
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

Investigating Genetic Algorithms for Solving the Multiple Vehicle

Pickup and Delivery Problem with Time Windows

Manar Hosny∗ Christine Mumford∗

∗Cardiff School of Computer Science, Cardiff University
Queen’s Buildings, 5 The Parade, Roath, Cardiff, CF24 3AA, UK

(M.I.Hosny, C.L.Mumford)@cs.cardiff.ac.uk

1 Introduction

One important problem in transportation and logistics systems is the Multiple Vehicle Pickup and
Delivery Problem with Time Windows (MV-PDPTW). The problem deals with a number of pickup
and delivery (P&D) requests that should be served by a fleet of vehicles. A delivery location must
be served after its corresponding pickup location. The vehicle’s journey should start and end at a
central depot, while the load carried by the vehicle should not exceed its capacity. In addition, each
request must be served within a certain pre-determined time window (TW) interval. If the vehicle
arrives at a location before its due service time, it must wait until the beginning of the specified
period. A solution to the problem should assign requests to vehicles and generate a feasible route for
each vehicle, such that the total service cost is minimized, and all problem constraints are adhered
with. A formal problem definition can be found in [6]. Among the practical applications of the MV-
PDPTW are the e-commerce activities, the transport of raw materials from suppliers to factories,
and the important dial-a-ride services, in which people instead of goods are transported.

Similar to the Vehicle Routing Problem with Time Windows (VRPTW) 1, the MV-PDPTW is
NP-hard [11]. However, the presence of many constraints adds to the complexity of the problem,
and makes even finding a feasible solution a difficult task for many solution algorithms. Since exact
algorithms are too slow for large size problems, approximation algorithms are often used to find a
reasonable solution. The solution process usually starts by constructing one or more initial solutions
to the problem, and then these solutions are improved using heuristics or meta-heuristics.

Genetic Algorithms (GAs) have been successfully used for solving routing and scheduling prob-
lems. However, research using GAs for solving the MV-PDPTW is generally scarce, and the results
reported by most GA techniques attempted are often disappointing one way or another. The MV-
PDPTW consists of two related problems. The grouping or the clustering problem tries to find
the best allocation of requests to vehicles, while the routing problem is concerned with finding the
best feasible route for each vehicle, given the requests assigned to it. When trying to solve this
problem using a GA, it is often hard to tackle these two problems simultaneously. Moreover, a
major issue is finding a suitable genetic encoding and designing intelligent genetic operators that

1In the VRPTW it is assumed that either pickup or delivery is performed for all requests, but not both.

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-2 MIC 2008: The VIII Metaheuristics International Conference

are capable of handling all the difficult problem constraints [8]. In the MV-PDPTW, it is not clear
how an ‘ideal’ encoding could be achieved, and without the help of such encoding, the researcher
should design genetic operators that are smart enough to transfer the favorable genetic traits to
the offspring, while avoiding at the same time the generation and evaluation of infeasible problem
solutions. Infeasible solutions are usually handled using a repair method to fix the infeasibility
during the search, which will inevitably increase the processing time and complicate the algorithm.
Most previous GA research, for example [8] for the MV-PDPTW and [5] for the dial-a-ride, tried
to solve the problems encountered in the GA encoding and operators by allowing the GA to handle
only the grouping aspect. The routing aspect, on the other hand, was handled by an independent
routing algorithm that is hidden from the GA and is called when a chromosome is decoded. The
genetic operators in that case are usually general-purpose and do not apply any problem-specific
knowledge. Other attempts to use a GA for both the grouping and the routing aspects, for example
[2] for the MV-PDPTW and [3] for the dial-a-ride problem, generally produced discouraging results.

