A Symmetric Convexity Measure

Paul L. Rosin and Christine L. Mumford
Cardiff School of Computer Science,
Cardiff University,
Cardiff,
UK
{Paul.Rosin@cs.cf.ac.uk, C.L.Mumford@cs.cardiff.a¢.uk

Abstract

A new area-based convexity measure for polygons is describeds lthe desirable properties that it is not
sensitive to small boundary defects, and it is more symmetric with respectrusions and protrusions than
other published convexity measures. The measure requires a maxavetlgpping convex polygon, and this is
efficiently estimated using a genetic algorithm (GA1). A second geneticitdgo(GA2) is then used to fine tune
the result. In addition, the convex polygon is used to generate other yaleasuring the amount of protrusions
and intrusions that a polygon contains. Furthermore, the scheme caadiied to find the convex skull, which
yields another new convexity measure. Examples of the measurd&ajgm to medical image analysis are
shown.

1 Introduction

Convexity is a useful attribute of shape, and has applinatip classification, image segmentation, figure/ground
separation, etc. Whereas its mathematical definition pesval binary property, in image analysis we prefer a
continuous measure, so that a shape can be assigned a degmwexity. This provides more information,
enabling classification for example to be more discrimimgtiand also allows the concept of convexity to be
applied more usefully and robustly to real life irreguladaroisy shape data.

Many convexity measures for polygons in the literature &reeearea [2, 19] or perimeter based [24]. The most
common computes the ratio of the area of the polygon to tredfriés convex hull [18]C 4 = %, where
P denotes the input polygon, agt (P) its convex hull. This measure is nominally area-based, anhsowing
the intrusion (i.e. decreasing its area) in the polygonénldkver row in Figure 1 increases the measured convexity.
In the limit, as the area of the intrusion tends to zero (amiigfiy thin cut), the convexity tends to one (perfect
convexity). However, there is an obvious asymmetry in th@snee since a similar defect, but in the opposite
sense, hamely the protrusion in the upper row in Figure 1umresi a lower measured convexity. Even worse, in
this example as the protrusion narrows the measured cdapvaegreases rather than increases, disagreeing with
our perception. Thus, the measure inherits the convexshedihsitivity to protrusions. Such sensitivity to thin
protrusions is more appropriate to perimeter based cotywmeasures such &3, = %W, or Zunic
and Rosin’s [24] method{;) which is also sensitive to thin intrusions. While in somelaggions it desirable to
be sensitive to thin intrusions/protrusions, in otherst@adased criterion is more appropriate.

2 TheNew Convexity Measure

In this paper we propose an alternative area-based copvmdasure related t6’4 which has the advantages
that it is not sensitive to small (in area) boundary defeats] it is symmetric with respect to intrusions and
protrusions. The basic idea is to replace the convex hulhefiolygonP by its “robustified” version which we
define as the convex polyg@pnthat best fitsP in the sense of maximising the overlap®fandq, or equivalently
minimising the area o XOR Q.} For the two shapes in Figure @, in both cases is the underlying rectangle.
The right column in Figure 1 highlight® XOR @, which has the same area for the two shapes. To make the
measure scale invariant it needs to be normalised with cespeize. This can be done using either the area of
the input polygon or by the area of the fitted convex polygdmesk alternative normalisations give the following

1Thus the convexity measure is similar in spirit to many othepehaeasures which fit an ideal model of the shape (e.g. rectangle,
ellipse) to the data, and measure the deviations from thd fitiedel [16].

V v v

Figure 1: Measuring convexity of the two shapes in the lefuem; middle: the standard convex hull based
approachCy has a larger discrepancy in area (shown in dark gray) wherinthg polygon has a protrusion
rather than an intrusion; right: the proposed approach fiislggon (in this case a rectangle) producing similar
discrepancies in area for both protrusion and intrusion.

measuresEp = %W andEq = %}ng‘@. The latter ensures greater symmetry (see Figure 1) but

is potentially less robust than the formerjfis not estimated accurately.
To make the measure maximal for convex shafeds modified to form the convexity measure

1

1)
area(P XORQ) "’
L+ area(P)

Cp=

lying in the rang€g0, 1] which replaces our previously published measure {17]= 1 — %W For our
implementation of the convexity measure only an approxionab () is found in order to improve computational
efficiency. Consequently there is no guarantee tivati(P XOR Q) < area(P). Thus we found that a small
proportion of shapes (less than 1% of the thousands we haterljeproduced negative values for the latier
formulation due to a small value afrea(P) relative to the overlap. An example is given in Figure 2a iriclth
our estimated value fa is especially poor, incorrectly producing a large valuerefa(P XOR Q) relative to
area(P). For better solutions t@ (e.g. Figure 2b) this is avoided.

