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Abstract

In the current paper, we re-examine the connection between abstract argumentation and assumption-based
argumentation. Although these are often claimed to be equivalent, we observe that there exist well-studied
admissibility-based semantics (semi-stable and eager) under which equivalence does not hold.

1 Introduction

The 1990s saw some of the foundational work in argumentationtheory. This includes the work of Simari
and Loui [16] that later evolved into Defeasible Logic Programming (DeLP) [12] as well as the ground-
breaking work of Vreeswijk [19] whose way of constructing arguments has subsequently been applied in
the various versions of the ASPIC formalism [5, 15, 14]. Two approaches, however, stand out for their
ability to model a wide range of existing formalisms for non-monotonic inference. First of all, there is the
abstract argumentation approach of Dung [10], which is shown to be able to model formalisms like Default
Logic, logic programming under stable and well-founded model semantics [10], as well as Nute’s Defeasible
Logic [13] and logic programming under the 3-valued stable model semantics [20]. Secondly, there is the
assumption-based argumentation approach of Bondarenko, Dung, Kowalski and Toni [2], which is shown
to model formalisms like Default Logic, logic programming under stable model semantics, auto epistemic
logic and circumscription [2].

One of the essential differences between these two approaches is that abstract argumentation is argument-
based. One uses the information in the knowledge base to construct arguments and to examine how these
arguments attack each other. Semantics is then defined on theresulting argumentation framework (the
directed graph in which the nodes represent arguments and the arrows represent the attack relation). In
assumption-based argumentation, on the other hand, semantics is defined based not on arguments but on
sets of assumptions that attack each other based on their possible inferences.

One claim that occurs several times in the literature is thatabstract argumentation and assumption-
based argumentation are somehow equivalent. That is, the outcome (in terms of conclusions) of abstract
argumentation would be the same as the outcome of assumption-based argumentation [9, 15]. In the current
paper, we argue that although this equivalence does hold under somesemantics, it definitely does not hold
undereverysemantics. In particular, we show that under two well-knownand well-studied admissibility-
based semantics (semi-stable [18, 3, 6] and eager [4, 1, 11])the outcome of assumption-based argumentation
is fundamentally different from the outcome of abstract argumentation.

2 Preliminaries

Over the years, different versions of the assumption-basedargumentation framework have become available
[2, 8, 9] and these versions use slightly different ways of describing formal detail. For current purposes,



we apply the formalization described in [9] which not only isthe most recent, but is also relatively easy to
explain.

Definition 1 ([9]). Given a deductive system〈L,R〉whereL is a logical language andR is a set of inference
rules on this language, and a set of assumptionsA ⊆ L, an argumentfor c ∈ L (theconclusionor claim)
supported byS ⊆ A is a tree with nodes labelled by formulas inL or by the special symbol⊤ such that:
• the root is labelledc
• for every nodeN

– if N is a leaf thenN is labelled either by an assumption or by⊤
– if N is not a leaf andb is the label ofN , then there exists an inference ruleb ← b1, . . . , bm

(m ≥ 0) and eitherm = 0 and the child ofN is labelled by⊤, orm > 0 andN hasm children,
labelled byb1, . . . , bm respectively

• S is the set of all assumptions labelling the leaves

We say that a set of assumptionsAsms ⊆ A enables the construction of an argumentA (or alternatively,
thatA can be constructed based onAsms) if A is supported by a subset ofAsms .

Definition 2 ([9]). An ABA framework is a tuple〈L,R,A, 〉̄ where:
• 〈L,R〉 is a deductive system
• A ⊆ L is a (non-empty) set, whose elements are referred to as assumptions
• ¯ is a total mapping fromA intoL, whereα is called the contrary ofα

For current purposes, we restrict ourselves to ABA-frameworks that areflat [2], meaning that no as-
sumption is the head of an inference rule. Furthermore, we follow [9] in that each assumption has a unique
contrary.

We are now ready to define the various abstract argumentationsemantics (in the context of an ABA-
framework). We say that an argumentA1 attacksan argumentA2 iff the conclusion ofA1 is the contrary
of an assumption inA2. Also, if Args is a set of arguments, then we writeArgs+ for {A | there exists an
argument inArgs that attacksA}. We say that a set of argumentsArgs is conflict-freeiff Args∩Args+ = ∅.
We say that a set of argumentsArgs defendsan argumentA iff each argument that attacksA is attacked by
an argument inArgs .