We present in this paper our early experimentation with a new GA for solving the MV-PDPTW.
Our GA tries to face the challenge of handling both the routing and the grouping aspects of the
problem simultaneously. Unlike the most popular approaches, in which the GA is only aware of how
requests are clustered, but is not aware of how they are routed, our chromosome representation more
naturally accommodate each groups of requests together with their suggested routes. By explicitly
monitoring and manipulating all the solution information, we aim to preserve the distinctive char-
acteristic of GAs in identifying the desirable genetic material and transferring it from generation
to generation during the evolutionary process. Our GA, thus, does not rely on a separate decoder
for interpreting the chromosome contents and creating the subordinate routing information for each
cluster. Instead, the algorithm has an embedded simple routing heuristic that allows individual
routes to dynamically change during the search within the chromosome itself. Also, with our so-
lution representation in mind, we developed new simple genetic operators. Using problem-specific
knowledge, such as the quality of the generated routes, these operators try to create good quality
feasible solutions throughout the search. In addition, since no parallel repair method is needed to
fix the infeasibility of solutions, the overall algorithm is simple and elegant, a feature often missing
from most up-to-date solution algorithms.

We compare in this paper our results with what seems to be the only other two GA attempts
for solving the MV-PDPTW. The computational experimentation indicate the success of our repre-
sentation and operators in improving upon similar previous attempts to integrate both the routing
and the grouping tasks in the GA search. Nevertheless, certain aspects of our approach could still
benefit from some improvement to reach the anticipated standard. We also highlight and explain
those aspects in our paper. The rest of the paper is organized as follows: Section 2 provides a brief
literature review. Section 3 describes the suggested solution representation, the objective function
used, and the creation of the initial population. Section 4 explains the genetic operators used in
this research. Section 5 reports the experimental results of the algorithm when tested on published
benchmark data. Finally, Section 6 gives some concluding remarks and our future plans.

2 Literature Review

In general Simulated Annealing (SA) and Tabu Search have been the most popular approaches for
solving the MV-PDPTW, for example they have been successfully applied in [7] and [6]. Also, both

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

[1] and [11] use SA as part of their approach, together with a Large Neighborhood Search (LNS)
technique, which was successful in producing many new best-known results.

As mentioned previously, GAs have not been very popular for solving the MV-PDPTW. The
authors in [2] use an evolutionary algorithm to solve the MV-PDPTW. The solution representation
is a list of vehicles’ routes. The genetic operators used are adaptations of the operators used in
[10] for the VRPTW. Another GA attempt is presented in [8], where the technique is based on a
Grouping Genetic Algorithm (GGA). Each gene represents a group of requests that are assigned
to one vehicle. Thus an individual solution only covers the grouping aspect of the problem. The
routing aspect, on the other hand, is handled by an independent data structure associated with
the chromosome2. GAs have also been tried for the related dial-a-ride problem. For example, the
authors in [5] use a cluster-first route-second approach, where only the clustering is handled using
a GA. On the other hand, the work in [3] tries to use a GA for both the grouping and the routing
phases. An important survey of the general pickup and delivery problem and approaches developed
to handle it was presented in [12]. A more recent surveys is presented in [9]. In the following
sections, we describe in detail the GA approach suggested in this research.

3 The Solution Representation and the Initial Population

One of our goals in this research is to develop a GA representation that facilitates dealing with the
difficult problem constraints. Following our approach in [4], for solving the Single Vehicle PDPTW
(SV-PDPTW), we adopt a simple representation for each individual route. A route is simply a
list of visited requests in order. However, when we assign requests to each route, both the pickup
and the delivery locations are given the same code. A simple parser is then used to traverse the
route and retrieve the information of the pickup location if this is the first encounter of the code,
and retrieve the delivery information if this is the second occurrence. This way, the precedence
constraint, between the pickup and the delivery, will always be satisfied, and will not be disturbed
by any neighborhood move, attempted to improve the route.
The chromosome in our GA represents a complete problem solution. It is simply a collection of
individual routes. Both the route (gene) length and the chromosome length are variable depending
on the number of requests to be visited and the number of vehicles in the solution. Thus our
representation is not actually an encoding in the usual GA sense, rather it is just a problem solution
upon which the genetic operators are directly applied. Similar to most solution methods in the
literature, for example [6], our objective function tries first to minimize the number of vehicles used
in the solution followed by both the total distance traveled and the total route duration. We used
the following objective function of a solution s to achieve this goal :

O(s) = N2 × TotDist(s)× TotDur(s).
Where N is the number of vehicles, TotDist(s) is the total distance traveled by all vehicles, and
TotDur(s) is the total schedule duration, which includes the total travel time, the waiting time of
the vehicles, and the service time at each location.
The initial population is generated using a sequential construction algorithm to create each
solution. The algorithm utilizes a simple routing heuristic to generate fast and feasible individual
vehicle routes. This sequential construction algorithm is in fact used in many parts of our GA
during the evolutionary process as will be explained later while addressing the GA operators.