O U

Figure 2: The fitted convex polygap in (a) has little overlap with the input polygon, which in cbimation with a

low value ofarea(P) leads to a negative value of the convexity meaﬂu%e%ﬁ??m This is avoided using
the normalisatiorCp = m Neither normalisation yields negative values when a betikition for

1+
@ is found; for comparison the optimél is shown in (b).

arca(P)

Just asEp can lie outsidd0, 1], so canEg, which is not bounded from above. This can be demonstrated by
the star shaped polygon in Figure 3. For a star with very slionsQ is a regular polygon centred on the star.
However, as the arms grow outwards the space between thems gnach faster than the increased area of the
arms. This leads t@) flipping to fit one of the arms, and so for ansided star+ is odd) Eg ~ n — 1. We
therefore normalis&, to form the measure

1
area(PXOR @) @
area(Q)

C =
© 14

Figure 3: The convex polygof is fitted to one arm of the star.

(\
/ _/ f
\ ' M
(@) (b) (c)

Figure 4: Set operations applied to polygons. (a) inputgafyP, (b) Q overlaid onP, (c) P XORQ, (d) Q\P,
(e) P\Q.

\

to keep it in the rangé, 1.
Given the polygonQ it is now also possible to use it to define two new shape messufbe amount of
protrusions and intrusions can be quantiﬁea@%iiM and 2<2@Q\P) - only the former needs to be normalised,

ea(Q) area(Q)
and so the measures of protrusiveness and intrusiveness are
area(P\Q)
ro 3
Crrot area(P\Q) + area(Q))
area(Q\P)

Cint = —————. 4
¢ area(Q) @)

Figure 4 demonstrates the various quantities obtained igrpging the set operations between a polygon and its
fitted polygon@.

The protrusiveness and intrusiveness measures makeviatsgnse, as demonstrated on the comb shapes
in Figure 5. A small gap between the teeth (Figure 5a) resunlthe top edge ofP being treated as a solid
with indentations, i.e. zero protrusiveness and a non-izgrosiveness. Making the gaps larger than the teeth
(Figure 5b) reverses the interpretation, i.e. non-zertrpsoveness and zero intrusiveness.

The protrusiveness and intrusiveness measures are ndtyesammetric due to the normalisation required
to keep their values in the rand@ 1]. However, the extra termrea(P\Q) in (3) is small w.r.t. area(Q) —
otherwise the regio®\(@Q would be treated as part ¢f rather than external t@. Therefore, the protrusiveness
and intrusiveness values will be similar in symmetric ditwss. For instance, if the intrusions in Figure 5a are
reflected out to form protrusions as in Figure 5c¢, such thaatiea of) remains constant, then the intrusiveness
(Figure 5a) and protrusiveness (Figure 5c) values onlgdiff less than0%. These two shapes also demonstrate
that the protrusion and intrusion measures provide sigmiflg different information compared to the convexity
measure. While Figures 5a and 5c have identical convexityegalthey are very distinct according to both their
protrusion and intrusion measure values.

3 The Genetic Algorithms

We have developed two genetic algorithms (GAs) to computenew convexity measure. For a given input
polygon, P, both of the GAs attempt to minimize-ea(P XOR Q) as their objective function, this being the key
component in our new convexity measure. The first algoritB#l, is of primary importance and is applied before
the second, GA2. GA2 can be regarded as a “fine tuner” that raapplied, if desired, to the output produced
by GA1, and it will attempt to improve on it. GAL is confined talscrete search space consisting entirely of
non-empty subsets of vertices selected frBmbut GA2 is not restricted in this way. Indeed, starting frtma
vertex subset produced by GA1, GA2 will perturb the coorttinaf these vertices, and cause them to “drift,” in
an attempt to find a convex polygon that more closely matdinestitline of P. Thus, the search space for GA2

e e S

Co = 0.89 0.81 0.89
Cp = 0.88 0.84 0.90
Cprot = 0.00 0.19 0.11
Cint = 0.12 0.00 0.00

Figure 5: Protrusion and intrusion values for comb-likepgea

is continuous, and although (slower) exact alternativést ésr GA1 (see Section 5.1), we cannot conceive of an
exact solution method that would replace GA2.

The general framework for GA1 and GA2 is the same and is @dlin Figure 6. The two GAs differ in their
representations, however: GA1 uses a bit-string chromedomencode the presence/absence of vertices ffom
(see Section 3.2), while GA2 encodes the coordinates ofdhegs from the estimate ¢J output from GA1 (see
Section 3.3). We will now describe the GA framework and the tepresentations in more detail.

Procedure GA
begin
Generate and repair a populationéfindividuals
Evaluate the objective function for each individual andeio
Storebest-so-far
Repeat
For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Repair the offspring
Evaluate the objective function produced by offspring
I offspring duplicates existing values of the objective fime within the population, delete it
else
If offspring better than weaker parent then it replaces iténpgpulation
If offspring better thamest-so-far then it replacebest-so-far
Endfor
Until stopping condition satisfied
Return best-so-far
End

Figure 6: Algorithm 1: A simple steady state genetic aldonit

3.1 TheGA Framework

Figure 6 outlines the simple steady state [21] GA used in tudhys Like all GAs, our GA operates on a population
of candidate solutions and relies on a repeated cycle oftimbe breeding and modification in order to improve
the solution quality within the population. In what followrse termparent refers to any candidate solution that is
selected for breeding and modification, and the tefispring describes a candidate solution resulting from such
operations. Our GA, first presented in [14], is particulahsy to implement: it relies on simple comparisons
between parents and their offspring to determine whichviddals will live and which will die [3], and does
not need to calculate the global selection probabilitigecal of other GAs. These simple ideas have also been
successfully applied to multi-objective optimization [12, 22].

