Section 3.3). We will now describe the GA framework and the two representations in more detail.

Procedure GA
begin

Generate and repair a population ofN individuals
Evaluate the objective function for each individual and store it
Storebest-so-far
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Repair the offspring
Evaluate the objective function produced by offspring
If offspring duplicates existing values of the objective function within the population, delete it
else

If offspring better than weaker parent then it replaces it in the population
If offspring better thanbest-so-far then it replacesbest-so-far

Endfor
Until stopping condition satisfied
Return best-so-far

End

Figure 6: Algorithm 1: A simple steady state genetic algorithm

3.1 The GA Framework

Figure 6 outlines the simple steady state [21] GA used in our study. Like all GAs, our GA operates on a population
of candidate solutions and relies on a repeated cycle of selection, breeding and modification in order to improve
the solution quality within the population. In what followsthe termparent refers to any candidate solution that is
selected for breeding and modification, and the termoffspring describes a candidate solution resulting from such
operations. Our GA, first presented in [14], is particularlyeasy to implement: it relies on simple comparisons
between parents and their offspring to determine which individuals will live and which will die [3], and does
not need to calculate the global selection probabilities typical of other GAs. These simple ideas have also been
successfully applied to multi-objective optimization [13, 12, 22].

A population ofN individuals is first generated, each representing a subset of vertices which provide an
estimate ofQ. The “repair” operation mentioned in the pseudocode is needed to correct estimates ofQ that are
invalid, because they are not convex. The outer loop of the GAcorresponds to the concept of a “generation,”
and the inner loop performs the reproduction, selecting parents in pairs, then applyingcrossover andmutation.
Crossover is a sharing of genetic material from the two parents to produce an offspring, and mutation makes small

4



random changes in the resulting offspring chromosome. The pairs of parents are selected in the following way:
the first parent is selected deterministically in sequence,but the second parent is selected uniformly, at random.
Following the production and repair (see Section 3.2) of an offspring, the objective function is calculated for the
offspring and a decision is then made as to whether it lives, or whether it dies. If the value of the objective function
for the offspring is better than that of its weaker parent, itsurvives at the expense of that parent and replaces it
in the population (i.e., the subset of vertices representing the offspring’s estimate of “Q” replaces the subset of
vertices stored as the weaker parent). In our experiments werun the GA for a fixed number of generations, and
this provides our stopping condition. The eventual output of the GA is the best value forarea(P XORQ), and the
corresponding vertex set for our estimate ofQ.

Worthy of note is the deletion of duplicates policy incorporated in the GA, whereby new offspring automatically
“die” if they duplicate existing values for the objective function,area(P XORQ), within the population. We have
found this policy helpful in encouraging diversity and preventingpremature convergence: i.e. a situation where
the population is swamped, at an early stage, by similar or identical individuals.

3.2 Representation and Genetic Operators used for GA1

Vertex subsets are represented by bit strings,{b1, b2, b3, . . . , bi, . . . , bn}, in GA1. A bit, bi, is set to “1” if and only
if vertex i, from the original polygon, is included in the subset. Otherwise, biti is “0”.

The genetic operations used for GA1 areone-point crossover andpoint mutation. One-point crossover involves
randomly choosing a single cut point,i. The offspring is then be constructed by combining{b11, b

1
2, b

1
3, . . . , b

1
i }

from parent 1 with{b2i+1, b
2
i+2, b

2
i+3, . . . , b

2
n} from parent 2, giving an offspring{b11, b

1
2, b

1
3, . . . , b

1
i , b

2
i+1, b

2
i+2, b

2
i+3, . . . , b

2
n}.

A single point mutation is applied to the new offspring whichinvolves selecting a bit at random and flipping it,
either from zero to one or from one to zero.

A potential problem with random bit strings, is that there isno guarantee that the vertex subsets they represent
will produce a convex polygon when plotted. Data collected from 1137 polygons sampled to contain 22 points
produces only 3.47% solutions that are valid before repair.To overcome this problem and ensure that all estimates
of Q are valid (i.e., convex), a problem-specific repair routinehas been developed for the GA1.