2More details about the algorithms of [2] and [8] will be presented in Section 5, when our results are compared
with their results.

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-4 MIC 2008: The VIII Metaheuristics International Conference

The sequential construction algorithm starts with only one route. Requests are first placed in
a relocation pool in a random order. A request from the pool (P&D pair) is then inserted at the
end of the current route. The routing algorithm (Algorithm 1) is then called to improve the current
route and return a new route. Afterwards, the sequential construction algorithm will check the new
route for feasibility. If the new route is feasible, the insertion is accepted and the next request in
order will be tried for insertion. On the other hand, if the route is not feasible, the newly inserted
couple will be removed from the route and remain in the relocation pool to wait for a later insertion
attempt in a new route. The generated solution simply consists of the set of all created routes.

Algorithm 1 The Routing Algorithm

1: Given a route r
2: repeat
3: for (Each possible pair of locations in r) do
4: if (The latter location is more urgent in its upper time window bound) then
5: Swap the current two locations in r to get a new route r′

6: ∆← cost(r′)− cost(r)
7: if (∆ < 0) then
8: Replace r with r′

9: until (Done){Stop when no improvement has been achieved in the previous pass}

Our routing algorithm, described in Algorithm 1, was first introduced in [4], and has been very
successful in generating fast and feasible routes for the SV-PDPTW. Unlike most other routing
(insertion) algorithms in the literature (see for example [13]), our routing heuristic does not try to
calculate the insertion cost at each and every possible insertion position, and select the one with
the least cost. Rather, it only tries to improve the current route by using a simple Hill-Climbing
(HC) heuristic. It is thus a greedy algorithm that is very fast and much simpler than the ‘classical’
insertion heuristics. The neighborhood move used in the HC algorithm is a regular swap of two
locations. However, in order to satisfy the hard time window (TW) constraint, our neighborhood
move only swaps locations if the latter location has a TW deadline that precedes the earlier location.
The cost function used by the algorithm to evaluate the quality of the current route tries to minimize
the total route duration, as well as the number of violations in capacity and TW constraints in the
route. Our routing algorithm allows routes to dynamically change during the search, i.e., previous
routing decisions for some requests already existing in the route may be altered as requests are
added or removed from the route. The new routing information is copied back to the chromosome
whenever a change in the route occurs.

4 The Genetic Operators

Mutation : The mutation operator, which we will call the Vehicle Merge Mutation (VMM),
simply tries to merge two vehicles selected at random. The idea is to try to reduce the number of
vehicles by distributing the requests among already existing vehicles, or possibly combining the two
vehicles into one. For example, assume that the current solution contains the following vehicles:
v1 : 0 1 2 3 3 2 1 4 4 0
v2 : 0 5 5 6 6 7 7 0
v3 : 0 8 9 8 9 0
v4 : 0 10 11 12 11 10 12 0

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

Now Assume that vehicles v2 and v3 were selected for merging. The requests belonging to them
will now be placed in a relocation pool in a random order.
Relocation Pool: 8 7 6 5 9
The remaining requests in the solution, i.e., vehicles v1 and v4 will be copied to the new solution
to form a partial solution.
v1 : 0 1 2 3 3 2 1 4 4 0
v2 : 0 10 11 12 11 10 12 0

The requests in the relocation pool are then re-inserted into the partial solution using the sequential
solution construction algorithm, described in Section 3, and the final solution is constructed.
v1 : 0 8 1 2 3 1 3 7 2 8 4 7 4 0
v2 : 0 10 11 12 9 11 10 9 12 6 6 0
v3 : 0 5 5 0

