
VLSI Placement and Area Optimization Using a Genetic

Algorithm to Breed Normalized Postfix Expressions

Christine L. Valenzuela (Mumford)∗and Pearl Y. Wang†

Published in 2002

Abstract

We present a genetic algorithm (GA) that uses a
slicing tree construction process for the placement
and area optimization of soft modules in very large
scale integration floorplan design. We have over-
come the serious representational problems usu-
ally associated with encoding slicing floorplans into
GAs, and have obtained excellent (often optimal)
results for module sets with up to 100 rectangles.
The slicing tree construction process used by our
GA to generate the floorplans has a run-time scal-
ing of O(n lg n). This compares very favourably
with other recent approaches based on non-slicing
floorplans that require much longer run times. We
demonstrate that our GA outperforms a simulated
annealing implementation with the same represen-
tation and mutation operators as the GA.

Keywords: Floorplanning, genetic algorithm,
normalized postfix expression, simulated annealing,
slicing tree.

1 Introduction

Simulated annealing (SA) and tabu search (TS)
tend to be more popular than genetic algorithms
(GAs) with crossover for solving large combinato-
rial problems. One reason for this is the difficulty
involved in devising representations for GAs that
facilitate effective crossover operators. The very
large scale integration (VLSI) floorplanning prob-
lem provides a particularly challenging application.
The candidate floorplan solutions are frequently
represented either as binary trees or as postfix ex-
pressions, both of which encode specific instructions
for combining the rectangles in pairs using a mix of
symbols to represent the basic rectangles and bi-
nary operators. Naive GA crossover operators eas-

∗Christine Valenzuela (Mumford) is with the School of
Computer Science & Informatics, Cardiff University, CF24
3AA, UK.
†Pearl Y. Wang is with the Department of Computer

Science, George Mason University, Fairfax, VA 22030-4444
USA.

ily produce duplications and deletions of the basic
rectangles when applied to the binary tree represen-
tation and may create illegal expressions if applied
to postfix representations.

These difficulties can be overcome. This paper
describes a solution approach that incorporates a
novel encoding system with a simple and effective
GA. It utilizes an order-based representation that
encodes the rectangles and the binary operations
into a simple permutation of structures, and a de-
coder that converts the permutation of structures
into a normalized postfix expression. The normal-
ized postfix expression is a non-redundant represen-
tation because it produces a unique postfix repre-
sentation for every distinct slicing floorplan. If the
postfix expressions are not constrained by normal-
ization, a single layout can be expressed by very
many equivalent postfix expressions. (Details of
normalized postfix expressions are given in section
2 of this paper.)

VLSI floorplanning is an important stage in chip
design. It involves the placement of a set of rect-
angular circuit modules (macro cells) on a chip so
as to minimize the total area and the total inter-
connecting wire length. When placing macro cells,
many of the circuit modules are themselves not yet
fully designed and frequently have some flexibility
in their shape. For example, a circuit module made
up from 12 identical components may have them
placed in one row of 12 components, 2 rows of 6
components, 3 rows of 4 components, etc., offering
the floorplan designer a range of possible shapes
for that module. Circuit modules having flexibility
in their shape are often referred to as soft mod-
ules, and those with no flexibility in their shape are
called hard modules. Using a technique based on
a slicing floorplan, which can be obtained by re-
cursively dividing a rectangle into two parts with
either a vertical or a horizontal cut, it is possible to
fully exploit the available flexibility of soft modules
and efficiently combine module placement and area
optimization into a single algorithm.

An alternative to the slicing floorplan is the
non-slicing floorplan, in which there is no require-

1

ment for recursive construction, and tighter pack-
ings may be possible using this approach. Stock-
meyer [14] examined cases where each subcircuit
may have different layout alternatives in a floorplan
and showed that there is an efficient polynomial-
time area optimization algorithm for slicing floor-
plans, whereas the area optimization problem for
non-slicing floorplans is NP-Hard.

The main disadvantage of the slicing floorplan
approach is that for a particular set of circuit mod-
ules, the majority of the feasible layouts will be
non-slicing [9]. In other words, the slicing floor-
plan approach severely reduces the size of the search
space and may eliminate the very best circuit lay-
outs. On the other hand, reduction in the size of
the search space is advantageous as long as the so-
lutions are good enough. According to [20] this is
indeed the case for problems where modules have
flexibility in their shape. Another feature of the
slicing floorplan that makes it an attractive propo-
sition is the simple way that solutions can be rep-
resented as normalized postfix expressions [19]. It
is interesting to note that techniques involving soft
modules and slicing floorplans are equally applica-
ble to facility layout problems [4, 5] as they are to
VLSI floorplanning.

Non-slicing floorplan design for VLSI is often
dealt with by separating the two stages of place-
ment and area optimization, and many researchers
in recent years have concentrated extensively on the
area optimization stage [11, 12, 18]. A recent non-
slicing placement technique called the sequence-
pair method [8] has been extended to handle soft
modules and area optimization [7]. However, the
sequence-pair method has to solve expensive con-
vex programming problems in order to determine
the exact shape of each module and this results in
a very long run time. Another relatively new tech-
nique called the bounded sliceline grid (BSG) pack-
ing algorithm [9] has proved successful in the place-
ment of hard rectangles, i.e., rectangles that have
no flexibility in their shape. The BSG approach is
very adaptable and is able to accommodate mod-
ules that are not rectangular and modules which
are allowed to partially overlap. On the downside,
though, a single application of the BSG packing al-
gorithm scales at T (n) = O(n2) for hard modules
given the n x n grid size suggested by the authors.
This compares with T(n) = O(n) for hard modules
using a slicing floorplan approach. The average case
run time scaling of the combined placement and
area optimization algorithm of slicing floorplans for
soft modules is T (n) = O(n lg n).