A population of NV individuals is first generated, each representing a sulfsetrtices which provide an
estimate of). The “repair” operation mentioned in the pseudocode is e@éd correct estimates ¢ that are
invalid, because they are not convex. The outer loop of thec@#esponds to the concept of a “generation,”
and the inner loop performs the reproduction, selectingmtarin pairs, then applyingossover and mutation.
Crossover is a sharing of genetic material from the two pgarenproduce an offspring, and mutation makes small

random changes in the resulting offspring chromosome. Hirs pf parents are selected in the following way:
the first parent is selected deterministically in sequebaethe second parent is selected uniformly, at random.
Following the production and repair (see Section 3.2) of figpang, the objective function is calculated for the
offspring and a decision is then made as to whether it liveshether it dies. If the value of the objective function
for the offspring is better than that of its weaker parensuitvives at the expense of that parent and replaces it
in the population (i.e., the subset of vertices represgrttie offspring’s estimate of “Q” replaces the subset of
vertices stored as the weaker parent). In our experimentaiwéhe GA for a fixed number of generations, and
this provides our stopping condition. The eventual outpthe GA is the best value farrea(P XOR @), and the
corresponding vertex set for our estimatebf

Worthy of note is the deletion of duplicates policy incorgigd in the GA, whereby new offspring automatically
“die” if they duplicate existing values for the objectiventtion,area(P XOR @), within the population. We have
found this policy helpful in encouraging diversity and prating premature convergence: i.e. a situation where
the population is swamped, at an early stage, by similarentidal individuals.

3.2 Representation and Genetic Operatorsused for GA1

Vertex subsets are represented by bit striggs,bs, bs, . . ., bi, . .., by }, in GAL. Abit, b;, is set to “1” if and only
if vertex, from the original polygon, is included in the subset. Ottise, bit: is “0”.

The genetic operations used for GA1 are-point crossover andpoint mutation. One-point crossover involves
randomly choosing a single cut poirit, The offspring is then be constructed by combiniibg, b3, 63, ... b1}
from parent 1 with{v?, ,, b2, ,, b2, 5,...,b2} from parent 2, giving an offsprinfp}, b3, b, . .., b}, b7, 1, b2, 5, b2, 5,..., b2
A single point mutation is applied to the new offspring whiakiolves selecting a bit at random and flipping it,
either from zero to one or from one to zero.

A potential problem with random bit strings, is that theredgsguarantee that the vertex subsets they represent
will produce a convex polygon when plotted. Data collectemi 1137 polygons sampled to contain 22 points
produces only 3.47% solutions that are valid before reflaiovercome this problem and ensure that all estimates
of @ are valid (i.e., convex), a problem-specific repair routias been developed for the GA1.

The repair routine is applied to each random bit string inittigal population, and also to every offspring,
following crossover and mutation. The routine accepts,rgsraents, an arbitrary subset of vertices fréhnas
encoded in the bit string, and removes vertices, as negessaeturn the convex hull. The convex hull represents
a valid estimate of), and it is from this that the objective functiom;ea(P XOR @), is calculated. Whether to
write back the original bit string representing the origiagbitrary subset of vertices, or the repaired bit string
representing the convex hull of that subset, is a matter aiteh

Our tests on small data sets in section 5.1 show that bettamisption was achieved when the repaired bit
strings were not written back into the population (see Fegir Also, in our lesion rating experiments in section 5.3
we obtained better results (both in terms of the originalmistion criterion and also with the correlation of the
measure against expert ratings) if the repaired bit stimg® not written back into the population (see table 1).
The probable explanation is that the repair operation resldoversity in the population. There is a many to one
mapping between vertex subsets and their convex hulls.oAgh it is the convex hull of a vertex subset that is
used to compute the convexity measure, maintaining thendahcy (i.e. extra vertices) in the GA would appear
to provide more scope for exploiting the genetic operatsssover and mutation, making it easier to escape from
local optima.

3.3 Representation and Operators used for GA2

Vertex coordinates from GAL for the best estimat&form the basis of the representation used in GA2. Given
that there aren vertices in our best estimate @f each chromosome in GA2 will consistof (z;,y;) coordinate
pairs. The coordinate values for the GA2 chromosomes atialinéd by randomly perturbing the coordinates of
the vertices from the GA1 estimate @f

x, = (int)(x; + i X X) (5)
Yi = (int)(yi + 13 x Y) (6)

wherer; is a random number in the rangex [—0.5,0.5], X andY” are the distances between the minimum and
the maximume andy values, respectively, for the vertices in the GA1 estimét@ candf is set to 0.05 following
some initial experimentation.

One-point crossover is used for GA2, as in GAL, with offsgriaceiving the first part of its chromosome from
the coordinate pairs of parent one, and the final part fronttuedinate pairs of parent two. Mutation in GA2
involves the perturbation of a coordinate pair, selectedcatiom, applying the perturbation equations 5 and 6.

