Breeding Normalized Postfix Expressions for the
Facility Layout Problem

Christine L. Valenzuela * Pearl Y. Wang |

* Department of Computer Science, Cardiff University
PO Box 916, Cardiff CF24 3XF, United Kingdom

Email: christine@cf.cs.ac.uk

t Department of Computer Science MS4A5, George Mason University
Fairfax, VA 22030-4444, USA
Email: pwang@cs.gmu.edu

1 Introduction

This is a preliminary study in which we use a genetic algorithm (GA) to breed normalized postfix
expressions for solving the facility layout problem (FLP). Our technique, initially developed for VLSI
floorplanning, simultaneously places rectangles onto a planar site and optimizes area utilization by
altering the shapes of facilities that have fixed area but flexible height and width dimensions. We
present results for eight small benchmark problems from the literature and obtain improvements on
the previously published results for some of the problems. Our method has already proven successful
on VLSI problems with many more rectangles than the FLP problems we use in the present study.
Identifying suitable test data will enable us to extend to larger problems for the FLP.

1.1 Preamble

The FLP is an NP-Hard combinatorial optimization problem in which a collection of facilities are placed
onto a planar site. Fach facility has a required area and there is an interconnection cost for each pair
of facilities. Traditional methods for solving the FLP include quadratic assignment techniques, integer
programming, and graph theoretical methods. (See Kusiak and Heragu [5] for a survey.) More recently,
various metaheuristic techniques have been applied, and a variety of layout representations have been
developed. One promising representation is the slicing tree structure (STS) due to Otten [8]. STSs
provide a method for representing a guillotine pattern or slicing floorplan which can be constructed by
cutting a large rectangle into smaller rectangles using only vertical and horizontal edge—to—edge cuts.
STSs were the chosen representation of Kado et al [3, 4] for their study on genetic algorithms for the
FLP. Garces-Perez et al [2] also used STSs for their genetic programming approach to the FLP. Our
genetic algorithm is applied to the benchmark problems used by these researchers and a comparative
assessment is presented.

MIC’2001 - 4th Metaheuristics International Conference 2

2 The Facility Layout Problem

Solving the Facility Layout Problem involves placing the facilities in the Euclidean plane so that they do
not overlap with each other; at the same time, an objective function is to be minimized. The objective
function below was introduced in Tam and Li [9] and is based on Hooke’s Law:

minimize flow = 0.50 E w,-vjdfij
i<j

where w; ; is the traffic between facilities ¢ and j, and d; ; is the Euclidean distance between them.

Eight FLP benchmark problems are introduced in [9] and include a variety of flexible and rigid
facilities. Details of the smallest of the benchmark data sets, TL91-5, are shown in Table 1. Column
two of the table specifies the traffic matrix between the five facilities. For facility i, the j%* column
of the matrix specifies w; ;, the traffic between ¢ and j. Column three gives the area for each of the
facilities and the fourth column specifies the range of Height/Width dimensions or aspect ratios which
are allowed. Finally, the last column indicates that the facilities have free orientation, i.e. they can be
rotated through 90 deg.

| Facility | Traffic | Area | Aspect Ratio Range | Orientation |

1 05241 24 0.80-1.00 Free
2 50302 16 0.75-1.15 Free
3 23000 36 0.60-1.85 Free
4 40005 8 0.30-1.10 Free
5 12050 21 0.90-1.18 Free

Table 1: TLI91-5 Benchmark Data

3 Slicing Trees and Normalized Postfix Expressions

Our postfix expressions utilize the operators ‘«’ and ‘+’ which represent vertical and horizontal cuts,
respectively. The integers 1...n represent the n facilities in a problem. Postfix expressions provide a
convenient linear representation system for STSs, and normalized postfix expressions have the further
advantage of representing each layout uniquely (see Wong, Leong and Liu [12] for further details).
Normalized postfix expressions are characterized by strings of alternating ‘x’ and ‘4’ operators sepa-
rating the rectangle IDs. Figure 1(a) illustrates a slicing floorplan, its slicing tree representation, and
the corresponding normalized postfix expression.