The repair routine is applied to each random bit string in theinitial population, and also to every offspring,
following crossover and mutation. The routine accepts, as arguments, an arbitrary subset of vertices fromP , as
encoded in the bit string, and removes vertices, as necessary, to return the convex hull. The convex hull represents
a valid estimate ofQ, and it is from this that the objective function,area(P XORQ), is calculated. Whether to
write back the original bit string representing the original arbitrary subset of vertices, or the repaired bit string
representing the convex hull of that subset, is a matter of choice.

Our tests on small data sets in section 5.1 show that better optimisation was achieved when the repaired bit
strings were not written back into the population (see Figure 7). Also, in our lesion rating experiments in section 5.3
we obtained better results (both in terms of the original optimisation criterion and also with the correlation of the
measure against expert ratings) if the repaired bit stringswere not written back into the population (see table 1).
The probable explanation is that the repair operation reduces diversity in the population. There is a many to one
mapping between vertex subsets and their convex hulls. Although it is the convex hull of a vertex subset that is
used to compute the convexity measure, maintaining the redundancy (i.e. extra vertices) in the GA would appear
to provide more scope for exploiting the genetic operators,crossover and mutation, making it easier to escape from
local optima.

3.3 Representation and Operators used for GA2

Vertex coordinates from GA1 for the best estimate ofQ form the basis of the representation used in GA2. Given
that there arem vertices in our best estimate ofQ, each chromosome in GA2 will consist ofm (xi, yi) coordinate
pairs. The coordinate values for the GA2 chromosomes are initialized by randomly perturbing the coordinates of
the vertices from the GA1 estimate ofQ:

x′
i = (int)(xi + ri ×X) (5)

y′i = (int)(yi + ri × Y ) (6)

whereri is a random number in the rangef × [−0.5, 0.5], X andY are the distances between the minimum and
the maximumx andy values, respectively, for the vertices in the GA1 estimate of Q, andf is set to 0.05 following
some initial experimentation.

One-point crossover is used for GA2, as in GA1, with offspring receiving the first part of its chromosome from
the coordinate pairs of parent one, and the final part from thecoordinate pairs of parent two. Mutation in GA2
involves the perturbation of a coordinate pair, selected atrandom, applying the perturbation equations 5 and 6.

5



The derived polygons are repaired, when required, by the same process as GA1: deleting vertices as necessary to
produce a convex shape. Repaired shapes with deleted vertices are not replaced into the population in GA2 (the
same policy as GA1).

3.4 Computational Complexity of the GAs

Genetic algorithms belong to a class known asapproximate methods: i.e., procedures that do not guarantee to
find the best solution, but attempt to produce a “good” solution in a reasonable amount of time. Thus, assuming
that we “fix” the population size,N , (the inner loop), and the number of generations (the outer loop), it follows
that the overall run time complexity will be dominated by thecomputational effort required within the nested
loops. This activity consists of eight components: selection of parents, crossover, mutation, repair, evaluation,
checking for duplicates and finally, a “survival test,” to check whether new individual is better than its weaker
parent. The selection of parents and the “survival test” both run in constant time, with respect to the number of
vertices,n, while the crossover and mutation operators have linear complexity for GA1 and GA2. To repair the
offspring requires computing the convex hull. For simple (non-intersecting) polygons the computation complexity
is O(n) [11]; however, the process of generating individuals does not guarantee that the ordered sequence of
vertices is simple. The more general case of computing the convex hull of a set ofn points isO(n log n). To avoid
this extra overhead the candidate polygonQ could be tested for simplicity. In theory this can be performed in linear
time as a consequence of Chazelle’s linear-time triangulation algorithm [5]. However, in practise, we have found
experimentally that non-simple polygons are generated fairly rarely, and it is therefore more efficient to use the
linear complexity convex hull algorithm, and check the finalsolution produced by the GA. If it self-intersects (this
occurred in less than 1% of the cases during our testing) thenthe GA is run again with a more generalO(n log n)
convex hull algorithm.

