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Abstract
In this work, we explain how Assumption-Based
Argumentation (ABA) is subsumed by Logic Pro-
gramming (LP). The translation from ABA to LP
(with a few restrictions on the ABA framework) re-
sults in a normal logic program whose semantics
coincide with the semantics of the underlying ABA
framework. Although the precise technicalities are
beyond the current extended abstract (these can be
found in the associated full paper) we provide a
number of examples to illustrate the general idea.

1 Introduction
Assumption-Based Argumentation (ABA) [Bondarenko et
al., 1997; Dung et al., 2009; Toni, 2014] has become one of
the leading approaches for formal argumentation. It provides
methods for the construction of arguments from given infer-
ence rules and defeasible information, called assumptions, as
well as for the identification of attacks between assumptions
based on the notions of arguments and contraries of assump-
tions. The semantics of an ABA framework can be given
in terms of assumption labellings [Schulz and Toni, 2014;
2017], which assign to each assumption a label IN, OUT or
UNDEC.

ABA has a well-studied relationship to abstract argumen-
tation (AA) [Dung, 1995], where arguments and attacks be-
tween them are given rather than constructed from knowl-
edge and semantics can be defined in terms of sets of argu-
ment labellings [Caminada and Gabbay, 2009], in that both
flat ABA is an instance of AA [Dung et al., 2007; Toni, 2014;
Caminada et al., 2015] and AA is an instance of flat ABA
[Toni, 2012] under many well-studied semantics.

In addition to its relationship with AA, it has been
shown that ABA is powerful enough to capture various non-
monotonic reasoning formalisms such as default logic, cir-
cumscription, autoepistemic logic, and – most importantly
for this paper – logic programming (LP) [Bondarenko et al.,
1997; Toni, 2007; 2008; Schulz and Toni, 2015]. More pre-
cisely, the aforementioned formalisms can be translated into

∗This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Caminada and Schulz, 2017].

ABA frameworks in such a way that the semantics of the re-
sulting ABA framework and of the respective formalism cor-
respond.

In our work, we investigate the opposite direction. That is,
we define a translation from a (flat) ABA framework to an as-
sociated logic program and show that LP is powerful enough
to capture the commonly used semantics of (flat) ABA. We
here give the main idea of this work, using a number of
running examples for illustration, and refer to the full paper
[Caminada and Schulz, 2017] for details.

2 Assumption-Based Argumentation
An ABA framework F = 〈L,R,A, 〉̄ [Toni, 2014; Bon-
darenko et al., 1997] consists of a set of inference rules R,
based on a formal language L. An important part of this
formal language is the set of assumptions A ⊆ L. An as-
sumption represents a defeasible piece of information that is
assumed to be true by default, unless contrary information is
available. Thus, each assumption is associated (through the
function )̄ with an element of the formal language L that is
called its contrary.

As an example, consider the ABA framework Fex with the
set of assumptions A = {β, γ, δ, ε, ϕ}, inference rules

a← b← γ c← β

d← γ, ϕ e← a, δ f ← a, ε

and contraries

β = b γ = c δ = d

ε = e ϕ = f

Based on an ABA framework, one can start to construct
arguments. These are basically derivations that use the rules
of the ABA framework together with the set of assumptions to
infer a conclusion. An argument is denoted Asm ` x, where
Asm is the set of all assumptions used in the derivation and x
is the conclusion, i.e. the head of the sentence obtained in the
last derivation step. For instance, in the above example Fex,
one can construct the following arguments: ∅ ` a (applying
rule a←), {γ} ` b (applying rule b← γ), {β} ` c (applying
rule c ← β), {γ, ϕ} ` d (applying rule d ← γ, ϕ), {δ} ` e
(applying rules a ← and e ← a, δ) and {ε} ` f (applying
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rules a ← and f ← a, ε). Apart from the arguments that are
constructed using the inference rules, there are also “trivial”
arguments that consist of a single assumption. In the example
above, these are {β} ` β, {γ} ` γ, {δ} ` δ, {ε} ` ε and
{ϕ} ` ϕ.