It would appear that we are the first to use en-
coded normalized postfix expressions in our GA.
Although several other examples of GAs applied

to slicing tree structures can be found in the lit-
erature, they do not use normalized expressions.
Schnecke and Vornberger [13], for example, used a
GA to manipulate the slicing tree directly for VLSI
floorplanning problems. However the crossover in-
volves complex repair mechanisms simply to ensure
that the final product (or offspring) represents a le-
gal slicing floorplan, with no duplications or dele-
tions of modules. Cohoon et al. [2], in what is
probably the best known study of its type, used a
collection of four different crossovers and applied
them to postfix expressions that were not normal-
ized. In a more recent study Kado et al. [5] com-
pared the approach of Cohoon et al. with some
other techniques from the literature and also some
new approaches, based on seeding the initial pop-
ulation. Kado et al. were able to improve on pub-
lished results for several facility layout problems
using a variety of non-normalized representations
and further improvements have since been made to
some of these results by Garces-Perez et al. [4] us-
ing Genetic Programming . Kröger [3], working on
two-dimensional bin packing problems, also used
non-normalized postfix expressions and devised a
crossover that searches the parental expressions for
subtrees that do not have any rectangles in com-
mon, and combines subtrees from both parents into
the offspring. Although Kröger’s GA outperformed
his SA algorithm, the processing involved with the
crossover he used was both complex and time con-
suming.

We view our main contribution to the field of slic-
ing tree optimization as the extension of the ideas
of [19] which used a normalized postfix represen-
tation for SA. Through the addition of an encod-
ing system, we have adapted the approach to pro-
duce a simple but effective GA. We test our GA on
soft modules from the benchmark MCNC data sets,
ami33, ami49, and playout and also on a larger data
set that we independently generated. The objective
of our present study is a ‘proof of concept’ and we
limit our objective function to the construction of
a floorplan of minimum area. Other elements, such
as the minimization of the total wire length, will be
included in the cost function at a later date.

To complement our GA, we have written some
supporting software that checks the final floorplan
for correctness and draws a picture of the layout.

Figure 1 shows the roles played by the differ-
ent software components. The process by which
the GA evaluates individual postfix expressions is
complicated when soft modules are involved. Each
time a pair of rectangles or subassemblies is com-
bined, a range of possibilities is stored for heights
and widths. At the end of the construction process
the best floorplan (i.e., the one with the smallest

2

Figure 1: Schematic showing the relationships between the software and data components of the system.

percent dead space) is chosen from a range of candi-
date solutions. The backtrack program receives the
postfix expression from the GA and re-evaluates the
floorplan (i.e postfix string) using the same proce-
dure as the original GA, only this time vital inter-
mediate stages are saved. Once the postfix expres-
sion has been evaluated and the dimensions of the
enclosing rectangle established, the backtrack pro-
gram traces through the saved intermediate stages,
retrieving the exact heights and widths of all the
component rectangles. In addition to its vital role
in calculating dimensions for the basic rectangles as
input to the drawing tool, the backtrack program
carries out several verification procedures. First, it
checks that all the modules are present in the final
floorplan. Second, it checks that the module dimen-
sions are correct given their areas and shape flex-
ibilities. Finally it verifies the percentage of dead
space produced by the GA. The backtrack program
terminates when it has finished all its checking and
established the precise dimensions of the basic mod-
ules and stored all of these in a file. It is this file,
now a file of hard modules, that provides the data
for the drawing tool. The drawing tool produces a
diagram of a floorplan by re-evaluating the postfix
expression, backtracking this time to establish rel-
ative placement positions for all the basic modules
in the floorplan.

Section 2 begins with a review of slicing floor-
plans and their postfix representations, and then
describes our approach to shape-curve addition for
the combination of soft modules. Section 3 de-
scribes the representation used to encode our slicing
floorplans and also the decoder, which interprets
these structures as normalized postfix expressions.

In Section 4 we outline our GA and explain the or-
der based genetic operators we have used. Section 5
describes our simulated annealing implementation
and Section 6 defines the data sets we have used.
Section 7 presents our results and, finally, we pro-
vide a summary of our achievements and outline
our plans for future work in Section 8. The present
paper expands the work presented in [16].

2 Slicing Structures and Post-
fix Representations

A slicing floorplan is a rectangular floorplan with n
basic rectangles that can be obtained by recursively
cutting a rectangle into smaller rectangles using a
series of vertical and horizontal edge-to-edge (i.e.,
guillotine) cuts. A slicing floorplan can be repre-
sented in the form of a binary tree, called a slicing
tree, in which each internal node of the tree is la-
belled either * or +, corresponding to a vertical or
a horizontal cut respectively. Each leaf represents
a basic rectangle and is labelled between 1 and n,
where n is the total number of basic rectangles. A
slicing tree can be represented, alternatively, using
a postfix expression. The postfix expression is de-
rived by carrying out a post-order traversal.

There is a one-to-many relationship between slic-
ing floorplans and slicing tree representations for
slicing floorplans. If we restrict our representations
to skewed slicing trees, however, we obtain unique
depictions for slicing floorplans [19]. The postfix ex-
pression derived from a skewed slicing tree is called
a normalized postfix expression, and provides a lin-
ear form of the representation. Figure 2 (a) il-

3

Figure 2: Slicing floorplan (a), skewed slicing tree represen-
tation of floorplan (b) and corresponding normalized postfix
expression (c).

lustrates a typical slicing floorplan, (b) shows the
skewed slicing tree, and (c) the normalized postfix
expression representing the floorplan in (a).