The derived polygons are repaired, when required, by the gaotess as GAL: deleting vertices as necessary to
produce a convex shape. Repaired shapes with deletedegeatie not replaced into the population in GA2 (the
same policy as GAL).

3.4 Computational Complexity of the GAs

Genetic algorithms belong to a class knownagproximate methods: i.e., procedures that do not guarantee to
find the best solution, but attempt to produce a “good” sotuth a reasonable amount of time. Thus, assuming
that we “fix” the population sizelV, (the inner loop), and the number of generations (the ootgp)| it follows
that the overall run time complexity will be dominated by tt@mputational effort required within the nested
loops. This activity consists of eight components: setectif parents, crossover, mutation, repair, evaluation,
checking for duplicates and finally, a “survival test,” toeck whether new individual is better than its weaker
parent. The selection of parents and the “survival testhlvah in constant time, with respect to the number of
vertices,n, while the crossover and mutation operators have lineapémxty for GA1 and GA2. To repair the
offspring requires computing the convex hull. For simpler(sintersecting) polygons the computation complexity
is O(n) [11]; however, the process of generating individuals dosisguarantee that the ordered sequence of
vertices is simple. The more general case of computing theeschull of a set of: points isO(n log n). To avoid
this extra overhead the candidate polyg@noould be tested for simplicity. In theory this can be perfedin linear
time as a consequence of Chazelle’s linear-time trianigulaigorithm [5]. However, in practise, we have found
experimentally that non-simple polygons are generatety/fearely, and it is therefore more efficient to use the
linear complexity convex hull algorithm, and check the fisalution produced by the GA. If it self-intersects (this
occurred in less than 1% of the cases during our testing)ttiee®A is run again with a more genefa(n logn)
convex hull algorithm.

Computing the XORed area for evaluating individuals is tlisheomplex operation in the processing pipeline.
Performing polygon intersection operations takis logn + k) time, where the two polygons have andn,
verticesn = ny +nq, andk is the complexity of the output [5]. The number of intersect between a concave and
convex polygon isnax(2n1, 2n2) [20], and so the overall complexity of the intersection @pen isO(nlogn).

Finally, checking for duplicates, which involves simplyaeining the objective function value for each mem-
ber of the population, takes constant time for a fixed sizaifajpn. The complexity of the GA as a whole is thus
O(nlogn).

4 Another Convexity Measure

The previous sections have described how an approximatitimetdesired polygon is computed using a genetic
algorithm. An advantage of this approach is that it is shtiigward to use the same optimisation framework with
alternative fitness functions. Although the main goal of faper is to define symmetric convexity measure, we
also describe in passing how the GA can be easily appliedrtgpate another new convexity measure.

The convex skull of a polygon is its largest convex subpotyda a similar way to roundness measures, which
use the smallest circumscribed circle and largest insgrifirele [23], the convex hull (CH) and convex skull (CS)
could be used together to define another convexity measare, e

O = area(CS(P)) . %
area(CH(P))
In section 1 we noted that using the convex hull to measurgestity had the weakness that, is unequally
sensitive to protrusions while being insensitive to inwns. The advantage of combining both the convex hull and
convex skull is that, like the perimeter based meth@dsjs sensitive to both narrow protrusioasd intrusions,
but is potentially more robust since it uses area based merasuats.

Although the concept of the convex skull might be considesiedllar to the convex hull, its computation is
much more difficult and expensive — the fastest known exayiréthm [4] runs inO(n?) time! A recent paper
used a pixel/voxel approach which iteratively removes ewities, to produce a reasonably fast but approximate
solution [1]. Instead we will use the framework describedhiis paper to find the convex skull. The GA should
search for polygons with the following properties:

1. the polygon is convex,
2. the polygon is contained in the original sh&peand

3. the polygon has maximum area.

The final property is a goal restricted by the first two projsrthat are ideally hard constraints. Either of these
hard constraints can be easily satisfied, for instance ttebfircomputing its convex hull and the second by taking
the intersection with the input polygdh. However, independently applying these processes torrigacandidate
solutions is not possible since each invalidates the repade by the other. That is, computing the intersection
after forming the convex hull can make the result concavéagdiile computing the convex hull after generating
the intersection can make the result lie outsitie

Therefore, a different heuristic procedure was appliedtwexify a test polygofi’. The vertex i’ that along
with its two adjacent neighbouring vertices made the ldarge=a triangle external t6 was first identified. The two
neighbouring vertices were then deleted, and the proaasdet untill’ became convex. While there are situations
in which T' grows, we have found that in most cageshrinks, i.e. the result is a polygon lying inside First
intersectingl” with P and then applying the convexification process producesnaddy good candidate solutions
except that the 2nd hard constraint is occasionally vidlatéis has been allowed, relaxing the constraint to make
it soft, and adding a term to penalise it.

Thus, to summarise, a candidate soluti®ms repaired, yieldingR = convexify(S N P) from which the
following fitness function is constructed and maximisedca(CS(R)) — area?(R\P)).