Definition 3. Let 〈L,R,A, 〉̄ be an ABA framework, and letAr be the associated set of arguments. We say
thatArgs ⊆ Ar is:
• a complete argument extensioniff Args is conflict-free andArgs = {A ∈ Ar | Args defendsA}
• a grounded argument extensioniff it is the minimal complete argument extension
• a preferred argument extensioniff it is a maximal complete argument extension
• a semi-stable argument extensioniff it is a complete argument extension where
Args ∪Args+ is maximal among all complete argument extensions
• a stable argument extensioniff it is a complete argument extension where
Args ∪Args+ = Ar

• an ideal argument extensioniff it is the maximal complete argument extension that is contained in
each preferred argument extension
• an eager argument extensioniff it is the maximal complete argument extension that is contained in

each semi-stable argument extension

It should be noticed that the grounded argument extension isunique, just like the ideal argument exten-
sion and the eager argument extension are unique [4]. Also, every stable argument extension is a semi-stable
argument extension, and every semi-stable argument extension is a preferred argument extension [3]. Fur-
thermore, if there exists at least one stable argument extension, then every semi-stable argument extension
is a stable argument extension [3]. It also holds that the grounded argument extension is a subset of the ideal
argument extension, which in its turn is a subset of the eagerargument extension [4].

The next step is to describe the various ABA semantics. Theseare defined not in terms of sets of argu-
ments (as is the case for abstract argumentation) but in terms of sets of assumptions. A set of assumptions



Asms1 is said toattackan assumptionα iff Asms1 enables the construction of an argument for conclusion
α. A set of assumptionsAsms1 is said to attack a set of assumptionsAsms2 iff Asms1 attacks some as-
sumptionα ∈ Asms2. Also, if Asms is a set of assumptions, then we writeAsms+ for {α ∈ A | Asms

attacksα}. We say that a set of assumptionsAsms is conflict-freeiff Asms ∩ Asms+ = ∅. We say that a
set of assumptionsdefendsan assumptionα iff each set of assumptions that attacksα is attacked byAsms .

Apart from the ABA-semantics defined in [8], we also define semi-stable and eager semantics in the
context of ABA.1

Definition 4. Let 〈L,R,A, 〉̄ be an ABA framework, and letAsms ⊆ A. We say thatAsms is:
• a complete assumption extensioniff Asms ∩ Asms+ = ∅ andAsms = {α | Asms defendsα}
• a grounded assumption extensioniff it is the minimal complete assumption extension
• a preferred assumption extensioniff it is a maximal complete assumption extension
• a semi-stable assumption extensioniff it is a complete assumption extension where
Asms ∪Asms+ is maximal among all complete assumption extensions
• a stable assumption extensioniff it is a complete assumption extension where
Asms ∪Asms+ = A
• an ideal assumption extensioniff it is the maximal complete assumption extension that is contained in

each preferred assumption extension
• an eager assumption extensioniff it is the maximal complete assumption extension that is contained

in each semi-stable assumption extension

It should be noticed that the grounded assumption extensionis unique, just like the ideal assumption
extension and the eager assumption extension are unique. Also, every stable assumption extension is a
semi-stable assumption extension, and every semi-stable assumption extension is a preferred assumption
extension. Furthermore, if there exists at least one stableassumption extension, then every semi-stable
assumption extension is a stable assumption extension. It also holds that the grounded assumption extension
is a subset of the ideal assumption extension, which in its turn is a subset of the eager assumption extension.
Formal proofs are provided in the [7]. For now, we observe that in the context of ABA, semi-stable and
eager semantics are well-defined and have properties that are similar to their abstract argumentation variants
(as described in [3, 4]).

3 Equivalence and Inequivalence

As can be observed from Definition 4 and Definition 3, the way assumption-based argumentation works is
very similar to the way abstract argumentation works. In fact, there is a clear correspondence between these
approaches, that allows one to convert ABA-extensions to abstract argumentation extensions, and vice versa.

Definition 5. Let 〈L,R,A, 〉̄ be an ABA framework, and letAr be the set of all arguments that can be
constructed using this ABA framework.
• We defineAsms2Args : 2A → 2Ar to be a function such thatAsms2Args(Asms) = {A ∈ Ar | A

can be constructed based onAsms}
• We defineArgs2Asms : 2Ar → 2A to be a function such thatArgs2Asms(Args) = {α ∈ A | α is an

assumption occurring in anA ∈ Args}

Theorem 6([8]). Let 〈L,R,A, 〉̄ be an ABA framework, and letAr be the set of all arguments that can be
constructed using this ABA framework.

1. If Asms ⊆ A is a complete assumption extension, thenAsms2Args(Asms) is a complete argument
extension, and ifArgs ⊆ Ar is a complete argument extension, thenArgs2Asms(Args) is a complete
assumption extension.