A skewed slicing tree is a slicing tree in which
no node and its right child have the same label in
{ *, + } and it is obtained by making consecutive
vertical cuts from right to left, and making consec-
utive horizontal cuts from top to bottom. A nor-
malized postfix expression is obtained by traversing
a skewed slicing tree in post-order and is character-
ized by chains of {*, + } operators in which the
operators alternate. For example, the postfix ex-
pression 1 2 3 + * 4 * is normalized, but the ex-
pression 1 2 3 + + 4 * is not (because of the two
adjacent + symbols). A slicing floorplan with n-1
cuts will produce n basic rectangles. Thus a postfix
expression consists of exactly 2n - 1 entries.

A normalized postfix expression which character-
izes a slicing floorplan can be written:

π1c1π2c2π3c3π4 c4,.......,πncn
where π1π2π3π4.......πn represent a permutation of
the 1,2,...,n basic rectangles, and the ci’s are chains
of operators, either + * + * + *...., or * + * + *
(see [19] for more details). If we let l(ci) represent
the length of the chain, ci, then

∑
i l(ci) = n - 1,

and l(c1) = 0. Also the maximum length of any
chain of operators, ci, is constrained by the balloting
property as follows: for any position, i : 1 ≤ i ≤ n,
l(ci) ≤ i - 1.

For slicing floorplans, postfix expressions provide
a convenient mechanism with which to represent
various placements alternatives. The process of
floorplan design requires a further stage, however,
when soft modules are involved – area optimization.

Figure 3: Binary operations for slicing floorplans.

We deal with the two main components of the floor-
planning process separately in the two subsections
that follow.

A. The Placement Stage and the Bi-
nary ‘+’ and ‘*’ Operations

In the discussion so far, we have viewed a slicing
tree as a top-down description of a slicing floor-
plan in which the slicing tree specifies how a given
rectangle is cut into smaller rectangles by vertical
and horizontal cuts. An alternative is to view a
slicing tree as a description of a bottom-up proce-
dure. From a bottom up point of view the slicing
tree describes how pairs of rectangles can be com-
bined recursively to yield larger rectangles. Figure
3 shows the actions of the binary operations + and
* on the two rectangles A and B: ‘+’ puts B on top
of A, and ‘*’ puts B on the right of A. In the exam-
ple depicted in Figure 3, the two rectangles A and
B combine under + and * to form L-shaped mod-
ules. When following a bottom up slicing tree de-
scription however, each L-shaped module (and any
other shaped modules which are not rectangular)
will be replaced by the smallest possible enclosing
rectangle, resulting in the creation of dead space (or
waste) in the floorplan.

Determining exactly where to position each rect-
angle is frequently referred to as the placement
problem, and is NP-Hard. A simple lower bound
for a brute-force algorithm that searches the so-
lution space of normalized postfix expressions can
be obtained if we make a simplifying assumption
that places a single operator between each pair of
operands in the expression, from the second to the
nth on the postfix list, (i.e., either a ‘*’ or ‘+’),
giving 2n−1 choices for the whole postfix string.
Thus, considering the n! orderings of the rectangles
and the choices for the operators, a lower bound
on the total number of distinct postfix strings is
2nn! giving the following lower bound for the
run time complexity of the brute-force algorithm

4

T (n) = Ω(2nn!n), assuming that it takes a time of
Θ(n) to process each individual string.

In order to derive a simple upper bound for a
similar brute-force algorithm, we examine all the
individual possibilities for the operator chains ly-
ing between each pair of operands in a normalized
postfix expression. The length of the operator chain
is zero following the first rectangle, but from the
second rectangle in the list onwards the length of
the chain following the ith rectangle can take any
integral value from the set { 0, 1, 2,..., (i-1) }. Fur-
thermore, an operator chain of any given non-zero
length can exist in one of two possible forms: either
* + * + * ... or + * + * +.... Following the sec-
ond operand in the postfix expression, for example,
the possibilities for operator chains are either no
operators (i.e., the empty chain), or a single opera-
tor selected from {*, + }, giving three possibilities.
Following the third operand are five possible chains:
the empty chain, *, +, * + or + *. Following the
ith operand are 2*(i-1) + 1 possible operator chains;
however the total number of operators for the entire
postfix string is constrained to n - 1.

A simple upper bound can be obtained by con-
sidering the n! orderings of rectangles, together
with the above mentioned 2*(i-1) + 1 possible op-
erator chains following the ith operand. Once again
we assume that it takes Θ(n) time to process each
string.

T(n) ≤ Cn!*(1 * 3 * 5 *.....*(2*(i-1) + 1)
..... (2*(n-1) + 1)n
< Cn!*(2 * 4 * 6 * * 2i * * 2n)n
= Cn!2nn!n

where C is a positive constant, giving the simple
upper bound O(n!n!2nn) (Note: our upper bound
and lower bound differ by a factor of n!.)

For problems such as these, where very large
search spaces are involved, meta-heuristics, such as
GAs may provide the only viable options.

B. Area Optimization Using Soft
Modules

Flexible circuit modules or soft modules are charac-
terized by their aspect ratios. Let a given rectangle,
R, have height h(R), width w(R), and area A(R).
The aspect ratio of R is the ratio h(R)/w(R). A
soft rectangle is one that can have different shapes
as long as the area remains the same. The shape
flexibility of a soft rectangle specifies the range of
its aspect ratio. A soft rectangle of area A(R) is
said to have a shape flexibility r if and only if R
can be represented by any rectangle of area A(R)
for which:

1
r ≤

h(R)
w(R) ≤ r

Figure 4: Shape curve for a module with shape flexibility
3.

