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Summary of Paper

• SEAMO is a simple steady-state, Pareto-based evolutionary

algorithm

• Uses an elitist strategy for replacement

• Has a simple uniform scheme for selection

• Performs no fitness calculations

• Progress depends entirely on the replacement policy

• Obtained good results for some multiple knapsack problems
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Multi-Objective Optimization

• This involves the simultaneous optimization of several objectives

• Characterized by a set of alternative solutions, thePareto-optimal set

• These areNon-dominated solutions

– it is not possible to improve the value of any one of the objectives,

in such a solution, without simultaneously degrading the quality

of one or more of the other objectives.
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Extracting non-dominated solutions with 2 objectives

A maximimzation example:

(2, 10) (9, 5) (4, 5) (5, 7) (10, 4) (1, 9)

Sort on first objective:

(10, 4) (9, 5) (5, 7)(4, 5)(2, 10)(1, 9)

Objective 1 decreasing, objective 2 increasing, leaves:

(10,4) (9, 5) (5, 7) (2, 10)
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EA Replacement Rules

1. Parents can be replaced only by their own offspring,

2. Offspring can only replace parents if the offspring are superior – thus

the scheme is elitist,

3. Duplicates in the population are deleted.

• rules 1 and 3 to maintain diversity and prevent premature

convergence,

• rule 2 to ensure that the best solutions are not lost.
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THE 0-1 MULTIPLE KNAPSACK PROBLEM

– a generalization of the0-1 simple knapsack problem:

• A set of objectsO = {o1, o2, o3, ..., on}

• And a knapsack of capacityC are given.

• Each objectoi has an associated profitpi and weightwi.

• The objective is to find a subsetS ⊆ O such that the weight sum over

the objects inS does not exceed the knapsack capacity

• And yields a maximum profit.

c© C.L. Valenzuela CARDIFF UNIVERSITY



CEC2002 7

THE 0-1 MULTIPLE KNAPSACK PROBLEM (MKP)

• The 0-1 MKP involvesm knapsacks of capacitiesc1, c2, c3, ..., cm.

• Every selected object must be placed in allm knapsacks,

• Although neither the weight of an objectoi nor its profit is fixed,

• And will probably have different values in each knapsack.

• The present study is confined to problems involving two knapsacks,

i.e. m = 2.

c© C.L. Valenzuela CARDIFF UNIVERSITY



CEC2002 8

The same objects may have different weights in each knapsack
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The same objects may have different profits in each knapsack
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The Representation and Decoder

• Solutions are represented as simple permutations of the objects to be

packed.

• A decoder then packs the individual objects, one at a time, starting at

the beginning of the permutation list, and working through.

• For each object that is packed, the decoder checks to make sure that

none of the weight limits is exceeded for any knapsack.

• Packing is discontinued as soon as a weight limit is exceededfor a

knapsack,

• And when this is detected the final object that was packed is removed

from all the knapsacks.
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Crossover and Mutation

• Cycle crossover

• The mutation operator swaps two arbitrarily selected objects within a

single permutation list.
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ProcedureSEAMO

begin
GenerateN random permutations{N is the population size}

Evaluate the objective vector for each structure and store it

Record thebest-so-far for each objective function

Repeat
For each member of the population

This individual becomes the first parent

Select a second parent at random

Apply crossover to produce offspring

Apply a single mutation to the offspring

Evaluate the objective vector produced by offspring

If offspring’s objective vector improves on anybest-so-far

Then it replaces one of the parents andbest-so-far is updated

Else If offspring dominates one of the parents

Then it replaces it (unless it is a duplicate, then it is deleted)

Endfor
Until stopping condition satisfied

Print all non-dominated solutions in the final population

End
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The Test Problems

• The four test problems of Zitzler and Thiele with two knapsacks are

used here.

• With 100, 250, 500or 750objects.

• Restricting the test-bed to two knapsacks means that solutions can be

plotted using standard 2D graphics, and their quality easily

visualized.
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Elitist Strategy

• The idea is to breed a diverse population of solution pairs that is as

close to the Pareto front as is possible.

• The dual aims pursued during the search process are:

1. To move the current solutions in the population ever closer to the

Pareto front, and

2. To extend the diversity of the solution set by improving onthe

individual global best profits for knapsack 1 and knapsack 2.

• Improvements in both (1) and (2) are achieved by the replacement

strategy used in SEAMO, and not by the selection process.
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Selection Procedure for SEAMO

• The selection procedure for SEAMO does not rely on fitness

calculations or dominance relationships.

• Each individual in the population serves as the first parent once,

• And the second parent is then selected at random (uniformly).

• Objective values and dominance relationships are only considered at

the replacement stage,

• If an offspring dominates one of its parents or includes a newglobal

best for one of the knapsacks, it replaces its parent.
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Results

• SEAMO is compared with Zitler and Thiele’sSPEAalgorithm

• Previously published results showedSPEAbetter than other EAs on

knapsack problems:VEGA, HLGA, NPGA, NSGA
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500 objects in 2 knapsacks

Figure 2:Non-dominated solutions from 30 replicate runs ofSEAMO and SPEA.
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500 objects in 2 knapsacks

Figure 3:Non-dominated solutions from 30 replicate runs ofSEAMO and SPEA.
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Summary of Other Results in Paper

Can improve results further by:

• Increasing population size

• Running EA for longer time
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Further Work on SEAMO

• Comparisons with more recent MO EAs –SPEA2, PESAand

NSGAII

• Knapsack problems with 3 and 4 objectives (knapsacks)

• Continuous multiobjective functions
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Results for knapsack problems with 750 objects

To outperform its competitors SEAMO needs to perform about:

• 2 knapsacks: 4 times as many evaluations

• 3 knapsacks: twice as many evaluations

• 4 knapsacks: the same number of evaluations

SEAMO improves relative to other EAs as number of objectives

increases.
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The Continuous Test Functions

n Domain Objective functions

Type

SPH-m (Schaffer 1985; Laumans, Rudolph, and Schwefel 2001)

100 [−103, 103]n fj (x) =
∑

1≤i≤n,i 6=j
(xi)

2 + (xj − 1)2

min 1 ≤ j ≤ m,m = 2

ZDT6 (Zitzler, Deb and Thiele 2000)

100 [0, 1]n f1(x) = 1 − exp(−4x1)sin6(6πx1)

min f2(x) = g(x)[1 − (f1(x)/g(x))2]

g(x) = 1 + 9.((

∑n

i=2
xi/(n − 1))0.25

QV (Quagliarella and Vicini 1997)

100 [−5, 5]n f1(x) = (1/n

∑n

i=1
(x2

i
− 10 cos(2πxi) + 10))1/4

min f2(x) = (1/n
∑n

i=1
((xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10))1/4

KUR (Kursawe 1991)

100 [−103, 103]n f1(x) =
∑n

i=1
(|xi|

0.8 + 5. sin3(xi) + 3.5828)

min f2(x) =
∑n−1

i=1
(1 − exp

−0.2

√

x2
i
+x2

i+1 )
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Results for Continuous Functions

• SEAMO does better than competitors on 3 out of 4 of functions –

SPH-2, QV, and KUR

• SEAMO no use on ZDT6
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Future Work

This will concentrate on:

• Improving the performance of SEAMO, without compromising its

simplicity

• Extending it to real world applications
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