The semantics of an ABA framework can be provided us-
ing assumption labellings [Schulz and Toni, 2014; 2017]. In
essence, the idea is to label each assumption in A with IN,
OUT or UNDEC. An assumption labelling is called a complete
assumption labelling iff for each assumption χ ∈ A it holds
that:
• if χ is labelled IN then each ABA argument for conclu-

sion χ̄ has at least one assumption that is labelled OUT

• if χ is labelled OUT then there exists an ABA argument
for conclusion χ̄ that has all its assumptions labelled IN

• if χ is labelled UNDEC then there exists an ABA argu-
ment for conclusion χ̄ without any assumption labelled
OUT and there does not exist an ABA argument for con-
clusion χ̄ that has all its assumptions labelled IN

Given a (complete) assumption labelling Lab, we write
IN(Lab) for the set of assumptions labelled IN, OUT(Lab)
for the set of assumptions labelled OUT, and UNDEC(Lab)
for the set of assumptions labelled UNDEC. We will some-
times write a (complete) assumption labelling Lab as a triplet
(IN(Lab), OUT(Lab), UNDEC(Lab)).

In the above example of ABA framework Fex, there
are three complete assumption labellings: Lab1 =
({γ}, {β}, {δ, ε, ϕ}), Lab2 = ({β, δ, ϕ}, {γ, ε}, ∅}) and
Lab3 = (∅, ∅, {β, γ, δ, ε, ϕ}).

A complete assumption labelling Lab of an ABA frame-
work F is called:
• a preferred assumption labelling if IN(Lab) is maxi-

mal (w.r.t. ⊆) among all complete assumption labellings
of F
• a grounded assumption labelling if IN(Lab) is mini-

mal (w.r.t. ⊆) among all complete assumption labellings
of F
• a semi-stable assumption labelling if UNDEC(Lab) is

minimal (w.r.t. ⊆) among all complete assumption la-
bellings of F
• a stable assumption labelling if UNDEC(Lab) = ∅
• an ideal assumption labelling if IN(Lab) is maximal

(w.r.t. ⊆) among all complete assumption labellings
of F satisfying that for each preferred assumption la-
belling Labpref of F , IN(Lab) ⊆ IN(Labpref )

In the example of Fex, Lab1 is a preferred assumption la-
belling, Lab2 is a preferred, semi-stable and stable assump-
tion labelling, and Lab3 is a grounded and ideal assumption
labelling.

3 From ABA to LP
Given an ABA framework F , it is possible to define an asso-
ciated (normal) logic program PF by replacing each assump-
tion χ in a rule by its negated (using negation-as-failure) con-
trary, i.e. by not χ̄. As an example, when doing this for the

ABA framework Fex, the result is the following logic pro-
gram PFex

.
a ←
b ← not c
c ← not b
d ← not c, not f
e ← a, not d
f ← a, not e

Given a logic program P , different semantics can be de-
fined. For current purposes, we apply the concept of a 3-
valued interpretation 〈T, F 〉where T and F are subsets of the
atoms occurring in the logic program, with T ∩F = ∅. Given
a logic program P and a 3-valued interpretation 〈T, F 〉, one
can define the reduced logic program P 〈T,F 〉 by replacing
each occurrence of not x by TRUE if x ∈ F , by FALSE if
x ∈ T and by UNDEFINED otherwise. The resulting logic pro-
gram P 〈T,F 〉 does not contain any negation-as-failure, so it
has a unique minimal 3-valued model [Przymusinski, 1990].
If this unique minimal 3-valued model is equal to 〈T, F 〉, then
〈T, F 〉 is said to be a 3-valued stable model of P [Przymusin-
ski, 1990].

As an example, the logic program PFex
has three 3-

valued stable models: Mod1 = 〈{a, b}, {c}〉, Mod2 =
〈{a, c, e}, {b, f, d}〉 and Mod3 = 〈{a}, ∅〉. To verify that
for instance Mod1 is a 3-valued stable model of PFex

, we
observe that P 〈{a,b},{c}〉

Fex
is as follows.

a ←
b ← TRUE
c ← FALSE
d ← TRUE, UNDEFINED
e ← a, UNDEFINED
f ← a, UNDEFINED

This logic program has the unique minimal 3-valued model
〈{a, b}, {c}〉 which is equal to Mod1, hence Mod1 is a 3-
valued stable model of PFex