For the purposes of our present study we adopt the
definition of shape flexibility from [20] as it pro-
vides a continuous range of candidate aspect ratios
for our soft modules. For a soft module with aspect
ratio, ρ, such that 1/r ≤ρ ≤ r, various vertical (y
coordinate) and horizontal (x coordinate) dimen-
sions are possible and these can be modelled by a
shape curve, Γ. Γ is a continuous non-increasing
curve lying entirely within the first quadrant, such
that the x and y coordinates of points lying on or
above the curve define the feasible region. Figure 4
illustrates a typical shape curve for a rectangle of
area 3 and shape flexibility 3. The two points on
the curve mark the limits of flexibility for the rect-
angle, which means that the rectangle can only be
made taller or wider than 3 units if dead space is
added. The feasible region depicted in the diagram
indicates possible height and width dimensions for
an enclosing rectangle and covers all points on and
above the curve.

Pairs of soft modules, A and B, can be com-
bined into super modules by adding their shape
curves: A B +, by adding along the y direction
and A B *, by adding along the x direction. Fig-
ure 5 and Figure 6 illustrate examples of the verti-
cal (+) and horizontal (*) combinations of pairs of
modules. When a pair of soft modules is combined,
the new shape curve can be computed simply by
adding the curves at the points which correspond
with the so-called ‘corners’ on the curves of the
component modules. The diagrams show clearly
that the shape curves for basic modules of fixed
orientation (i.e. no rotation is allowed) are each
completely characterized by two ‘corners’. (Note:
a hard module of fixed orientation is characterized

5

Figure 5: Adding shape curves for A B +. Shape flexibility
for A is 2 and for B, 3.

completely by a single point or ‘corner’.)
Figure 5 illustrates the addition of two shape

curves for a vertical combination, where module B
is placed on top of module A to produce a new
enclosing rectangle, C. The shapes curves for mod-
ules A and B each consist of two ‘corners’, A[1] and
A[2] for modules A and B[1] and B[2] for module B.
A[1] and B[1] define the minimum widths for A and
B, and A[2] and B[2] define their maximum widths.
The parts of the curves laying between the mini-
mum and maximum widths for A and B give all the
possible height and width combinations for area(A)
= 2 and area(B) = 3. The minimum width of the
enclosing rectangle for the vertical combination of
any two modules X and Y can never be narrower
than the larger of the two minimum widths,X[1] or
Y [1], and so if X[1] 6= Y [1] the smaller is discarded
in calculating the shape curve for combined mod-
ule. In Figure 5, however, A[1] = B[1] , thus no
points are discarded. The maximum width of the
new enclosing rectangle C is the same as the larger
of the two maximum widths (B is this case). Dead
space is added to the narrower module (A) to make
C into the required rectangular shape.

When adding together two shape curves in a ver-
tical direction we only add at positions correspond-
ing to ‘corners’ on one or other of the component
shape curves. We identify three cases which can
occur when adding such pairs of points at a given
width position:

• Case 1: Both component modules have ‘cor-
ners’ at this width position,

Figure 6: Adding shape curves for A B *. Shape flexibility
of A is 2 and B, 3.

• Case 2: One module has a ‘corner’ at this po-
sition, and the width position lies between two
corners on the curve for the other module.

• Case 3: One module has a ‘corner’ at this po-
sition, and the width position lies beyond the
last corner for the other module.

The ‘corners’, C[1], C[2], and C[3], for the com-
bined module, C, in Figure 5 illustrate cases 1, 2
and 3 respectively, and can be obtained as follows:

Case 1
C[1].width = A[1].width (=B[1].width)
C[1].height = A[1].height + B[1].height
Case 2
C[2].width = A[2].width
C[2].height = A[2].height + Area(B)/A[2].width
Case 3
C[3].width = B[2].width
C[3].height = B[2].height + A[2].height
Note that the shape curve addition process shown

in Figure 6 for horizontal combination can be ob-
tained in the same way as for Figure 5 by simply
reversing the heights and the widths.

In order to produce a slicing floorplan from a nor-
malized postfix expression it is necessary to create
a repetitive process that combines modules that re-
sult from previous combinations (called super mod-
ules) with a mix of basic modules and other super
modules, adding together their shape curves in the
bottom-up procedure. Fortunately, the process of
adding shape curves for super modules is essentially
the same as the procedure for combining two ba-
sic modules, only with more ‘corners’ to add. Our
general calculation routines for adding points on
pairs of shape curves extend the ideas illustrated

6

in Figure 5. The details are based on the following
observation:

• For any given shape curve, the area between
two consecutive ‘corners’, either along the
width or along the height axis, varies in a uni-
form fashion.

Thus if point Z lies half way between ‘corners’ X
and Y along, say, the width axis, the area at point
Z will lie half way between the areas at X and Y .
This simple relationship holds because each ‘corner’
on a curve, except for the first, represents the max-
imum width (height) possible for one of the basic
modules contained within the curve. Thus between
any two ‘corners’, dead space is added at a uniform
rate This simple observation makes it easy to calcu-
late heights and widths exactly for any position on
a given shape curve, whether or not that position
corresponds to a ‘corner’ and no matter how many
basic modules have been included to produce the
shape curve.

The pseudocode of the main routine for verti-
cal combination is presented in Algorithm 1. De-
tails for the three alternative methods of combina-
tion, case 1, case 2, and case 3, referred to in the
algorithm, are as described earlier in the present
section. For each basic module and super module
the ‘corners’ are stored in a simple list of coordi-
nate pairs sorted on increasing value of the x (or
width) coordinate. In addition to the height and
width values, a third variable is stored with each
coordinate pair: the amount of dead space. The
list of coordinate pairs represents the ‘corners’ of
the shape curve for a module. The algorithm pro-
ceeds by stepping through a pair of lists (one list
for each of the modules to be combined) in ascend-
ing sequence of x coordinates value, adding the two
curves together as it proceeds, producing a new list
for the resulting combined module. As explained
the ‘corner’ selected as a starting point for the ad-
dition process is the earliest point on the module
with the larger of the minimum x values as its first
‘corner’. Any ‘corners’ from the other module with
x values smaller than this minimum are discarded.
The routine for horizontal combination is obtained
by interchanging the x and the y coordinates in
the code and working through simple lists of shape
curve points, this time sorted on ascending y value.