Computing the XORed area for evaluating individuals is the most complex operation in the processing pipeline.
Performing polygon intersection operations takesO(n log n + k) time, where the two polygons haven1 andn2

vertices,n = n1+n2, andk is the complexity of the output [5]. The number of intersections between a concave and
convex polygon ismax(2n1, 2n2) [20], and so the overall complexity of the intersection operation isO(n log n).

Finally, checking for duplicates, which involves simply examining the objective function value for each mem-
ber of the population, takes constant time for a fixed size population. The complexity of the GA as a whole is thus
O(n log n).

4 Another Convexity Measure

The previous sections have described how an approximation to the desired polygon is computed using a genetic
algorithm. An advantage of this approach is that it is straightforward to use the same optimisation framework with
alternative fitness functions. Although the main goal of this paper is to define asymmetric convexity measure, we
also describe in passing how the GA can be easily applied to compute another new convexity measure.

The convex skull of a polygon is its largest convex subpolygon. In a similar way to roundness measures, which
use the smallest circumscribed circle and largest inscribed circle [23], the convex hull (CH) and convex skull (CS)
could be used together to define another convexity measure, e.g.

CS =
area(CS(P ))

area(CH(P ))
. (7)

In section 1 we noted that using the convex hull to measure convexity had the weakness thatCA is unequally
sensitive to protrusions while being insensitive to intrusions. The advantage of combining both the convex hull and
convex skull is that, like the perimeter based methods,CS is sensitive to both narrow protrusionsand intrusions,
but is potentially more robust since it uses area based measurements.

Although the concept of the convex skull might be consideredsimilar to the convex hull, its computation is
much more difficult and expensive – the fastest known exact algorithm [4] runs inO(n9) time! A recent paper
used a pixel/voxel approach which iteratively removes concavities, to produce a reasonably fast but approximate
solution [1]. Instead we will use the framework described inthis paper to find the convex skull. The GA should
search for polygons with the following properties:

1. the polygon is convex,

2. the polygon is contained in the original shapeP , and

3. the polygon has maximum area.

6



The final property is a goal restricted by the first two properties that are ideally hard constraints. Either of these
hard constraints can be easily satisfied, for instance the first by computing its convex hull and the second by taking
the intersection with the input polygonP . However, independently applying these processes to repair the candidate
solutions is not possible since each invalidates the repairmade by the other. That is, computing the intersection
after forming the convex hull can make the result concave again, while computing the convex hull after generating
the intersection can make the result lie outsideP .

Therefore, a different heuristic procedure was applied to convexify a test polygonT . The vertex inT that along
with its two adjacent neighbouring vertices made the largest area triangle external toT was first identified. The two
neighbouring vertices were then deleted, and the process iterated untilT became convex. While there are situations
in which T grows, we have found that in most casesT shrinks, i.e. the result is a polygon lying insideT . First
intersectingT with P and then applying the convexification process produces reasonably good candidate solutions
except that the 2nd hard constraint is occasionally violated. This has been allowed, relaxing the constraint to make
it soft, and adding a term to penalise it.

Thus, to summarise, a candidate solutionS is repaired, yieldingR = convexify(S ∩ P ) from which the
following fitness function is constructed and maximised:area(CS(R))− area2(R\P )).

5 Experiments

5.1 GA1 and Optimality

10 15 20
number of data points

98.5

99.0

99.5

100.0

%
 o

f 
gl

ob
al

 o
pt

im
a 

fo
un

d

repairs written back
repairs not written back

Figure 7: Proportion of optimal solutions found by the genetic algorithms
.

For very small polygons, a simple exhaustive search can be used to computeQ exactly by exploring all possible
subsets of vertices ofP . Unfortunately this näıve method is not practical for larger instances due to its run time
of O(2n). Nevertheless, the technique proved useful during the development stages of GA1, providing us with
optimum solutions for comparison.