Crossover : Two crossover operators have been used in our research. The first crossover operator,
which we will call the Vehicle Merge Crossover (VMX), is similar to the mutation operator
described previously. However, instead of merging two vehicles from the same solution, the VMX
tries to merge two vehicles selected at random, one from each parent solution. The second crossover
operator, which will call the Vehicle Copy Crossover (VCX), tries to copy complete routes
from the parent to the child. The number of routes to be copied is a random number between 1/4
to 1/2 the number of routes in the first parent. To select routes for inheritance, the VCX tries
to select the ‘good’ routes. It is generally desirable to copy routes that serve a large number of
requests, since our main objective is to reduce the number of vehicles. Accordingly, the VCX first
ranks routes based to the number of nodes served in each route. The larger the number of nodes
served the higher the rank of the route. Routes with the same number of nodes are ranked according
to the total distance traveled, in which case routes with a shorter distance are more favorable than
the longer ones. To illustrate the VCX, consider the following example:
Parent1: Parent2:
v1 : 0 1 2 3 3 2 1 4 4 0 v1 : 0 5 6 6 1 1 5 0
v2 : 0 5 5 6 6 7 7 0 v2 : 0 2 7 2 3 3 7 0
v3 : 0 8 9 8 9 0 v3 : 0 4 4 12 12 0
v4 : 0 10 11 12 11 10 12 0 v4 : 0 8 9 8 9 0

v5 : 0 10 10 11 11 0
Now assume that vehicles v1 and v4 were selected from Parent1, depending on the ranking criterion
described above. These two vehicles will now be copied to the first child.
Child1:
v1 : 0 1 2 3 3 2 1 4 4 0
v2 : 0 10 11 12 11 10 12 0

The remaining requests that have not been included in Child1 (shown in boldface in Parent2) will
be copied in the same order of their appearance in Parent2, and placed in a relocation pool.
Relocation Pool: 5 6 7 8 9
The requests in the relocation pool are sent to the solution construction algorithm and used to
form a set of new routes. These new routes will then be appended to the routes already existing in
Child1, which were inherited from Parent1.
Child1:
v1 : 0 1 2 3 3 2 1 4 4 0
v2 : 0 10 11 12 11 10 12 0
v3 : 0 5 6 8 9 8 9 5 6 0
v4 : 0 7 7 0

Child2 is created similarly by reversing the roles of parents. Our early experimentation indicated

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-6 MIC 2008: The VIII Metaheuristics International Conference

that the presence of both crossover operators was necessary for improving the results and satisfying
the objective function.

5 Experimental Results

Using Visual C++, we implemented a steady state GA with a 95% replacement. The following
parameters were used: population size= 500, crossover probability= 0.6, mutation probability=
0.05, and the number of generations= 300. In cases where crossover is performed either VCX or
VMX is selected at random. We used the 56 (100-customers) benchmark instances, created by Li
& Lim in [6]. There are 6 different categories of problem instances: LC1, LC2, LR1, LR2, LRC1
and LRC2. Problems in the LC category have clustered customers, problems in the LR category
have randomly distributed customers, and problems in the LRC category have both random and
clustered customers. Also, problems identified with ‘1’ have a tight TW width, while problems
identified with ‘2’ have a large TW width. The data together with the best-known results can
be downloaded from: http://www.top.sintef.no/vrp/benchmarks.html. We used Windows XP
on Intel Pentium (R) CPU, 3.40 GHz and 2 GB RAM. The algorithm was run 10 times on each
problem instance.

We compared our algorithm, which we will call the Grouping-Routing GA (GRGA), with
the GA in [2], denoted by CKKL3, and the grouping GA in [8], denoted by GGA. To the best of
our knowledge, they are the only GA approaches that have been attempted in the literature for the
MV-PDPTW and applied to the published benchmark data of [6]. The results in [8] are also very
close to the best-known results, so we found that a comparison with their results will be sufficient
for the purpose of this paper. Before we report our experimental findings, though, we present in
Table 1 a comparison of the most distinctive features of the three algorithms under consideration.