1Please notice that our definitions are slightly different from the ones in [8] (as we define all semantics in terms of complete
extensions) but equivalence is proved in [7].



2. IfAsms ⊆ A is the grounded assumption extension, thenAsms2Args(Asms) is the grounded argu-
ment extension, and ifArgs ⊆ Ar is the grounded argument extension, thenArgs2Asms(Args) is the
grounded assumption extension.

3. IfAsms ⊆ A is a preferred assumption extension, thenAsms2Args(Asms) is a preferred argument
extension, and ifArgs ⊆ Ar is a preferred argument extension, thenArgs2Asms(Args) is a preferred
assumption extension.

4. If Asms ⊆ A is the ideal assumption extension, thenAsms2Args(Asms) is the ideal argument
extension, and ifArgs ⊆ Ar is the ideal argument extension, thenArgs2Asms(Args) is the ideal
assumption extension.

5. IfAsms ⊆ A is a stable assumption extension, thenAsms2Args(Asms) is a stable argument exten-
sion, and ifArgs ⊆ Ar is a stable argument extension, thenArgs2Asms(Args) is a stable assumption
extension.

Proof. Points 2 and 4 have been proved in [8], and point 5 has been proved in [17, Theorem 1],2 so we only
need to prove points 1 and 3.
1, first conjunct: LetAsms ⊆A be a complete assumption extension and letArgs= Asms2Args(Asms).

The fact thatAsms is conflict-free (that isAsms ∩ Asms+ = ∅) means one cannot construct an
argument based onAsms that attacks any assumption inAsms .3 Therefore, one cannot construct an
argument based onAsms that attacks any argument based onAsms . Hence,Args is conflict-free
(that is,Args ∩ Args+ = ∅).
The fact thatAsms defends itself means thatAsms defends each assumption inAsms. Hence,Asms

defends each argument based onAsms (each argument inArgs). That is,Args defends itself.
The fact that each assumption defended byAsms is in Asms means that each argument whose as-
sumptions are defended byAsms is inArgs . Hence, each argument defended byArgs is inArgs .
Altogether, we have observed thatArgs is conflict-free and contains precisely the arguments it de-
fends. That is,Args is a complete argument extension.

1, second conjunct:LetArgs⊆Ar be a complete argument extension and letAsms=Args2Asms(Args).
SupposeAsms is not conflict-free. Then it is possible to construct an argument based onAsms (say
A) whose conclusion is the contrary of an assumption inAsms . A cannot be an element ofArgs
(otherwiseArgs would not be conflict-free). From the thus obtained fact thatA 6∈ Args , together
with the fact thatArgs is a complete argument extension, it follows thatArgs does not defendA. But
this is impossible, becauseArgs does defend all assumptions inA. Contradiction. Therefore,Asms

is conflict-free.
The fact thatArgs defends itself means that everyA ∈ Args is defended byArgs , which implies that
every assumption occurring inArgs is defended byArgs , so everyα ∈ Asms is defended byAsms.
Hence,Asms defends itself.
The final thing to be shown is thatAsms contains every assumption it defends. SupposeAsms de-
fendsα ∈ A. This means that for each argumentB with conclusionα,Asms enables the construction
of an argumentC that attacksB. The fact that all assumptions inC are found in arguments fromArgs
means thatC is defended byArgs (this is becauseArgs defends all its arguments). The fact thatArgs
is a complete argument extension then implies thatC ∈ Args . This means thatArgs defends the ar-
gument (say,A) consisting of the single assumptionα. Hence,A ∈ Args , soα ∈ Asms .
Altogether, we have observed thatAsms is conflict-free and contains precisely the assumptions it
defends. That is,Asms is a complete assumption extension.

3, first conjunct: LetAsms ⊆ A be a preferred assumption extension and letArgs = Asms2Args(Asms).
From point 1, it then follows thatArgs is a complete assumption extension. Suppose, towards a
contradiction, thatArgs is not amaximalcomplete argument extension. Then there exists a complete
argument extensionArgs ′ ) Args . LetAsms ′ = Args2Asms(Args ′). It then holds thatAsms ′ )

2Please note that our definition of ideal and stable semanticsis slightly different than in [8, 17] but equivalence is proven in [7].
3We abuse terminology a bit and say that argumentA attacks assumptionα iff the conclusion ofA isα. Similarly, we say that a set

of assumptionsAsms defends an argumentA iff it defends each assumption inA, and we say that a set of argumentsArgs defends
an assumptionα iff for each argumentB with conclusionα, there is an argumentC ∈ Args that attacksB.



Asms . Moreover, from point 1 it follows thatAsms ′ is a complete assumption extension. But this
would mean thatAsms is not amaximalcomplete assumption extension. Contradiction.