We applied exhaustive enumeration to 1137 test polygons, resampling each several times to contain10, 12, 14, . . . , 22
points, from which the optimalQ was determined. We then compared these results with resultsobtained by GA1.
The GA was run ten times on each data set, initialising with different random seeds. The proportion of solutions
that matched the optimum is shown in Figure 7. Separate testswere carried out to decide whether or not it is better
to write back the repaired offspring into the population. Wewere not able to test GA2 for optimality because the
number of possibilities for perturbed coordinates is unlimited.

Clearly, GA1 is highly successful at locating global optimafor polygons with small numbers of data points,
with the version that does not replace repaired offspring into the population doing slightly better than the version
that does replace them. Although it is not possible to extrapolate the exact percentage accuracy for figures with
larger numbers of vertices, our requirements are satisfied provided our solutions are of sufficient quality to clas-
sify images correctly. Thus, our GAs are biased to produce underestimates of the true convexity measure, but
generate results in a realistic time frame. Recently, a dynamic programming (DP) solution has been developed
by Kolesnikov and Fr̈anti [9] to determine the optimal polygon,Q. With a time complexity varying between
O(n3) andO(n4), this approach is clearly more efficient than our naı̈ve exhaustive search, and provides a useful
alternative to our GA1 for instances that are not too large.

There is no requirement that there is a unique optimal solution. Tests on 290 polygons, each consisting of 20
vertices, found that about 5% had multiple optima (where solutions with XOR values within 0.2% of the minimum
XOR value were considered as essentially optimal). Some examples are shown in Figure 8. Since the XOR values
of the multiple solutions are almost identical this means that theCP scores are also almost identical.CQ is not

7



area(P XORQ) = 5462 5452 4323 4329 2479 2480 6843 6833
CQ = 0.796 0.783 0.256 0.269 0.836 0.839 0.653 0.650
CP = 0.707 0.707 0.254 0.253 0.796 0.795 0.553 0.554
Cprot = 0.063 0.103 0.743 0.729 0.070 0.058 0.263 0.270
Cint = 0.190 0.163 0.009 0.037 0.120 0.129 0.173 0.168

Figure 8: Multiple solutions with near optimalarea(P XORQ) values.

so stable, as the alternativeQ polygons may have different areas. Nevertheless,CQ and also theCprot andCint

measures tend to have similar values in most cases. The difference in the measure values between corresponding
multiple optima averaged over the 14 instances was only∆CP = .0002, ∆CQ = .0154, ∆Cint = .0382, and
∆Cprot = .0394.

5.2 Qualitative Evaluation

Revisiting Figure 1, the computed convexity values according to the various measures for the pair of shapes are
CQ = {0.95, 0.95}, CP = {0.96, 0.95}, CS = {0.79, 0.47}, CA = {0.81, 0.95}, CL = {0.91, 0.86}, CJ =
{0.89, 0.84}. As expected, the new convexity measureCQ behaves consistently for the symmetric pair, whileCP

is very nearly consistent. All the other measures give differing values for the upper and lower shape, especially
CS which is particularly sensitive to intrusions. The protrusion and intrusion values areCprot = {0.04, 0.00} and
Cint = {0.00, 0.05}, confirming the results in Figure 5.

The convexity values for the star shape in Figure 3 areCQ = 0.40, CP = 0.62, CS = 0.04, CA = 0.13,
CL = 0.89, CJ = 0.88. The large area of the convex hull has resulted in very low values forCS andCA. The
perimeter based measures appear to have overestimated the convexity value. Since there is relatively little overlap
betweenP andQ there is not such a well defined core of the shape, with respectto which the protrusions and
intrusions are computed. Thus, these values (Cprot = 0.60 andCint = 0.02) are not so intuitively convincing as
in the examples in Figures 1 and 5.

For Figure 5 we getCS = {0.61, 0.61, 0.74}. Since the first two shapes have identical convex skulls and
convex hulls their convexity values are identical.