To facilitate both vertical and horizontal combi-
nations, we maintain two sorted lists of coordinates
for each module and super module: one sorted on
ascending x values, and the other on ascending y
values. If redundant points (i.e., points that lie in
the feasible region but above the shape curve) are
eliminated as soon as they are generated, the two

lists are simple to maintain; the one sorted on x
coordinates is the exact reverse of the list sorted on
y coordinates. This has important run-time conse-
quences: no sorting algorithm is needed to update
either of the lists.

As described above, a basic module of fixed orien-
tation has a maximum of two ‘corners’. Thus, when
two basic modules are combined by our methods
the resulting combined module will have at most
four ‘corners’ on its shape curve. After combining
n modules following an arbitrary slicing tree, an
upper bound on the number of points is 2n.

Currently the run time for our shape curve com-
bination routine is rather long because we have not
as yet incorporated approximations as suggested in
[19] to reduce the number of ‘corners’ accumulated
by our shape curves. The worst case run-time for
our routine, assuming that one module is added at
a time to a single super module, (e.g., the postfix
expression1 2 + 3 + 4 + 5 + 6 +) is given by:

T (n) = O(n2).

The best and the average case, however, are given
by:

T (n) = O(n lg n) [14]

3 The Representation and
Decoder

Our representation for the GA is order based and
consists of an array of records, with one record for
each of the basic rectangles of the data set. Each
record contains three fields:
• a rectangle ID field : this identifies one of the

rectangles from the set {1, 2, 3,..., n}

• an op-type flag : this boolean flag distinguishes
two types of normalized postfix chains, T = +
* + * + * +...., and F = * + * + * + *.....

• a chain length field : this field specifies the
maximum length of the operator chain asso-
ciated with the rectangle identified in the ID
field.

Our decoder converts a given instantiation of
the array of records into a legal normalized postfix
expression by writing down the rectangle IDs in the
order given, and inserting the type of normalized
chain of operators (either T = + * +... or F = *
+ *...) as indicated by the op-type flag associated
with that rectangle ID. The length of each chain
of operators is given in the chain length field. For

7

Figure 7: Algorithm 1. Add shape curves algorithm. Main routine for the vertical combination of two soft modules.
Details for Cases 1, 2, and 3 combinations are given.

8

example, for a length = 5 we would get an operator
chain of either + * + * + or * + * + * , depending
on the value of the op-type flag. However, if a
chain of operators produced in this way turns out
to be too long and violates the balloting property
(i.e. if we are currently processing the ith rectangle
in the list the total number of operators in the
postfix expression constructed so far must be less
than or equal to i - 1), the decoder will shorten the
chain and maintain legality. If the decoder reaches
the end of the sequence of records and the resulting
postfix string has less than n 1 operators, extra
operators are added on to the end of the string
maintaining the normalized pattern of ..+ * + *...
etc. The decoder algorithm is presented in Algo-
rithm 2. Below is an example showing an encoded
string and its normalized postfix interpretation:

rect5 rect2 rect4 rect1 rect3
op-type* op-type+ op-type* op-type* op-type+
length 2 length 1 length 0 length 2 length 0

Postfix expression generated: 5 2 + 4 1 * + 3 +

4 The Genetic Algorithm

Our GA, presented in Algorithm 3 is an example of
a steady state GA based on the classification given
in [15]. It also uses the weaker parent replacement
strategy first described in [1].

As outlined in Algorithm 3, our GA applies
genetic operators to permutations of rectangle
records. The fitness values are based on the amount
of dead space produced in each floorplan, F , defined
by the individual normalized postfix expressions en-
coded in the population. The percentage of dead
space is defined as follows:

A(RF)−
∑n

i=1
A(Ri)∑n

i=1
A(Ri)

× 100

where A(RF) is the area of the enclosing rectangle
for the floorplan and A(Ri) is the area of the ith

basic rectangle.

In Algorithm 3 the first parent is selected deter-
ministically in sequence, but the second parent is
selected in a roulette wheel fashion, the selection
probabilities for each genotype being calculated us-
ing the following formula:

selection probability = (Rank)∑
Ranks

where the genotypes are ranked according to the
values of the waste that they have produced, with
the worst ranked 1, the second worst 2, etc., and
the best ranked highest.

The GA breeds permutations of records from
which our decoder produces normalized postfix ex-
pressions. These expressions are, in turn, processed
by adding the shape curves together (as described
in Section 2) for each horizontal or vertical combi-
nation, recording the percent of dead space at the
end.

The initial population consists of random permu-
tations of records with each basic rectangle repre-
sented exactly once in each list. The op-type flag
for each record is set to ‘+’ or ‘*’ with equal proba-
bility, and the value in the length field is generated
in two stages:

Stage 1: length = 0, with a probability of 0.5
Stage 2: if the length is not set to zero, then it

is generated from a Poisson distribution with mean
3.

A. Genetic Operators for Permuta-
tions

We use three different mutation operators, one for
each of the fields in our encoding structure (rectan-
gle ID, op-type, and op length):

• M1 Swap positions of two rectangle IDs.

• M2 Invert op-type flag, + to * or vice versa.

• M3 Mutate length by incrementing or decre-
menting (i.e. length = length + 1, length =
length - 1) with equal probability. (If length is
zero we always increment).

M1 and M2 produce an identical effect to the M1
and M2 operators defined in [19]. Our M3 operator,
on the other hand, is different from theirs, although
its effect is similar. But M3 will never produce an
illegal postfix string.