3, second conjunct:LetArgs ⊆ Ar be a complete argument extension and letAsms = Args2Asms(Args).
From point 1, it then follows thatAsms is a complete assumption extension. Suppose, towards a
contradiction, thatAsms is not amaximalcomplete assumption extension. Then there exists a com-
plete assumption extensionAsms ′ ) Asms . LetArgs ′ = Asms2Args(Asms ′). It then holds that
Args ′ ) Args . Moreover, from point 1 it follows thatArgs ′ is a complete argument extension. But
this would mean thatArgs is not amaximalcomplete argument extension. Contradiction.

Proposition 1. When restricted to complete assumption extensions and complete argument extensions, the
functionsAsms2Args andArgs2Asms become bijections and each other’s inverses.

Proof. Let Asms be a complete assumption extension and letArgs be a complete argument extension. It
suffices to prove thatArgs2Asms(Asms2Args(Asms)) = Asms and thatAsms2Args(Args2Asms(Args)) =
Args .

1. Supposeα ∈ Asms . Then there exists an argument inA ∈ Asms2Args(Asms) consisting of a single
assumptionα. Therefore,α∈Args2Asms(Asms2Args(Asms)).

2. Supposeα 6∈ Asms (assume without loss of generality thatα ∈ A). Then there exists no argument
in Asms2Args(Asms) that containsα. Therefore,α 6∈ Args2Asms (Asms2Args(Asms)).

3. SupposeA ∈ Args . Then all assumptions used inA will be in Args2Asms(Args). This means that
A can be constructed based onArgs2Asms(Args). Therefore,A ∈ Asms2Args(Args2Asms(Args)).

4. SupposeA 6∈ Args (assume without loss of generality thatA ∈ Ar ). The fact thatArgs is a
complete argument extension implies thatA is not defended byArgs . Therefore, there exists an
argumentB ∈ Ar that attacksA, such thatArgs contains noC that attacksB. Assume, with-
out loss of generality, thatB attacksA by having a conclusionβ, whereβ is an assumption used
in A. ThenArgs cannot contain any argument that uses assumptionβ (otherwise, this argument
would not be defended againstB, soArgs would not be a complete arguments extension). There-
fore,β 6∈ Args2Asms(Args). This means thatA cannot be constructed based onArgs2Asms(Args).
Therefore,A 6∈ Asms2Args(Args2Asms(Args))

From Proposition 1, together with Theorem 6 and the fact thateach preferred, grounded, stable, or ideal
extension is also a complete extension, it follows that under complete, grounded, preferred, stable or ideal
semantics, argument extensions and assumption extensionsare one-to-one related.

The above results might cause one to believe that similar observations can also be made for other seman-
tics. Unfortunately, this is not always the case.

Theorem 7. Let 〈L,R,A, 〉̄ be an ABA framework, and letAr be the set of all arguments that can be
constructed using this ABA framework.

1. It is not the case that ifAsms ⊆ A is a semi-stable assumption extension, then
Asms2Args(Asms) is a semi-stable argument extension, and it is not the case that if Args ⊆ Ar is a
semi-stable argument extension, thenArgs2Asms(Args) is a semi-stable assumption extension.

2. It is not the case that ifAsms ⊆ A is an eager assumption extension, then
Asms2Args(Asms) is an eager argument extension, and it is not the case that ifArgs ⊆ Ar is an
eager argument extension, thenArgs2Asms(Args) is an eager assumption extension.

Proof. Let Fex1 = 〈L,R,A, 〉̄ be an ABA framework withL = {a, b, c, e, α, β, γ, ǫ}, A = {α, β, γ, ǫ},
α = a, β = b, γ = c, ǫ = e andR = {r1, r2, r3, r4, r5} as follows:

r1 : c← γ r2 : a← β r3 : b← α r4 : c← γ, α r5 : e← ǫ, β

The following arguments can be constructed from this ABA framework.
• A1, using the single ruler1, with conclusionc and supported by{γ}



• A2, using the single ruler2, with conclusiona and supported by{β}
• A3, using the single ruler3, with conclusionb and supported by{α}
• A4, using the single ruler4, with conclusionc and supported by{γ, α}
• A5, using the single ruler5, with conclusione and supported by{ǫ, β}
• Aα, Aβ , Aγ andAǫ, consisting of a single assumptionα, β, γ andǫ, respectively.
These arguments, as well as their attack relation, are shownin Figure 1.

A2

A3

A4 A1

A5Aβ

Aγ

Aǫ

Aα

Figure 1: The argumentation frameworkAFex1 associated with ABA frameworkFex1.