LC101 LC201 LR101 LR201 LRC101 LRC201
0

5

10

15

20

25

Problem

N
u
m

b
e
r 

o
f 
V

e
h
ic

le
s

 

 

GRGA
CKKL
GGA

Figure 1: Total number of vehicles

LC101 LC201 LR101 LR201 LRC101 LRC201
500

1000

1500

2000

2500

3000

3500

4000

4500

Problem

T
o
ta

l D
is

ta
n
ce

 

 

GRGA
CKKL
GGA

Figure 2: Total travel distance

Figures 1 and 2 show the best results achieved by the three algorithms in terms of the number of
vehicles and the total distance traveled. The two figures show that our GA clearly achieves better
results than the CKKL algorithm in almost all test cases. There are only 5 cases in which our
algorithm produced one more vehicle than the number of vehicles produced by CKKL. Moreover,

3We thank the authors of [2] for providing us with the data files containing their detailed results.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-7

Table 1: Comparison between the 3 algorithms
GA Component GRGA GGA CKKL

General
Approach

- A GA handles both the
grouping and the routing
aspects of the problem.
- All problem information
is explicity monitored and
manipulated by the GA.

- A GA only handles the
grouping aspect of the
problem.
- The routing information
is hidden from the GA and
created when the chromo-
some is decoded.

- A GA handles both the
grouping and the routing as-
pects of the problem.
- All problem information is
explicity monitored and ma-
nipulated by the GA.

Representation

- A Chromosome has a
variable number of genes.
- Each gene is a vehicle
route (a sequence of vis-
ited nodes).
- Same code for P&D, and
a parser to traverse the
route and identify each.

- A Chromosome has a
variable number of genes.
- Each gene is a cluster
of requests assigned to one
vehicle.
- A sperate data structure
and an insertion heuristic
are used to create individ-
ual routes.

- A Chromosome has a vari-
able number of genes.
- Each gene is a vehicle route
(a sequence of visited nodes).

Routing
or
Insertion
Heuristic

- Insert P&D pair at end
of route, and improve the
route using an HC algo-
rithm.
- The routing decisions of
requests in the route may
change during the search.
- New routes are copied
back to the chromosomes,
during recombination and
mutation.

- Examine all feasible in-
sertions for the P&D pair
in all routes, and select the
insertion that causes min-
imal additional cost.
- The routing decisions of
nodes already existing in
the route are static and
do not change during the
search.

- The P&D pair is inserted in
a feasible route position.
- Position of insertion could
be modified later using a local
search mutation.

Crossover

- Vehicle Copy Crossover
(VCX ) & Vehicle Merge
Crossover (VMX ).
- Crossover operators are
aware of, and utilize,
the routing information of
each gene.
- Offspring is always feasi-
ble, and no repair method
needed.

- Adaptation of the
general GGA crossover,
where crossover is not
aware of the routing
information of each gene.
- Consecutive set of clus-
ters are selected from the
first parent and inserted
in the second parent.
- Chromosome cleanup
is needed to correct
infeasibility of offspring.

- Sequence Based Crossover
(SBX ): fragments of two
routes are selected from each
parent and joined together to
form a new route.
- Route Based Crossover
(RBX ): two selected routes
are exchanged between the
two parents.
- If possible, infeasibility of
offspring is repaired. Other-
wise, offspring is discarded.

Mutation

- Vehicle Merge Mutation
(VMM ).
- Mutation is performed
on the offspring created by
crossover with a certain
probability.

- Remove one vehicle and
reassign its requests.
- Mutation is performed
on the offspring created by
crossover with a certain
probability.

- One-Level exchange Muta-
tion (1M ): removes one vehi-
cle and reassigns its requests.
- Local Search Mutation
(LSM ): tries to find better lo-
cations for requests in a ran-
domly selected route.
- Mutation is performed on a
randomly chosen individual.

Objective
Function

- Minimize the number of
vehicles, followed by total
distance and total dura-
tion.

- Minimize total travel dis-
tance, irrespective of the
number of vehicles.

- Minimize a weighted sum of
the number of vehicles, total
distance and total duration
(equal weights are assigned).

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-8 MIC 2008: The VIII Metaheuristics International Conference

all our total distance results were better than the results of CKKL. On average, the improvement of
our results compared to the results of CKKL in the number of vehicles is approximately 16%, while
the average improvement in the total travel distance is approximately 36%. On the other hand, our
results are also close to the results of the GGA in the number of vehicles produced, with only few
exceptions. Nevertheless, the resulting total distance is larger than the resulting total distance of
the GGA in most test cases. This is even more noticeable in instances with a long time window
width, i.e, instances of category ‘2’.