In the very early stages of our study we
chose some non-problem specific position-based and
order-based crossovers for testing and carried out
some extensive tests to compare the performance
of four permutation crossovers on our data sets.
Overall cycle crossover (CX) [10] came out best.
Our implementation of CX is efficient and runs in
linear time.

5 Our Simulated Annealing
Implementation

Our simulated annealing implementation is similar
to that which is described in [19]. It is based on the
routine developed in [6]. A generic simulated an-
nealing procedure is outlined in Algorithm 4. In the
outer loop the temperature is reduced gradually. At

9

Figure 8: Algorithm 2. Outline decoder algorithm.

Figure 9: Algorithm 3. Simple steady-state GA.

Figure 10: Algorithm 4. Generic SA.

10

each step of the inner loop a small perturbation, S′,
of the configuration, S, is chosen and the resulting
change in the cost function, ∆ = C(S′) − C(S), is
computed. The new configuration is accepted with
probability 1 if ∆ ≤0, and with probability e−∆/T if
∆ > 0. The higher the temperature, the more likely
it is that a poorer solution than S is accepted.

We use the same representation and decoder for
our SA as for our GA. The perturbations are se-
lected from M1, M2, and M3, the mutations from
the genetic algorithm in the previous section, with
one of the three moves selected at random each
time. M1 and M3 are each selected with 40% prob-
ability, whilst M2 (which is more disruptive) is se-
lected with 20% probability, the same proportion
as we use in our GA. As we previously mentioned,
our M1 and M2 are identical with the M1 and M2
operators used in [19], and M3 produces a similar
effect to the M3 used in their work.

We use a temperature schedule of the form Tk =
r*Tk−1, k = 1, 2, 3, and set r = 0.9. The
initial temperature, T0 is determined by computing
a sequence of random moves, using M1, M2, and
M3, and computing the quantity ∆avg, the average
value of the magnitude of change in cost per move.
We should have e∆/T = P '1, for T = T0, so that
there is a reasonable probability of acceptance at
high temperatures. We start with a temperature of
2.5*∆avg, which equates to P '0.7. The starting
parameters r and P , were set following extensive
experimentation.

At each temperature we attempt 20n moves (in-
ner while loop), following [21, 22]. 20n is also the
size of the population we use for our GA. The an-
nealing process is halted when the temperature has
been lowered 20 times since the last improvement
was recorded in the best-so-far (outer while loop).
Experimentation indicates that the SA is unlikely
to produce any further improvements at this stage.

In our implementation M3, which increments or
decrements the length of a selected normalized op-
erator chain, frequently produces perturbed solu-
tions that result in floorplans identical to their pre-
cursor. This happens because our decoder ‘cor-
rects’ information in the operator ‘chain length’
field whenever it contradicts the balloting property,
by adding or subtracting operators where required.
Thus we find that quite a large number of moves
involving no change in cost are produced through-
out the execution of the SA, and all such moves
are accepted in our implementation. Nevertheless it
would appear that these ‘sideways’ moves are bene-
ficial to the SA process overall, introducing variabil-
ity which may lie dormant for a period and yet can
be expressed physically at a later time, following
further M3 mutations at different locations in the

postfix expression: if we prevent our SA from ac-
cepting moves where no change in cost is involved,
our results deteriorate considerably.

We find that it can be beneficial if we refocus
the SA search, from time to time, onto the global
best floorplan so far discovered. We do this when-
ever three consecutive temperature reductions have
failed to produce any improvements to the global
best.

6 The Data Sets

We use the basic modules of the MCNC bench-
marks ami33, ami49, and playout, and model the
shape flexibility as continuous curves in a manner
similar to [21, 22]. An additional problem, f 100,
was randomly generated following the guidelines of
[19]. The areas of the modules for f 100 were chosen
from a uniform distribution of floating point num-
bers between 1 and 20. Details for the individual
data sets are given in Table 1.

7 Results

In this section we compare the performance our GA
and the related SA on a range of problems consist-
ing of between 33 and 100 soft modules. It is unfor-
tunate that despite using modules taken from the
three larger MCNC benchmark problems, ami33,
ami49, and playout, we are unable to make direct
comparisons with published results in [21, 22, 23],
because of the extra constraints on that have been
imposed by these authors on selected modules in
each data set. For example, in [21] 2 - 4 of the mod-
ules are pre-placed in fixed positions, and in [22] 1
-5 of the modules are restricted to the chip bound-
ary. In [23] the authors mix hard and soft modules,
allowing no flexibility in the shapes of 2 - 5 of the
modules in each data set. Although at the start of
[21] and [22] the authors outline some rather more
straightforward experiments on ami33 and ami49,
and report results of less than 1 % dead space, no
details of shape flexibility are given. Additionally,
an estimate of wire length is included in their ob-
jective function, although this is not quoted in their
results, which is stated only in terms of percentage
dead space. We will discuss these points further in
the following section, after we have presented our
results.

As we have mentioned, we choose a population
size of 20n for our GA where n is the number of
modules in the problem. The GA is halted when 40
generations have passed since the last improvement
was recorded in the best-so-far, as it seems to have
converged by then.

11

For the GA and SA, we set the limits on the as-
pect ratio for the final enclosing rectangle (i.e. the
chip aspect ratio) to those used in [19]: 1/2 ≤ chip
aspect ratio ≤ 2. Unfortunately, there does not ap-
pear to be a way to predict a chip aspect ratio in
advance of a full evaluation of a postfix expression.
To ensure that we obtain acceptable solutions, we
automatically reject all moves for the SA and off-
spring for the GA in which the best point on the
final shape curve does not correspond to a legal chip
aspect ratio. Following rejection, crossover and mu-
tation operators are reapplied at new random posi-
tions until an individual with a suitable aspect ratio
is produced. In the rare event of 25 consecutive at-
tempts failing to produce a suitable individual in
the GA, one of the parents is replaced and the pro-
cess attempted again. It is interesting to note that
both the GA and the SA appear to favour floor-
plan solutions with chip aspect ratios close to the
boundaries, and the production of neighbourhood
solutions which lie outside of these boundaries are
a frequent occurrence, especially for the SA. (When
we removed the chip aspect ratio constraint, the re-
sults were even more extreme, producing only very
long and skinny layouts.)