. In a similar way, it can be veri-
fied that alsoMod2 andMod3 are 3-valued stable models of
PFex

.
A 3-valued stable modelMod = 〈T, F 〉 of logic program

P is called:
• a regular model if T is maximal (w.r.t. ⊆) among all

3-valued stable models of P
• a well-founded model if T is minimal (w.r.t. ⊆) among

all 3-valued stable models of P
• an L-stable model if T ∪F is maximal (w.r.t. ⊆) among

all 3-valued stable models of P
• a (2-valued) stable model if T ∪ F consists of all the

atoms in P
• an ideal model if T is maximal (w.r.t. ⊆) among all 3-

valued stable models ofP satisfying that for each regular
model 〈Treg, Freg〉 of P , T ⊆ Treg

In the example of Pex,Mod1 is a regular model,Mod2 is
a regular, L-stable and (2-valued) stable model, andMod3 is
a well-founded and ideal model.

One of our main findings is that it is possible convert an
assumption labelling Lab of an ABA framework F to a 3-
valued stable model Mod of the associated logic program
PF , and vice versa.
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To convert an assumption labelling to a 3-valued interpre-
tation, we start by “inverting” the labelling. That is, we con-
struct an interpretation 〈T ′, F ′〉 where T ′ contains the con-
traries of the assumptions that are OUT, whereas F ′ contains
the contraries of the assumptions that are IN (with the addi-
tional condition that each of these contraries actually occurs
in PF ). However, since we started with assumptions, this will
only yield the status of atoms which are contraries of assump-
tions. In order to obtain the status of all atoms in the logic
program (including those that are not the contrary of any as-
sumption in the ABA framework) we perform a simple trick:
apply the reduct. That is, we define Lab2Mod(Lab) (the func-
tion that converts a labelling Lab of F into a 3-valued stable
modelMod of PF ) as the unique minimal model of P 〈T ′,F ′〉

F .
As an example, consider again Fex, which (as we have

seen before) has the complete assumption labellings:
Lab1 = ({γ}, {β}, {δ, ε, ϕ}),
Lab2 = ({β, δ, ϕ}, {γ, ε}, ∅}),
Lab3 = (∅, ∅, {β, γ, δ, ε, ϕ})
It holds that
• Lab2Mod(Lab1) = 〈{a, b}, {c}〉 =Mod1

(with 〈T ′, F ′〉 = 〈{b}, {c}〉),
• Lab2Mod(Lab2) = 〈{a, c, e}, {b, f, d}〉 =Mod2

(with 〈T ′, F ′〉 = 〈{c, e}, {b, f, d}〉), and
• Lab2Mod(Lab3) = 〈{a}, ∅〉 =Mod3

(with 〈T ′, F ′〉 = 〈∅, ∅〉).
In this example, the application of the reduct and minimal
model thereof adds atom a as a true atom to each interpreta-
tion 〈T ′, F ′〉.

It is also possible to go the other way around. That is,
given a 3-valued stable modelMod of PF , one can define the
associated complete assumption labelling Lab of F , using a
function called Mod2Lab. The idea is that:
• the assumptions whose contrary is in F are labelled IN

• the assumptions whose contrary is in T are labelled OUT

• the assumptions whose contrary does occur in PF but
neither in T or F are labelled UNDEC

• the assumptions whose contrary does not even occur in
PF are labelled IN as well

As an example, for F and PF it can be observed that
Mod2Lab(Mod1) = Lab1, Mod2Lab(Mod2) = Lab2 and
Mod2Lab(Mod3) = (Lab3).