The new convexity measure was applied to 1137 polygons from avariety of sources, covering both large and
small shapes (between 200 and 5000 pixels), real and synthetic, and computation typically took a few seconds.
The population size was 1000, and GA1 was run for 100 generations – this setup also applies to all the results
presented in section 5. A sample of the results is shown in Figure 9, ranked in order of increasing convexity. The
first point is that the results appear intuitively perceptually correct. It is also of interest to note that for polygons
consisting of a mainly convex part with intrusions then the fitted polygonQ (shown shaded) is roughly the convex
hull of P . Likewise, for polygons consisting of a mainly convex part with protrusions,Q is roughly the convex
skull of P .

Polygons which are stick-like shapes with large concavities (e.g. the first few in the top two rows) are naturally
assigned low convexity values. The different effects of thetwo normalisations can be seen:CQ ranks such polygons
with small area polygonsQ lower thanCP , which gives the lowest ratings to those with large areaQ.

Examples ofCS are shown over the full range of values. In addition, the bottom row is provided to enable
direct comparison withCQ. It can be seen that the measures differ most noticeably for shapes with large area
concavities – these generate relatively small convex skulls (consequently yielding lowCS values) whileQ (and
thereforeCQ) is less affected.

Of course, the results are not optimal – this is most noticeable in the “F” in the third row in Figure 9. Rerunning
the GA ten times with different random initialisations produces similar results about half the time. The other half
produces results which have about half the XORed area, such as that shown in Figure 10, and are obviously much
closer to the optimum. This leads to the convexityCQ increasing from 0.175 to 0.515, andCprot decreasing from
0.825 to 0.458.

8



CQ = 0.102 0.201 0.300 0.404 0.510 0.602 0.700 0.800 0.900 1.000

CP = 0.156 0.222 0.317 0.403 0.512 0.605 0.700 0.800 0.901 1.000

Cprot = 0.000 0.101 0.200 0.301 0.403 0.504 0.603 0.730 0.825 0.900

Cint = 0.000 0.100 0.200 0.306 0.406 0.512 0.631 0.800

CS = 0.008 0.105 0.201 0.302 0.401 0.500 0.601 0.702 0.800 0.904 1.000

CS = 0.033 0.023 0.037 0.139 0.115 0.193 0.299 0.553 0.718 1.000

Figure 9: Some polygonsP with their convexity values and protrusiveness and intrusiveness values are shown
underneath.P is overlaid on a filled version ofQ except for theCS results in which the gray polygon is the convex
skull.

Figure 10: A better fittingQ found by another run of the GA.

5.3 Lesions

We demonstrate the convexity measure on a medical image analysis task. Leeet. al [10] presented results for
classifying lesions as either benign or malignant melanomas based on the irregularity of their boundaries. They
had 14 dermatologists rate a set of 40 lesions from a four point scale according to their probability of being a
melanoma. These ratings were averaged over the 14 experts and then compared against various shape measures by
computing the Spearman rank correlation between them. Someexamples of the mean expert score values are given
in Figure 11. Their “overall irregularity index” achieved acorrelation value of 0.88, outperforming the alternative
measures they considered. However, we have found that the standard convexity measureCA performs just as well,
yielding a correlation value of 0.888. The perimeter based version (CL) andŽunic and Rosin’s [24] convexity
measure (CJ ) performed rather poorly, with correlation values of 0.453and 0.463 respectively. Moreover, applying
our new measures we see (table 1) that they do substantially better, reaching a correlation value of 0.958. It is
interesting to note that in this application intrusions appear to be substantially more salient than protrusions.