1 /*\+

4 7 /\ /\ B
6 + 8 7

/\ /N

2 |5 . 4 +:ﬁ

? ; /N /\
3 6 2
36+1+25*4+*87+* *= AT

(a) (b)

Figure 1: Slicing Trees and Normalized Postfix Strings

From a bottom—up perspective, the slicing tree describes how pairs of rectangles can be combined
recursively to yield larger rectangles. Figure 1(b) shows the actions of the binary operations ‘+’ and

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 3

‘¢’ on the two rectangles A and B: ‘+’ puts B on top of A and ‘*’ puts ‘B’ on the right of A. Note that
wasted space can appear within the enclosing rectangles that result from these binary operations. By
repeatedly combining pairs of rectangles together with sub-assemblies of rectangles, a complete layout
can be generated. Note that a complete postfix expression of n rectangles will contain exactly n — 1
operators. Also, at any point during the evaluation of a postfix expression, the cumulative total of
operators must be less than the cumulative total of rectangles.

4 The Representation and Decoder

The representation used for our GA is order based and consists of an array of records, with one record
for each of the basic rectangles of the data set. Each record contains three fields:

o a rectangle ID field: this identifies one of the basic rectangles from the set {1, 2, 3,..., n}

e an op-type flag: this boolean flag distinguishes two types of normalized postfix chains, ' = +
x+x+x+...and F = x4+ *+x+*...

o a chain length field: this field specifies the maximum length of the operator chain consecutive
with the rectangle identified in the first field.

Starting with a given array of records produced by the GA, our decoder will follow Algorithm 1 and
produce a legal normalized postfix expression.

1. Examine next (first) record; copy the rectangle ID.

2. Generate a chain of alternating operators of op-type specified in op-type flag. This chain should have
length defined in the length field.

3. Copy the operators, in sequence, from the chain generated in 2) until either you get to the end of the
chain or more operators would invalidate the expression (see section 3).

4. If there are more records left to process then go to 1) else complete the normalized postfix expression by
printing further operators at the end of the postfix string until the number of operators is one less than
the total number of rectangles in the expression.

Algorithm 1 Outline of Decoder Algorithm

5 The Genetic Algorithm

The simple genetic algorithm (GA) used here is an example of a steady state GA. It uses the weaker
parent replacement strategy first described in [1]. The GA applies the genetic operators to permuta-
tions. We employ cycle crossover, CX [7] and three different mutations: M1 swaps the position of two
rectangles, M2 switches the op-type flag from ‘+’ to ‘*’ or vice versa, and M3 increments or decrements
(with equal probability) the length field.

The objective function of Tam and Li is used as our fitness value and pairs of parents are selected
in the following way: the first parent is selected deterministically in sequence, but the second parent is
selected in a roulette wheel fashion. The selection probabilities for each genotype are calculated using
the formula: Selection Probability = % where the genotypes are ranked according to the values
of their objective function with the worst assigned rank 1. Single offspring are produced by crossover,

and then a single mutation selected from M1, M2, and M3 is applied.

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 4

Once decoded, the postfix expression is evaluated and the corresponding slicing layout generated.
As part of the layout generation routine, an area optimization procedure is included which optimizes
the shapes of the individual facilities and minimizes the total area of the layout. Our area optimization
procedure is an exact computation which, given a particular slicing layout, will guarantee optimal
area utilization for that floorplan. Its average case run time is O(nlogn) and the procedure works by
storing key height and width dimensions of flexible modules on shape curves and then combining the
shape curves in pairs during the evaluation of the postfix expression. A range of alternative shapes
for individual facilities and a range of possible dimensions for the final layout are produced. The best
version of the final layout, i.e. the one having the smallest area is then selected and a backtracking
routine invoked to evaluate the dimensions and positions, and hence the flow of all the facilities
corresponding to the best layout. (See [10, 11] for more details.)

6 Results

Our GA results are presented in Table 2. Column VAQ1-AvG gives our best flow obtained for the
various TL91 data sets averaged over five replicate runs of our GA, and column VAO1-BEST gives the
best of these five results. These results are compared with the genetic programming results of Garces-
Perez et al [2] in column GP96 and use the same population sizes that they do as shown in column
GP-Popr. Column GP-FIRST lists the generation in which the best solution first appeared for the GP96
experiments. The final column of the table, VAOI-FIRST (AVG) gives the generation in which the best
solution appeared for our experiments, averaged over the five replicate runs. Our GA continued to run
for 40 further generations after this. Finally, column BEST shows the previously best published results
for these data sets (as revealed by our literature search) with the indicated sources. Better solutions
than this are reported in [6] for TL91-8, TL91-12 and TL91-15, but different aspect ratios were used
for the facilities, and thus the results are not comparable with our other sources [2, 3, 9]. The best
published results for TL91-20 were obtained by Garces-Perez et al by post-processing their initial result
from GP96 using Kado’s STS conversion code. The GA ran on a Pentium IIT 600 MHz processor and
took a few seconds for the smaller problems and up to 7 minutes for the largest problem.