5 Experiments

5.1 GAland Optimality

—————— repairs written back
— repairs not written back

% of global optima found

10 15 20
number of data points

Figure 7: Proportion of optimal solutions found by the génalgorithms

For very small polygons, a simple exhaustive search candmtocomputé) exactly by exploring all possible
subsets of vertices dP. Unfortunately this né¥e method is not practical for larger instances due to itstime
of O(2™). Nevertheless, the technique proved useful during theldereent stages of GAL, providing us with
optimum solutions for comparison.

We applied exhaustive enumeration to 1137 test polygogamipling each several times to contéain12, 14, . .., 22
points, from which the optimal was determined. We then compared these results with reshitised by GAL.
The GA was run ten times on each data set, initialising witfedint random seeds. The proportion of solutions
that matched the optimum is shown in Figure 7. Separatewestscarried out to decide whether or not it is better
to write back the repaired offspring into the population. Wére not able to test GA2 for optimality because the
number of possibilities for perturbed coordinates is urttioh

Clearly, GA1 is highly successful at locating global optifoa polygons with small numbers of data points,
with the version that does not replace repaired offspring fhe population doing slightly better than the version
that does replace them. Although it is not possible to exlatp the exact percentage accuracy for figures with
larger numbers of vertices, our requirements are satisfiedded our solutions are of sufficient quality to clas-
sify images correctly. Thus, our GAs are biased to produacterastimates of the true convexity measure, but
generate results in a realistic time frame. Recently, a alyn@rogramming (DP) solution has been developed
by Kolesnikov and Fanti [9] to determine the optimal polygod). With a time complexity varying between
O(n3) andO(n*), this approach is clearly more efficient than ouiveaexhaustive search, and provides a useful
alternative to our GA1 for instances that are not too large.

There is no requirement that there is a unique optimal swiufiests on 290 polygons, each consisting of 20
vertices, found that about 5% had multiple optima (wheratsmhs with XOR values within 0.2% of the minimum
XOR value were considered as essentially optimal). Somepbes are shown in Figure 8. Since the XOR values
of the multiple solutions are almost identical this mears theCp scores are also almost identicdl is not

4 o0)

area(PXORQ) = 5462 5452 4323 4329 2479 2480 6843
Co = 0.796 0.783 0.256 0.269 0.836 0.839 0.653
Cp = 0.707 0.707 0.254 0.253 0.796 0.795 0.553
Chprot = 0.063 0.103 0.743 0.729 0.070 0.058 0.263
Cint = 0.190 0.163 0.009 0.037 0.120 0.129 0.173

Figure 8: Multiple solutions with near optimatea(P XOR Q) values.

so stable, as the alternati¢epolygons may have different areas. Neverthelégsand also the”,,.,, andC,¢
measures tend to have similar values in most cases. Theetiffe in the measure values between corresponding
multiple optima averaged over the 14 instances was & = .0002, ACqy = .0154, AC;,: = .0382, and
AC,, ot = 0394.

5.2 Qualitative Evaluation

Reuvisiting Figure 1, the computed convexity values aceaydo the various measures for the pair of shapes are
Co = {0.95,0.95}, Cp = {0.96,0.95}, Cs = {0.79,0.47}, C4 = {0.81,0.95}, C;, = {0.91,0.86}, C; =
{0.89,0.84}. As expected, the new convexity measakg behaves consistently for the symmetric pair, widile

is very nearly consistent. All the other measures give diffevalues for the upper and lower shape, especially
Cs which is particularly sensitive to intrusions. The protamsand intrusion values at€,,..; = {0.04,0.00} and

Cint = {0.00,0.05}, confirming the results in Figure 5.

The convexity values for the star shape in Figure 3Gte= 0.40, Cp = 0.62, Cg = 0.04, C4 = 0.13,

Cr, = 0.89, C; = 0.88. The large area of the convex hull has resulted in very lowesfforCs andC4. The
perimeter based measures appear to have overestimatezhtiexity value. Since there is relatively little overlap
betweenP and (@ there is not such a well defined core of the shape, with regpaghich the protrusions and
intrusions are computed. Thus, these valdgs.{; = 0.60 andC;,, = 0.02) are not so intuitively convincing as
in the examples in Figures 1 and 5.

For Figure 5 we getCs = {0.61,0.61,0.74}. Since the first two shapes have identical convex skulls and
convex hulls their convexity values are identical.

The new convexity measure was applied to 1137 polygons freariaty of sources, covering both large and
small shapes (between 200 and 5000 pixels), real and symthatl computation typically took a few seconds.
The population size was 1000, and GA1 was run for 100 geoast this setup also applies to all the results
presented in section 5. A sample of the results is shown iarEi§, ranked in order of increasing convexity. The
first point is that the results appear intuitively percepiyueorrect. It is also of interest to note that for polygons
consisting of a mainly convex part with intrusions then tiiedi polygon? (shown shaded) is roughly the convex
hull of P. Likewise, for polygons consisting of a mainly convex paithwprotrusions () is roughly the convex
skull of P.

Polygons which are stick-like shapes with large concavitieg. the first few in the top two rows) are naturally
assigned low convexity values. The different effects oti®normalisations can be seefti, ranks such polygons
with small area polygon& lower thanC'p, which gives the lowest ratings to those with large apea

Examples ofCs are shown over the full range of values. In addition, thedsottow is provided to enable
direct comparison witlCy. It can be seen that the measures differ most noticeablyhfapes with large area
concavities — these generate relatively small convex sKabnsequently yielding low's values) while@ (and
thereforeCy) is less affected.