The complete argument extensions ofAFex1 areArgs1 = ∅, Args2 = {A2, Aβ}, andArgs3 =
{A3, Aα, Aǫ}. The associated complete assumption extensions ofFex1 areAsms1 = ∅, Asms2 = {β},
andAsms3 = {α, ǫ}. Notice that, as one would expect,Args1 = Asms2Args(Asms1), Args2 =
Asms2Args(Asms2) andArgs3 = Asms2Args(Asms3), as well asAsms1 = Args2Asms(Args1),Asms2 =
Args2Asms(Args2) andAsms3 = Args2Asms(Args3).

It holds thatArgs1 ∪ Args
+
1 = ∅, Args2 ∪ Args

+
2 = {A2, A3, A4, Aα, Aβ} andArgs3 ∪ Args

+
3 =

{A2, A3, A5, Aα, Aβ , Aǫ}, as well asAsms1 ∪ Asms+1 = ∅, Asms2 ∪ Asms+2 = {α, β} andAsms3 ∪
Asms+3 = {α, β, ǫ}. Hence,Args2 andArgs3 are semi-stable argument extensions, whereas onlyAsms3 is
a semi-stable assumption extension. We thus have a counterexample against the claim that ifArgs (Args2)
is a semi-stable argument extension,Asms = Args2Asms(Args) (Asms2) is a semi-stable assumption
extension.

We also observe that the eager argument extension isArgs1 whereas the eager assumption extension is
Asms3. Hence, we have a counterexample against the claim that ifArgs is an eager argument extension
thenAsms = Args2Asms(Args) is an eager assumption extension, as well as against the claim that is
Asms is an eager assumption extension thenArgs = Asms2Args(Asms) is an eager argument extension.

The only thing left to be shown is that ifAsms is a semi-stable assumption extension, thenArgs =
Asms2Args(Asms) is not necessarily a semi-stable argument extension. For this, we slightly alter the ABA
frameworkFex1 by removing ruler5 and the assumptionǫ (call the resulting ABA frameworkFex2). Thus
the argumentsA5 andAǫ no longer exists and henceArgs3 = {A3, Aα}. As nowArgs3 ∪ Args

+
3 =

{A2, A3, Aα, Aβ} is a proper subset ofArgs2 ∪Args
+

2 the setArgs3 is no longer semi-stable. On the other
side bothAsms2 = {β}, andAsms3 = {α} are semi-stable assumption extensions.

4 Discussion

The connection between assumption-based argumentation and abstract argumentation has received quite
some attention in the literature. Dunget al., for instance, claim that “ABA is an instance of abstract ar-
gumentation (AA), and consequently it inherits its variousnotions of ‘acceptable’ sets of arguments” [9].
Similarly, Toni claims that “ABA can be seen as an instance ofAA, and (...) AA is an instance of ABA” [17].
While we agree that this holds forsomeof the admissibility-based semantics (like preferred and grounded),
we have pointed out in the current paper that this certainly does not hold forall admissibility-based seman-
tics (semi-stable and eager). One could argue that claims like those above are perhaps a bit too general.
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Figure 2: The argumentation frameworkAFex2 associated with ABA frameworkFex2.

Prakken claims that “assumption-based argumentation (ABA) is a special case of the present framework
[ASPIC+] with only strict inference rules, only assumption-type premises and no preferences.” [15]. This
claim is later repeated in the work of Modgil and Prakken, whostate that “A well-known and established
framework is that of assumption-based argumentation (ABA)[2], which (...) is shown (in [15])) to be a
special case of the ASPIC+ framework in which arguments are built from assumption premises and strict
inference rules only and in which all arguments are equally strong” [14]. However, we observe that the
argumentation frameworks of Figure 1 and Figure 2 are counterexamples against this claim, in the context
of semi-stable and eager semantics. These semantics, beingadmissibility-based, should work perfectly fine
in the context of ASPIC+ (the rationality postulates of [5] would be satisfied). Nevertheless, correspondence
with ABA does not hold.

A possible criticism against our counter example of Figure 1is that it uses a rule (r4) that is subsumed
by another rule (r1). This raises the quesion of whether counter examples stillexist when no rule subsumes
another rule. Our answer is affirmative: simply add an assumption δ and an atomd such thatδ = d,
replacer1 by c ← γ, δ and add another rule (r6) d ← δ. For the resulting ABA theory, the semi-stable
assumption extensions still do not correspond to the semi-stable argument extensions. Hence, the difference
between ABA semi-stable (resp. ABA eager) and AA semi-stable (resp. AA eager) can be seen as a general
phenomenon, that does not depend on whether some rules are subsumed by others.
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