VAOQO1-FIRST
ProBLEM || GP96 | GP-FirsT | GP-Pop BEST VAO1-BEST | VAOl-Ava (Ava)
TL91-5 226 24 600 22621 217 217 1
TL91-6 384 33 600 361031 368 371 11
TL91-7 568 175 600 559191 564 570 26
TL91-8 878 1,657 1,500 83919 821 828 36
TLI1-12 || 3,220 168 1,500 3,1620! 3,015 3,084 96
TL91-15 || 7,510 1,383 1,500 5, 8620 7,059 7324 90
TLO1-20 || 14,033 2,521 1,500 14, 026* 14,167 14,609 133
TL91-30 || 39,018 2,933 1,500 39,0182 37,181 38,402 181

Table 2: Flows for the TL91 Benchmark Problems

Overall, our results improve those presented by Garces-Perez and were obtained more cheaply (see
the FIRST and VAO1-FIRST (AvG) columns). For four of the eight problems, we beat the previously
best published results taken from a number of sources. As an example, the layout which our GA
obtained for the TLI91-5 benchmark described earlier is given in Table 3. Columns XC and YC list the
midpoint coordinates of the facilities and the other columns list size and area information about the
facilities. The layout is shown in Figure 2.

Porto, Portugal, July 16-20, 2001

MIC’2001 - 4th Metaheuristics International Conference 5

| Facility [XC | YC [Width | Height | Area | Width/Height | Height/Width |
1 2.19089 | 7.1499 [4.38178 [547723 | 24 0.8 1.25
2 6.69118 | 6.14334 | 4.6188 | 3.4641 | 16 1.33333 0.75
3 4.08044 | 2.20564 | 8.16088 | 4.41129 | 36 1.85 0.540541
4 5.18532 | 10.3644 | 1.60709 | 4.97795 [8 0.322841 3.0975
5 8.09817 | 10.3644 | 4.2186 | 4.97795 | 21 0.847458 1.18

Table 3: Facility Layout for the TL91-5 Benchmark Problem

Figure 2: Facility Layout for TL91-5: width = 10.2, height = 12.9

References

[1]
2]

(3]
[4]

[5]
[6]

[7]

(8]
[9]

[12]

D.J. Cavicchio. Adaptive Search Using Simulated Evolution. PhD dissertation, University of Michigan,
Ann Arbor, 1970.

Jaime Garces-Perez, Dale A. Schoenefeld, and Roger L. Wainwright. Solving facility layout problems using
genetic programming. In Proceedings 1st Annual Conference in Genetic Programming, pages 182-190,
1996.

K. Kado. An investigation of genetic algorithms for facility layout problems. University of Edinburgh,
MSc Dissertation, 1995.

Kazuhiro Kado, Peter Ross, and David Corne. A study of genetic algorithm hybrids for facility layout
problems. In Proceedings 6th International Conference on Genetic Algorithms, pages 498-505, 1995.

A. Kusiac and S. Heragu. The facility layout problem. Furopean J. Oper. Res., 29:229-251, 1987.

T.A Lacksonen. Preprocessing for static and dynamic facility layout problems. International Journal of
Production Research, 35(4):1095-1106, 1997.

I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation crossover operators on the traveling
salesman problem. In Genetic Algorithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, pages 224-230, 1987.

R.H.J.M. Otten. Automatic floorplan design. In Proceedings of the 19th ACM-IEEE Design Automation
Conference, pages 261-267, 1982.

K.Y. Tam and S.G. Li. A hierarchical approach to the facility layout problem. International Journal of
Production Research, 29(1):165-184, 1991.

C. L. Valenzuela and P.Y. Wang. VLSI Placement and Area Optimization Using a Genetic Algorithm to
Breed Normalized Postfix Expressions. Under review.

C. L. Valenzuela and P.Y. Wang. A Genetic Algorithm for VLSI Floorplanning. In Parallel Problem
Solving from Nature — PPSN VI, Lecture Notes in Computer Science 1917, pages 671-680, 2000.

D.F. Wong, H'W. Leong, and C.L. Liu. Simulated Annealing for VLSI Design. Kluwer Academic Publishers,
Norwell, Massachusetts, 1988.

Porto, Portugal, July 16-20, 2001