Of course, the results are not optimal — this is most notiesialthe “F” in the third row in Figure 9. Rerunning
the GA ten times with different random initialisations poogés similar results about half the time. The other half
produces results which have about half the XORed area, sutttabshown in Figure 10, and are obviously much
closer to the optimum. This leads to the convexity increasing from 0.175 to 0.515, a6}, decreasing from
0.825t0 0.458.

6833

0.650
0.554
0.270
0.168

= 5K LA ™NTH

Co = 0.102 0.201 0.300 0.404 0.510 0.602 0.700 0.800 0.900 1.000
Cp = 0.156 0.222 0.317 0.403 0.512 0.605 0.700 0.800 0.901 1.000

i Mo X 4 x| =

Cprot = 0.000 0.101 0.200 0.301 0.403 0.504 0.603 0.730 0.825 0.900

1] SV 5e O

Ciny = 0.000 0.100 0.200 0.306 0.406 0512 0.631 0.800

ANMA®RLS>NT T QO

Cs = 0.008 0.105 0.201 0.302 0.401 0.500 0.601 0.702 0.800 0.9040001

= S 5SKL A m%¥

Cs = 0.033 0.023 0.037 0.139 0.115 0.193 0.299 0.553 0.718 1.000

Figure 9: Some polygon® with their convexity values and protrusiveness and interseéss values are shown
underneathP is overlaid on a filled version ap except for theCs results in which the gray polygon is the convex
skull.

Figure 10: A better fitting) found by another run of the GA.

5.3 Lesions

We demonstrate the convexity measure on a medical imaggsim&hsk. Leest. al [10] presented results for
classifying lesions as either benign or malignant melarob@sed on the irregularity of their boundaries. They
had 14 dermatologists rate a set of 40 lesions from a fourt gmile according to their probability of being a
melanoma. These ratings were averaged over the 14 expdrtisemmcompared against various shape measures by
computing the Spearman rank correlation between them. 8zamples of the mean expert score values are given
in Figure 11. Their “overall irregularity index” achievectarrelation value of 0.88, outperforming the alternative
measures they considered. However, we have found thatahdastd convexity measu€e, performs just as well,
yielding a correlation value of 0.888. The perimeter basedion () and Zunic and Rosin’s [24] convexity
measure('y) performed rather poorly, with correlation values of 0.458l 0.463 respectively. Moreover, applying
our new measures we see (table 1) that they do substantettgrbreaching a correlation value of 0.958. It is
interesting to note that in this application intrusionsegpto be substantially more salient than protrusions.

The table also shows the results of experimenting with diffeschemes for reducing the number of data points.
Not only does this improve run time, but by reducing the sizéhe solution space it could potentially benefit the
optimisation process if the subsampling were done in adligg@t manner. Alternatively, if “good” vertices are
eliminated (e.g. those belonging to the optimal convex gaty then the subsampling could result in a poorer
quality solution being found. Two approaches were testetform subsampling of the curve, and breakpoints
found by polygonal approximation (Ramer’s algorithm [1Eswsed); many other schemes are possible, e.g. a
multigrid approach. With the polygonal approximation algon the error threshold (maximum deviation between
the curve and polygonal approximation) was successiveljosthe values1, 2,3}, which over the full data set

was effective to the average sampling rate$®235, 0.122, 0.081} respectively. It can be seen that the polygonal
breakpoints provide bett&€r’y andCp results than uniform sampling for equivalent data reductaies, but that
in general, both schemes suffer a loss of performance cadparoperating directly on the full data.

In addition to our experiments with different numbers ofadpbints, table 1 also shows the results obtained
by applying different variations of our genetic optimisatiprocess. For the complete data, row 1 contains the
correlation scores for a version of GA1 where the repairéspdahg are written back into the populations, row 2
covers results for GA1 where the repaired solutions areuavadl but not replaced into the population, and row
3 gives the results obtained by applying GA2 (i.e. perturbgdtions) to the output of GAL (repairs not written
back). For all the sampled data sets, GA1 (with repairs ndtemrback) occupies the first row of results, with
the GAL1 followed by GA2 sequence occupying the second rovantiation of the mean error column clearly
indicates that the application of GA2 produces better teghbn are obtained from GA1 alone. However, it is
clear from the correlation data that improved optimisatioes not necessarily lead to improved classification.