The table also shows the results of experimenting with different schemes for reducing the number of data points.
Not only does this improve run time, but by reducing the size of the solution space it could potentially benefit the
optimisation process if the subsampling were done in an intelligent manner. Alternatively, if “good” vertices are
eliminated (e.g. those belonging to the optimal convex polygon) then the subsampling could result in a poorer
quality solution being found. Two approaches were tested: uniform subsampling of the curve, and breakpoints
found by polygonal approximation (Ramer’s algorithm [15] was used); many other schemes are possible, e.g. a
multigrid approach. With the polygonal approximation algorithm the error threshold (maximum deviation between
the curve and polygonal approximation) was successively set to the values{1, 2, 3}, which over the full data set

9



was effective to the average sampling rates of{0.235, 0.122, 0.081} respectively. It can be seen that the polygonal
breakpoints provide betterCQ andCP results than uniform sampling for equivalent data reduction rates, but that
in general, both schemes suffer a loss of performance compared to operating directly on the full data.

In addition to our experiments with different numbers of data points, table 1 also shows the results obtained
by applying different variations of our genetic optimisation process. For the complete data, row 1 contains the
correlation scores for a version of GA1 where the repaired offspring are written back into the populations, row 2
covers results for GA1 where the repaired solutions are evaluated but not replaced into the population, and row
3 gives the results obtained by applying GA2 (i.e. perturbedsolutions) to the output of GA1 (repairs not written
back). For all the sampled data sets, GA1 (with repairs not written back) occupies the first row of results, with
the GA1 followed by GA2 sequence occupying the second row. Examination of the mean error column clearly
indicates that the application of GA2 produces better results than are obtained from GA1 alone. However, it is
clear from the correlation data that improved optimisationdoes not necessarily lead to improved classification.

Measuring convexity using the convex skull based measure (CS) applied to the complete pixel data gave a
correlation value of0.948, which is almost as good as the result fromCQ andCP . Again, to emphasise the
importance of a good repair process, if the same repair mechanism is used as forCQ andCP , i.e. taking the convex
hull of the candidate solution:R = CH(S), then the resulting polygons are generally cruder approximations to the
convex skull, and the correlation value of the measured convexity is substantially reduced to0.700.

Method CQ CP Cint Cprot mean error

complete data
GA1 repairs written back 0.946 0.948 0.856 0.756 2303
GA1 repairs not written back 0.958 0.958 0.927 0.830 2262
GA1 and GA2 0.958 0.958 0.927 0.834 2259

data subsampling rate: 0.1
GA1 (repairs not written aback) 0.933 0.937 0.869 0.777 2021 (2375)
GA1 and GA2 0.924 0.927 0.877 0.776 2011 (2456)

data subsampling rate: 0.05
GA1 0.828 0.833 0.809 0.693 1873 (2537)
GA1 and GA2 0.820 0.828 0.792 0.692 1859 (2601)

polygonal approximation of data;t = 1
GA1 0.926 0.929 0.870 0.718 2251 (2305)
GA1 and GA2 0.946 0.949 0.886 0.723 2248 (2399)

polygonal approximation of data;t = 2
GA1 0.936 0.939 0.860 0.751 2293 (2390)
GA1 and GA2 0.945 0.948 0.879 0.948 2282 (2447)

polygonal approximation of data;t = 3
GA1 0.944 0.941 0.781 0.661 2364 (2508)
GA1 and GA2 0.945 0.948 0.827 0.647 2334 (2502)

Table 1: Absolute Spearman rank correlation scores for lesion data. Mean XOR error computed on the input data
is given; where subsampled data was used the XOR error with respect to the original full data is shown in brackets.

MES = 4.00 3.57 3.14 2.50 2.00 1.50 1.00
CQ = 0.866 0.935 0.947 0.941 0.948 0.960 0.979
CP = 0.868 0.931 0.949 0.939 0.948 0.960 0.978
Cint = 0.065 0.040 0.037 0.045 0.030 0.026 0.012
Cprot = 0.082 0.029 0.019 0.018 0.024 0.016 0.010

Figure 11: Examples of lesions covering the full range of mean expert score (MES) values, along with their
computed shape measures.