When we try to analyze the computational results in the light of the differences between the
three algorithms summarized in Table 1, we will realize the following. First, since both the GRGA
and the CKKL algorithms have the same chromosome structure and the same components of the
objective function, then the obvious success of the GRGA compared to the CKKL algorithm must
be due to the routing algorithm and/or the genetic operators used in the former. The success of
the GRGA to produce solutions with less vehicles in most test cases could be attributed to the
presence of two genetic operators the are specifically designed for this purpose and heavily utilized
during the search, namely the VMM mutation and the VMX crossover. On the other hand, the 1M
mutation, used for reducing the number of vehicles in CKKL, is only performed occasionally during
the search. Also, the noticeable success of the GRGA in terms of reducing the total travel distance,
could be attributed to the routing algorithm that is called whenever a route is created or modified
to try to improve the quality of the route by reducing its overall cost. This again is in contrast to
the LSM mutation of CKKL that tries to improve the route, but is only called occasionally during
the search. The VCX crossover, used in the GRGA, also seems to do a better job than the RBX
crossover used in CKKL. The RBX merely exchanges one route between parents, while the VCX
tries to be selective when transferring routes from the parent to the child, by choosing routes that
serve a large number of nodes with the smallest possible distance. It also seems that the SBX
crossover, used in CKKL, may not be suitable for the genetic representation used. Since the gene is
actually a complete route, it would seem more appropriate to transfer a collection of routes rather
than route fragments between parents.

We will now try to analyze the reasons behind the sub-optimal results achieved by the GRGA
compared to the GGA, specially in terms of the total travel distance4. First of all, one of the
major differences between the two algorithms is the objective function. The objective function
of the GRGA includes the number of vehicles, the total distance, and the total duration, while
the objective function of the GGA only includes the total distance. Thus, the best solution as
far as the GRGA is concerned must balance all three components, i.e., it takes into consideration
other parameters involved in the routing schedule like the total waiting time of the vehicle at each
location and the total service time. The second main difference is the routing heuristic used in both
algorithms. The routing (insertion) algorithm of the GGA tries to find the best insertion position
for each newly inserted request in all available routes, while we use a simple greedy algorithm that
accepts any feasible insertion. The attempt to improve the route, using the HC algorithm, is only
local to each route and does not involve comparing the insertion cost with other routes. It seems
that more work should be done by our algorithm, or through an additional local search operator,
to try to improve the routes, which in turn will also help reduce the number of vehicles. In our
opinion, these two reasons are the main reasons for the inability of our approach to reach the solution
quality of the GGA. On the other hand, the genetic operators in both seem to be comparable, since
they either try to reduce the number of vehicles, or copy complete routes from parents to children.

4It should also be noted that our algorithm was run only 10 times on each test case, while the GGA of [8] was run
30 times and the best result was selected.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-9

However, we think that our VCX crossover may be more suitable than the crossover of the GGA
for this problem type, because transferring a sequence of routes is not really meaningful, since the
order of routes in the chromosome is irrelevant.

Also, as mentioned previously, our algorithm seems not to be able to cope with instances of
type ‘2’, as evident by the large gap between our results and the results of the GGA in the total
travel distance. This could be explained if we recall that our routing algorithm had a neighborhood
move, which was guided by the TW. It seems that the routing algorithm was thus capable of dealing
better with instances in which the TW constraint is hard to satisfy, i.e., those with a tight TW
width. This neighborhood move may not be sufficient to improve the route in problems with a large
TW width, because of the availability of many different feasible orders of nodes. An alternative
neighborhood move may be needed in that case.

Finally, the average processing time needed by our algorithm, over all 56 problem instances,
was 176.9 seconds, which is comparable to the processing time of the grouping GA in [8] having
an average of 167.1 seconds. Nevertheless, the separation of the data structure used for individual
routes in [8] from the actual chromosome, seems to be favorable than our representation which
includes all vehicle routes in the chromosome, as far as processing time is concerned, since the
transfer of complete routes during the recombination and mutation operators is definitely time
consuming. The authors in [2], on the other hand, do not report their processing time.