Measuring convexity using the convex skull based meastg épplied to the complete pixel data gave a
correlation value 0f.948, which is almost as good as the result fr@fp andCp. Again, to emphasise the
importance of a good repair process, if the same repair mésihas used as fa@g andCp, i.e. taking the convex
hull of the candidate solution? = CH(S), then the resulting polygons are generally cruder apprations to the
convex skull, and the correlation value of the measuredexityis substantially reduced ©700.

| Method [Co | Cp | Cit | Cprot | mean error |
complete data
GAL1 repairs written back 0.946 | 0.948| 0.856 | 0.756 2303
GAL repairs not written back || 0.958 | 0.958 | 0.927 | 0.830 2262
GAl and GA2 0.958| 0.958| 0.927| 0.834 2259
data subsampling rate: 0.1
GAL (repairs not written aback) 0.933 | 0.937 | 0.869 | 0.777| 2021 (2375)
GAl and GA2 0.924| 0.927| 0.877| 0.776 | 2011 (2456)
data subsampling rate: 0.05
GAl 0.828| 0.833| 0.809| 0.693| 1873 (2537)
GAl and GA2 0.820| 0.828| 0.792| 0.692| 1859 (2601)
polygonal approximation of data;= 1
GAl 0.926 | 0.929| 0.870| 0.718| 2251 (2305)
GAl and GA2 0.946 | 0.949| 0.886| 0.723| 2248 (2399)
polygonal approximation of data;= 2
GAl 0.936| 0.939| 0.860| 0.751| 2293 (2390)
GALl and GA2 0.945| 0.948| 0.879| 0.948| 2282 (2447)
polygonal approximation of data;= 3
GAl 0.944| 0.941| 0.781| 0.661| 2364 (2508)
GAl and GA2 0.945| 0.948| 0.827| 0.647 | 2334 (2502)

Table 1: Absolute Spearman rank correlation scores foohedata. Mean XOR error computed on the input data
is given; where subsampled data was used the XOR error vgiieot to the original full data is shown in brackets.

190000 @

MES = 4.00 3.57 3.14 2.50 2.00 1.50 1.00

Co= 0.866 0.935 0.947 0.941 0.948 0.960 0.979
Cp= 0.868 0.931 0.949 0.939 0.948 0.960 0.978
Cint = 0.065 0.040 0.037 0.045 0.030 0.026 0.012
Cprot = 0.082 0.029 0.019 0.018 0.024 0.016 0.010

Figure 11: Examples of lesions covering the full range of meapert score (MES) values, along with their
computed shape measures.

10

5.4 Greebles

Among the 1137 polygons tested were 53 “greebles”; some pbesnare shown in Figure 12. Greebles are a
popular source of test objects used in psychology, e.gTJ8y are objects synthesised to a standard configuration:
a vertically-oriented body with four protrusions: two “besgj, a “quiff” and a “dunth”. Since the appearance
of members within this class is qualitatively similar, diégspgheir individual differences, their measured shape
attributes should also be similar. The measures are comhjpgrdetermining the ranks of the greebles in the set
of 1137 polygons ordered by each of the convexity measurége. standard deviation of the greeble ranks was
68.9 forCg, 69.0 forCp, and 78.7 foiCs. In comparison('4 andC, produced standard deviations of 89.3 and
113.6, whileC; produced 96.5. The lower values of the new measures deratesstheir high level of stability
and consistency.

LLRALR)

0.885 0.908 0.924 0.932 0.937 0.971

Figure 12: A selection of greebles covering their full rang€’y convexity values.

6 Summary and Conclusions

A new area-based convexity measure for polygons has beeredefind a genetic algorithm based solution has
been proposed as an efficient computation tool for this nteagiven that exact enumeration is computationally
expensive. Compared to the traditional convexity measurenew measure is more robust and symmetric, and
has been shown to outperform it on a medical analysis taslimg the estimation of the likelihood of melanoma
from lesion boundaries. In addition, the determinationhaf best fit convex polygon for the convexity measure
leads to the simple computation of a further two measureantifying the degree of protrusions and intrusions
present in the input polygon.

A minor modification to the GA — namely altering the fithessdtion and the candidate solution repair mech-
anism — enabled an efficient approximate solution to the@osiull problem. This in turn provided an additional
convexity measure to be computed. Unlikg (and to a lesser degrégp), C's does not have the appealing sym-
metry property. Nevertheless, it performed well on the maldzlassification task — almost comparable with
andCp. Although its performance on the greebles was not as go6thaendCp it was better than the remaining
convexity measures.

Our genetic solution can be applied in two consecutive staGé&1 followed by GA2. GA2 can be regarded
as “fine tuner” and is optionally applied to the output proeiby GA1l. Both GAs search for a convex shape to
match the outline of the original shape as closely as passthough GA1 is confined to the original vertices,
GAZ2 is allowed to perturb the coordinates of vertices, so the derived shape “drifts,” in an attempt to match
the outline of the original shape even more closely. Resld@rly indicate that the application of GA2 improves
the results by producing a lower XORed error than is the cdwnviGA1L is applied on its own. However, there
is no evidence that this improved XORed error leads to bettssification of data. Furthermore, experiments in
preprocessing the polygons to reduce the number of vertieBse applying the genetic algorithms resulted in
some loss in the quality of the solution, demonstrating ithaeis better for the GAs to operate directly on the full
data set.

We have seen that, because GAs are approximate methodssstutiens produced by GA1 are suboptimal.
Although optimal solutions (in whicl)’s vertices are limited to a subset Bfs vertices) could be obtained using
dynamic programming, this is computationally expensijefocompromise between optimality and computation
time would be to improve the initial GA1 solution using dynamprogramming over a limited domain. If each ver-
tex in the initial GA1 solution is restricted to lie in a wingf size L positions, then using dynamic programming
only O(L*n) combinations need to be tested to find the optimal solutigh thiose constraints [6]. However, it
should be emphasised that the result is still not guarariteke a global optimum wheh is less tharO(n).