10



5.4 Greebles

Among the 1137 polygons tested were 53 “greebles”; some examples are shown in Figure 12. Greebles are a
popular source of test objects used in psychology, e.g. [8].They are objects synthesised to a standard configuration:
a vertically-oriented body with four protrusions: two “boges”, a “quiff” and a “dunth”. Since the appearance
of members within this class is qualitatively similar, despite their individual differences, their measured shape
attributes should also be similar. The measures are compared by determining the ranks of the greebles in the set
of 1137 polygons ordered by each of the convexity measures. The standard deviation of the greeble ranks was
68.9 forCQ, 69.0 forCP , and 78.7 forCS . In comparison,CA andCL produced standard deviations of 89.3 and
113.6, whileCJ produced 96.5. The lower values of the new measures demonstrates their high level of stability
and consistency.

0.885 0.908 0.924 0.932 0.937 0.971

Figure 12: A selection of greebles covering their full rangeof CQ convexity values.

6 Summary and Conclusions

A new area-based convexity measure for polygons has been defined, and a genetic algorithm based solution has
been proposed as an efficient computation tool for this measure, given that exact enumeration is computationally
expensive. Compared to the traditional convexity measure our new measure is more robust and symmetric, and
has been shown to outperform it on a medical analysis task involving the estimation of the likelihood of melanoma
from lesion boundaries. In addition, the determination of the best fit convex polygon for the convexity measure
leads to the simple computation of a further two measures, quantifying the degree of protrusions and intrusions
present in the input polygon.

A minor modification to the GA – namely altering the fitness function and the candidate solution repair mech-
anism – enabled an efficient approximate solution to the convex skull problem. This in turn provided an additional
convexity measure to be computed. UnlikeCQ (and to a lesser degreeCP ), CS does not have the appealing sym-
metry property. Nevertheless, it performed well on the medical classification task – almost comparable withCQ

andCP . Although its performance on the greebles was not as good asCQ andCP it was better than the remaining
convexity measures.

Our genetic solution can be applied in two consecutive stages: GA1 followed by GA2. GA2 can be regarded
as “fine tuner” and is optionally applied to the output produced by GA1. Both GAs search for a convex shape to
match the outline of the original shape as closely as possible. Although GA1 is confined to the original vertices,
GA2 is allowed to perturb the coordinates of vertices, so that the derived shape “drifts,” in an attempt to match
the outline of the original shape even more closely. Resultsclearly indicate that the application of GA2 improves
the results by producing a lower XORed error than is the case when GA1 is applied on its own. However, there
is no evidence that this improved XORed error leads to betterclassification of data. Furthermore, experiments in
preprocessing the polygons to reduce the number of verticesbefore applying the genetic algorithms resulted in
some loss in the quality of the solution, demonstrating thatit was better for the GAs to operate directly on the full
data set.

We have seen that, because GAs are approximate methods, somesolutions produced by GA1 are suboptimal.
Although optimal solutions (in whichQ’s vertices are limited to a subset ofP ’s vertices) could be obtained using
dynamic programming, this is computationally expensive [9]. A compromise between optimality and computation
time would be to improve the initial GA1 solution using dynamic programming over a limited domain. If each ver-
tex in the initial GA1 solution is restricted to lie in a window of sizeL positions, then using dynamic programming
only O(L2n) combinations need to be tested to find the optimal solution with those constraints [6]. However, it
should be emphasised that the result is still not guaranteedto be a global optimum whenL is less thanO(n).

Finally, the methods described could be applied to 3D data ina straightforward manner. Although by selecting
random polyhedron vertices the GA loses the topological structure of edges and faces, this is will be recovered
when the 3D convex hull algorithm reconstructs a (convex) polyhedron from these unstructured points. In addition,

11



relatively efficient techniques for performing boolean operations on polyhedra exist [7]. Along with the calculation
of polyhedra volumes, this covers all the essential components of the method.

7 Acknowledgements

We would like to thank Alan Murta for his “Generic Polygon Clipper” code, Ben Kimia for providing some of the
polygon data, and Alexander Kolesnikov for advice.