The results for our GA and SA are summarized
in Table 2. Where possible we have carried out 100
replicate GA or SA runs, each with different ran-
dom starts, and averaged the results. The data sets
in column 1 are as detailed in Section 6 of this pa-
per. The value in brackets in column 1 gives the
shape flexibility of the basic rectangles for the ex-
periments in the row. Column 2 specifies the num-
ber of replicate runs used for averaging the GA and
SA results in each row. We used 100 experiments
for the smaller problems (ami33 and ami49), and
less for the larger problems. Columns 3 and 6 sum-
marize the dead space obtained by the GA., and
columns 7 and 9 summarize the results for the SA.
The average percentage of dead space of the best
floorplan is recorded for the GA and SA in columns
3 and 7 respectively, and the overall best from the
replicate runs is recorded in columns 6 and 9. The
total number of postfix expression evaluations (in-
cluding those individuals subsequently rejected be-
cause of illegal chip aspect ratios) averaged over all
the replicate runs is noted in columns 4 and 8, and
the average run times for the GA appear in columns
5. Run times for the GA were recorded on a Pen-
tium III computer running at 600 MHz with 128
Mbyte RAM. Run times for our SA have not been
included, but they are directly proportional to the
total number of evaluations, and are thus similar to
the run times for the GA. However, we note that,
evaluation for evaluation, the SA has the potential
to run very much faster than the GA because it is

better suited to storing and re-using partial floor-
plan results. We have, as yet, made no attempt to
optimize our SA code, and our present implemen-
tation recomputes each newly generated neighbour-
hood floorplan in its entirety, in the same fashion
as for the GA.

The grey shaded cells in the table indicate sit-
uations where floorplans have been found that are
known to be optimal (because they have zero per-
cent dead space). The results presented in Table 2
indicate that the GA is better than the SA for the
data sets under consideration. Statistical tests bear
this out, showing significant differences between the
GA and SA means for the ami33, ami49 and play-
out data sets at the 0.02 % level. It is clear, how-
ever, that relaxing the shape flexibility of the basic
modules from 2 to 4 makes it easier for the both al-
gorithms to find good floorplans. Throughout the
study we found that the GA was much more robust
and easier to tune than the SA: the SA producing
much more variable and unpredictable results. The
average performance of the SA on the three variants
of the 100 module problem was particularly poor,
and comparing the total number of evaluations for
the SA with the GA for the 100 module problems,
the SA appears to become trapped in a poor sub-
optimal region early on. Some caution is needed in
interpreting the results for 100 modules, however,
because we carried out only 5 replicate experiments
in each case.

Figure 13 and Figure 14 show typical floorplan
designs found by our GA for ami33 and ami49 re-
spectively. These pictures were constructed using
our drawing tool, which is part of our support-
ing software described in the introduction to the
present paper.

8 Conclusions and Further
Work

This paper describes a GA that uses a novel en-
coding and a simple order-based approach to breed
normalized postfix expressions for macro cell place-
ment and area optimization in VLSI floorplan de-
sign. Our experiments confirm that simple order-
based genetic operators are effective in guiding the
genetic search for floorplanning.

Results presented for floorplanning problems
with up to 100 modules frequently achieve optimal
solutions: and this is something that we have not
observed in related published work. Comparisons
between our GA and a related simulated anneal-
ing (SA) implementation clearly demonstrate the
superiority of the GA for solution quality and ro-
bustness.

12

Figure 11: Table 1 Characteristics of the data sets.

Figure 12: Table 2 Means of sets of replicate runs for % dead space for genetic algorithm and simulated annealing.

13

Figure 13: Ami33 floorplan with shape flexibility 2, and
dead space 0 %.

Figure 14: Ami49 floorplan with shape flexibility 2, and
dead space 0 %.

The only recent related work, of which we are
aware, is that reported in [20, 21, 22, 23], which
uses soft modules and normalized postfix expres-
sions with a simulated annealing algorithm. In [20]
experiments using test problems with 100 modules
are briefly described in the introduction to the pa-
per. Each module has a shape flexibility 2, and
the SA yields, on average, 2.2 % dead space. Our
result of 1.98 % on our 100 module data (shape
flexibility 2) would appear to be very similar, al-
though the other authors do not state whether or
not any constraint is imposed upon the final aspect
ratio for the chip (we constrain our solutions to chip
aspect ratios between 1/2 and 2). In the introduc-
tion to another paper [22], results are reported of
less than 1 % dead space for several MCNC bench-
marks including ami33 and ami49. Once more it
would appear that these results are very similar to
ours: we mostly achieve zero percent dead space
for the same problems. However, Young and Wong
do not state the range of aspect ratios which they
allow for the soft modules in their experiments.

Although we are not yet able to match the run-
times reported in [20, 21, 22, 23], we expect to
achieve a significant speedup when we introduce
piecewise linear approximations and reduce the
number of ‘corners’ we accumulate during the con-
struction process. We currently perform exact cal-
culations when adding our shape curves. Our plans
include extensive experimental studies to assess the
effect that reducing the maximum number of ‘cor-
ners’ that a shape curve is allowed to have on the
accuracy of the dead space calculation. Our sup-
porting software will provide all the verification and
crosscheck tools that we require to carry out these
studies.