Finally, the methods described could be applied to 3D dasesinaightforward manner. Although by selecting
random polyhedron vertices the GA loses the topologicailctiire of edges and faces, this is will be recovered
when the 3D convex hull algorithm reconstructs a (convelyheron from these unstructured points. In addition,

11

relatively efficient techniques for performing boolean @gtiens on polyhedra exist [7]. Along with the calculation
of polyhedra volumes, this covers all the essential compiznaf the method.

7 Acknowledgements

We would like to thank Alan Murta for his “Generic Polygon gidier” code, Ben Kimia for providing some of the
polygon data, and Alexander Kolesnikov for advice.

References

[1] G. Borgefors and R. Strand. An approximation of the maimscribed convex set of a digital object. Iim.
Conf. Image Analysis and Processing, pages 438—445, 2005.

[2] L. Boxer. Computing deviations from convexity in polymm Pattern Recognition Letters, 14:163—-167, 1993.
[3] D.J. Cavicchio.Adaptive Search Using Smulated Evolution. PhD thesis, University of Michigan,, 1970.

[4] J.S. Chang and C.K. Yap. A polynomial solution for thegiotpeeling problemDiscrete Comput. Geom.,
1:155-182, 1986.

[5] B. Chazelle. Triangulating a simple polygon in lineané. Computational Geometry, 6:485-524, 1991.

[6] J.G. Choi, S.W. Lee, and H.S. Kang. Dynamic programmipgraach to optimal vertex selection for
polygon-based shape approximatidBE Proc.-Vis Image Signal Process., 150(4):287-291, 2003.

[7] D. Eppstein. Asymptotic speed-ups in constructivedsgeometry Algorithmica, 13(5):462—-471, 1995.

[8] I. Gauthier, P. Williams, M.J. Tarr, and J. Tanaka. Tmagngreeble experts: a framework for studying expert
object recognition processedsion Research, 38:2401-2428, 1998.

[9] A. Kolesnikov and P. Fanti. Optimal algorithm for convexity measure calculatiolm Int. Conf. Image
Processing, pages 353—-356, 2005.

[10] T.K. Lee, D.McLean, and M.S. Atkins. Irregularity indteA new border irregularity measure for cutaneous
lesions.Medical Image Analysis, 7(1):47—-64, 2003.

[11] D. McCallum and D. Avis. A linear algorithm for finding ¢hconvex hull of a simple polygonlnform.
Process. Lett., 9:201-206, 1979.

[12] C.L. Mumford. A simple approach to evolutionary mubtdjective optimization. In A. Abraham, L. Jain, and
R. Goldberg, editorgzvolutionary Computation Based Multi-Criteria Optimization: Theoretical Advances
and Applications. Springer Verlag, 2004.

[13] C.L. Mumford. Simple population replacement stragsgfor a steady-state multi-objective evolutionary
algorithm. INnGECCO, volume LNCS 3102, pages 1389-1399. Springer, 2004.

[14] C.L. Mumford-Valenzuela, J. Vick, and Y. Pearl. Hetids for large strip packing problems with guillotine
patterns: An empirical study. In D.Z. Du and P.M. Pardalastoes, Metaheuristics: Computer Decision-
Making. Kluwer Academic Press, 2003.

[15] U. Ramer. An iterative procedure for the polygonal apgmation of plane curvesComputer Graphics and
Image Processing, 1:244-256, 1972.

[16] P.L. Rosin. Measuring shape: Ellipticity, rectangitia and triangularity.Machine Vision and Applications,
14:172-184, 2003.

[17] P.L. Rosin and C.L. Mumford. A symmetric convexity mees Inint. Conf. Pattern Recognition, pages IV:
11-14, 2004.

[18] M. Sonka, V. Hlavac, and R. Boyldmage Processing, Analysis, and Machine Vision. Chapman and Hall,
1993.

[19] H.I. Stern. Polygonal entropy: a convexity measuRattern Recognition Letters, 10:229—-235, 1989.

12

[20] S. Suri. Poygons. In J.E. Goodman and J. O'Rourke, eJitdandbook of Discrete and Computational
Geometry. CRC Press, 1997.

[21] G Syswerda. Uniform crossover in genetic algorithmsa.Ptoc. Third Int. Conf. on Genetic Algorithms,
pages 2-9. Lawrence Erlbaum Associates, 1989.

[22] C.L. Valenzuela-Mumford. A simple evolutionary algdom for multi-objective optimization (SEAMO). In
Congress on Evolutionary Computation (CEC), pages 717—722, 2002.

[23] L. Van-Ban and D.T. Lee. Out-of-roundness problemsied. |EEE Transactions on Pattern Analysis and
Machine Intelligence, 13(3):217-223, 1991.

[24] J.Zuni¢ and P.L. Rosin. A new convexity measurement for polygbBEE Transactions on Pattern Analysis
and Machine Intelligence, 26(7):923—-934, 2004.

13