References

[1] G. Borgefors and R. Strand. An approximation of the maximal inscribed convex set of a digital object. InInt.
Conf. Image Analysis and Processing, pages 438–445, 2005.

[2] L. Boxer. Computing deviations from convexity in polygons.Pattern Recognition Letters, 14:163–167, 1993.

[3] D.J. Cavicchio.Adaptive Search Using Simulated Evolution. PhD thesis, University of Michigan,, 1970.

[4] J.S. Chang and C.K. Yap. A polynomial solution for the potato-peeling problem.Discrete Comput. Geom.,
1:155–182, 1986.

[5] B. Chazelle. Triangulating a simple polygon in linear time. Computational Geometry, 6:485–524, 1991.

[6] J.G. Choi, S.W. Lee, and H.S. Kang. Dynamic programming approach to optimal vertex selection for
polygon-based shape approximation.IEE Proc.-Vis Image Signal Process., 150(4):287–291, 2003.

[7] D. Eppstein. Asymptotic speed-ups in constructive solid geometry.Algorithmica, 13(5):462–471, 1995.

[8] I. Gauthier, P. Williams, M.J. Tarr, and J. Tanaka. Training greeble experts: a framework for studying expert
object recognition processes.Vision Research, 38:2401–2428, 1998.

[9] A. Kolesnikov and P. Fr̈anti. Optimal algorithm for convexity measure calculation. In Int. Conf. Image
Processing, pages 353–356, 2005.

[10] T.K. Lee, D.McLean, and M.S. Atkins. Irregularity index: A new border irregularity measure for cutaneous
lesions.Medical Image Analysis, 7(1):47–64, 2003.

[11] D. McCallum and D. Avis. A linear algorithm for finding the convex hull of a simple polygon.Inform.
Process. Lett., 9:201–206, 1979.

[12] C.L. Mumford. A simple approach to evolutionary multi-objective optimization. In A. Abraham, L. Jain, and
R. Goldberg, editors,Evolutionary Computation Based Multi-Criteria Optimization: Theoretical Advances
and Applications. Springer Verlag, 2004.

[13] C.L. Mumford. Simple population replacement strategies for a steady-state multi-objective evolutionary
algorithm. InGECCO, volume LNCS 3102, pages 1389–1399. Springer, 2004.

[14] C.L. Mumford-Valenzuela, J. Vick, and Y. Pearl. Heuristics for large strip packing problems with guillotine
patterns: An empirical study. In D.Z. Du and P.M. Pardalos, editors, Metaheuristics: Computer Decision-
Making. Kluwer Academic Press, 2003.

[15] U. Ramer. An iterative procedure for the polygonal approximation of plane curves.Computer Graphics and
Image Processing, 1:244–256, 1972.

[16] P.L. Rosin. Measuring shape: Ellipticity, rectangularity, and triangularity.Machine Vision and Applications,
14:172–184, 2003.

[17] P.L. Rosin and C.L. Mumford. A symmetric convexity measure. InInt. Conf. Pattern Recognition, pages IV:
11–14, 2004.

[18] M. Sonka, V. Hlavac, and R. Boyle.Image Processing, Analysis, and Machine Vision. Chapman and Hall,
1993.

[19] H.I. Stern. Polygonal entropy: a convexity measure.Pattern Recognition Letters, 10:229–235, 1989.

12



[20] S. Suri. Poygons. In J.E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry. CRC Press, 1997.

[21] G Syswerda. Uniform crossover in genetic algorithms. In Proc. Third Int. Conf. on Genetic Algorithms,
pages 2–9. Lawrence Erlbaum Associates, 1989.

[22] C.L. Valenzuela-Mumford. A simple evolutionary algorithm for multi-objective optimization (SEAMO). In
Congress on Evolutionary Computation (CEC), pages 717–722, 2002.

[23] L. Van-Ban and D.T. Lee. Out-of-roundness problem revisited. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(3):217–223, 1991.

[24] J.Žunić and P.L. Rosin. A new convexity measurement for polygons.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(7):923–934, 2004.

13