We have shown that our novel genetic representa-
tion for normalized postfix expressions can be ap-
plied successfully to slicing floorplans. Not only
do our algorithms produce excellent results but the
slicing tree construction process used by our GA
to generate the floorplans has a run time scaling
of O(n) for hard modules, and O(n lg n) for soft
modules. This compares very favourably with the
bounded-sliceline grid (BSG), that has been used
in GAs and SA for VLSI placement in recent pa-
pers. The BSG packing algorithm scales at O(n2)
for hard rectangles, given the n x n grid size sug-
gested by the authors.

Work in progress is currently focussed on floor-
plan design using soft modules with free orienta-
tion (as opposed to fixed orientation), and also
on adapting some simple bin packing heuristics
for floorplanning problems. We have recently suc-
ceeded in incorporating wire length into the ob-
jective function for our GA, and early experi-

14

ments have produced some promising results. The
planned incorporation of shape curve approxima-
tions into our area optimization code has already
been mentioned. In addition we have adapted our
floorplanning techniques and applied them to some
facility layout problems [17].

Acknowledgements

We should like to thank the editor and the anony-
mous referees for their helpful comments and sug-
gestions. We believe the paper has been much im-
proved due to their insight.

References

[1] D. J. Cavicchio. Adaptive search using simu-
lated evolution. Unpublished doctorial disserta-
tion, University of Michigan, Ann Arbor, 1970.

[2] J. P. Cohoon, S. U. Hedge, W. N. Martin and
D. S. Richards. Distributed Genetic Algorithms for
the Floorplan Design Problem. IEEE Transactions
on Computer Aided Design, Vol. 10, No. 4, April
1991, pages. 483-492.

[3] Berhold Kröger, Guillotineable bin packing: A ge-
netic approach, European Journal of Operational
Research 84, pp 645-661, 1995.

[4] Jaime Garces-Perez, Dale A. Schoenefeld and
Roger L. Wainwright, Solving Facility Layout
Problems Using Genetic Programming. Proc. 1st

Annual Conference in Genetic Programming,
pages 182-190, 1996.

[5] Kazuhiro Kado, Peter Ross and David Corne, A
Study of Genetic Algorithm Hybrids for Facility
Layout Problems. Proc. 6th International Confer-
ence on Genetic Algorithms, pages 498-505, 1995.

[6] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vec-
chi, Optimization by simulated annealing. Science
(220), pages 671-680, 1983.

[7] H. Murata and Ernest S. Kuh, Sequence-pair based
placement method for hard/soft /pre-placed mod-
ules, International Symposium on Physical De-
sign, pages 167-172, 1998.

[8] S. Nakatake, H. Murata, K. Fujiyoushi. and Y.
Kajitani. Rectangle-packing-based module place-
ment. Proceedings IEEE International Conference
on Computer-Aided Design, pages 143-145, 1995.

[9] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Ka-
jitani. Module Placement on BSG-Structure and
IC Layout Applications, Proceedings of ICCAD,
pages 484-491, 1996

[10] I. M. Oliver, D. J. Smith, and J. R. C. Holland, A
study of permutation crossover operators on the
traveling salesman problem. Genetic Algorithms
and their Applications: Proceedings of the Second
International Conference on Genetic Algorithms,
pages 224-230, 1987.

[11] Peichen Pan and C. L. Liu, Area Minimization
for Floorplans, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
Vol. 14, No 1, January 1995., pages 123-132.

[12] M. Rebaudengo and M. Sonza Reorda, Floorplan
Area Optimization Using Genetic Algorithms,
Proceedings of Fourth Great Lakes Symposium on
VLSI, March 1994, pages 22-25.

[13] V. Schnecke. and O. Vornberger, Genetic Design
of VLSI-Layouts, the First International Confer-
ence in Genetic ALgorithms in Engineering Sys-
tems: Innovations and Applications (GALESIA),
IEE 1995, pages 430-435.

[14] L. Stockmeyer, Optimal Orientations of Cells in
Slicing floorplan Designs, Information and Con-
trol, vol. 59, pages 91-101, 1983.

[15] G. Syswerda, Uniform Crossover in Genetic al-
gorithms. Proceedings of the Third International
Conference on Genetic Algorithms. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1989.

[16] Christine L. Valenzuela, and Pearl Y. Wang. A
Genetic Algorithm for VLSI Floorplanning. Paral-
lel Problem Solving in Nature - PPSN VI. Lecture
Notes in Computer Science 1917, pages 671-680
September 2000.

[17] Christine L. Valenzuela, and Pearl Y. Wang.
Breeding Normalized Postfix Expressions for the
Facility Layout Problem. Fourth Metaheuristic In-
ternational Conference (MIC 2001), Porto, Portu-
gal, July 16-20, pages 261- 265, 2001.

[18] Ting-Chi Wang and D. F. Wong, Optimal Floor-
plan Area Optimization, IEEE Transactions on
Computer Aided Design. Vol. 11, No. 8, pages 992-
1002 August 1992.

[19] D. F. Wong, H. W. Leong and C. L. Liu, Sim-
ulated Annealing for VLSI Design, Kluwer Aca-
demic Press, Boston MA, 1988.

[20] F.Y. Young and D.F. Wong, How Good are Slicing
floorplans, Integration, the VLSI Journal, Vol 23,
pages 61-73, 1997.

[21] F. Y. Young and D. F. Wong, Slicing floorplans
with pre-placed modules. Proceedings IEEE Inter-
national Conference on Computer-aided Design,
pages 252-258, 1998.

[22] F. Y. Young and D. F. Wong, Slicing floorplans
with boundary constraints. IEEE Asia South Pa-
cific Design Automation , pages 17-20, 1999.

[23] F. Y. Young and D. F. Wong, Slicing floorplans
with range constraints. International Symposium
on Physical Design, pages 97-102, 1999.

15