6 Conclusions and Future Work

In this research we investigated GAs for solving the MV-PDPTW. Our research tried to face the
challenge of allowing the GA and its operators to be aware of and manipulate both the grouping and
the routing aspects of the problem. A challenge that most previous GA research on this problem has
been mostly unsuccessful with, or has been avoided by allowing the GA to tackle only one problem
aspect. We first tried a simple representation and an intelligent neighborhood move to handle the
routing part of the problem. For the grouping part, on the other hand, we designed new genetic
operators that try to exploit problem-specific information and create new solutions from existing
ones, while maintaining the feasibility of solutions throughout the search. Our operators overcome
the difficult problem constraints, and avoid at the same time the need for a repair method to fix
the infeasible solutions, a technique that previous GAs and most other heuristic and meta-heuristic
techniques have been relying on to maintain feasibility. Overall, though, our algorithm is a simple
and straightforward GA technique.

We compared our results with two previous GA attempts to solve the problem, the CKKL
algorithm of [2] and the GGA algorithm of [8]. The experimental results show that our algorithm
was able to greatly improve upon the results of the CKKL algorithm, using just a few simple
modifications in the routing algorithm and the genetic operators, and exploiting problem-specific
information. The improvement was evident in both main objectives, the number of vehicles and the
total travel distance. However, our results are still behind the results of the GGA in most test cases.
We analyzed all three algorithms and tried to identify possible reasons behind the differences in
the results obtained. In summary, it seems that our representation and genetic operators are doing
their job in guiding the search towards better solutions. However, to cope with the difficulty of the
problem and the different types of problem instances, our approach still needs further improvement.
For example, different neighborhood moves could be attempted in the route improvement heuristic,

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-10 MIC 2008: The VIII Metaheuristics International Conference

or another local search method could be added to improve the quality of the routes and reduce
the total travel distance. In our future work, we will experiment with some of these improvement
techniques. We also plan to try the representation and some of the operators suggested in this
research, within other heuristic and meta-heuristic algorithms for solving this problem.

References

[1] R. Bent and P. Van Hentenryck. A two-stage hybrid algorithm for pickup and delivery vehicle
routing problems with time windows. Computers and Operations Research, 33(4):875–893,
2006.

[2] J. Créput, A. Koukam, J. Kozlak, and J. Lukasik. Computational Science- ICCS 2004, volume
3038/2004, chapter An Evolutionary Approach to Pickup and Delivery Problem with Time
Windows, pages 1102–1108. Springer, 2004.

[3] C. Cubillos, N. Rodriguez, and B. Crawford. Bio-inspired Modeling of Cognitive Tasks, chapter
A Study on Genetic Algorithms for the DARP Problem, page 498. 507, 2007.

[4] M. Hosny and C. Mumford. The single vehicle pickup and delivery problem with time windows:
Intelligent operators for heuristic and metaheuristic algorithms. Journal of Heuristics (to
appear), http://www.springerlink.com/content/f54u5618w5241816, 2008.

[5] R. Jørgensen, J. Larsen, and K. Bergvinsdottir. Solving the dial-a-ride problem using genetic
algorithms. The journal of the Operational Research Society, 58:1321–1331, 2007.

[6] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with time windows.
In Proceedings of the 13th IEEE International Conference on Tools with Artificial Intellegence,
pages 160–167, November 2001. Dallas, TX, USA.

[7] W. Nanry and J. Barnes. Solving the pickup and delivery problem with time windows using
reactive tabu search. Transportation Research Part B: Methodological, 34(2):107–121, February
2000.

[8] G. Pankratz. A grouping genetic algorithm for the pickup and delivery problem with time
windows. OR Spectrum, 27:21–24, 2005.

[9] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and delivery problems. Journal für
Betriebswirtschaft, 58(2):81–117, 2008.

[10] J.-Y. Potvin and S. Bengio. The vehicle routing problem with time windows part ii: Genetic
search. INFORMS Journal on Computing, 8(2):165–172, 1996.

[11] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40(4):455–472, November 2006.

[12] M. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation Science,
29(1):17–29, 1995.

[13] M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, 35(2):254–265, 1987.

Hamburg, Germany, July 13–16, 2009