We have proven that when the domain of Lab2Mod consists
of the complete assumption labellings of F , and the domain
of Mod2Lab consists of the 3-valued stable models of PF ,
Lab2Mod and Mod2Lab are bijective functions that are each
other’s inverse. Moreover,

1. when Lab is a preferred assumption labelling of F ,
Lab2Mod(Lab) is a regular model of PF , and when
Mod is a regular model of PF , Mod2Lab(Mod) is a
preferred assumption labelling of F ;

2. when Lab is a stable assumption labelling of F ,
Lab2Mod(Lab) is a (2-valued) stable model of PF ,
and when Mod is a (2-valued) stable model of PF ,
Mod2Lab(Mod) is a stable assumption labelling of F ;

assumption labelling logic programming
of F model of PF

complete 3-valued stable
preferred regular

stable (2-valued) stable
grounded well-founded

ideal ideal

Table 1: Semantic equivalences when translating ABA to LP

3. when Lab is a grounded assumption labelling of
F , Lab2Mod(Lab) is a well-founded model of PF ,
and when Mod is a well-founded model of PF ,
Mod2Lab(Mod) is a grounded assumption labelling
of F ;

4. when Lab is an ideal assumption labelling of F ,
Lab2Mod(Lab) is an ideal model of PF , and whenMod
is an ideal model of PF , Mod2Lab(Mod) is an ideal as-
sumption labelling of F .

Overall, the results regarding formal correspondences be-
tween assumption labellings and logic programming models
are summed up in Table 1.

4 Limitations
For our translation from ABA to LP to work, there need to be
a few restrictions on the ABA framework. The first restriction
is that the ABA framework should be flat [Toni, 2013]. This
means that no assumption appears in the head of an ABA
rule. This is important, for if the head of an ABA rule was
an assumption, the resulting LP rule would have negation-as-
failure in its head, so the result would not be a normal logic
program.

The second restriction is that each assumption should have
just a single contrary, rather than a set of contraries. This
restriction is shared by most of the ABA literature (like [Bon-
darenko et al., 1997; Dung et al., 2009; 2007; Toni, 2014;
Schulz and Toni, 2014]), although some works on ABA
(like [Gaertner and Toni, 2007; 2008; Fan and Toni, 2014;
2015]) allow an assumption to have more than one contrary.
Our current translation from ABA to LP would not be well-
defined in the latter case.

The third restriction is that the contrary of an assumption
should not be an assumption itself. Although this restriction
is not required for the well-definedness of the resulting logic
program, examples exist where violating this restriction re-
sults in breaking the link between the assumption labellings
of the ABA framework and the logic programming models of
the associated logic program.

For the second and third restriction, workarounds exist.
For instance, it is possible to convert an ABA framework
where assumptions have multiple contraries to an equivalent
ABA framework1 where each assumption has a single con-
trary [Gaertner and Toni, 2008]. Furthermore, it is possible to

1With an equivalent ABA framework we mean an ABA frame-
work that has the same complete (resp. preferred, semi-stable, sta-
ble, grounded and ideal) assumption labellings.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5580



convert an ABA framework where the contrary of an assump-
tion may be an assumption to an equivalent ABA framework
where this is not the case. Details of the respective transla-
tions can be found in the full paper. For an ABA framework
that does not comply with the second or third restriction, the
workaround idea is to first translate it to an equivalent ABA
framework that does comply with the restriction, and then
translate this to the associated logic program. The logic pro-
gramming models (2-valued) stable, well-founded and ideal
semantics, respectively) of this logic program will coincide
with the assumption labellings of the original ABA frame-
work as previously described.

Another type of restriction is regarding the semantics ap-
plied to the ABA framework. Although our translation works
for complete, preferred, stable, grounded and ideal assump-
tion labellings (which coincide with the 3-valued stable, reg-
ular, (2-valued) stable, well-founded and ideal models, re-
spectively, of the associated logic program through the func-
tions Lab2Mod and Mod2Lab) it is not the case that the semi-
stable assumption labellings of an ABA framework coincide
with the L-stable models of the associated logic program.
However, it can be observed that semi-stable assumption la-
bellings do coincide with L-stable models when the ABA
framework is assumption-spanning, that is, when each non-
assumption in the language is the contrary of an assumption.

5 From LP to ABA
Apart from the translation from ABA to LP, it is also possible
to translate from LP to ABA, as investigated in previous work
[Bondarenko et al., 1997; Schulz and Toni, 2015; 2016]. The
idea is that, given a logic program, one can translate it to an
ABA framework by replacing each occurrence of not x by
an assumption not x.2 For instance, for the logic program
Pex mentioned above, the corresponding ABA framework is
as follows,
a ←
b ← not c (with not c = c)
c ← not b (with not b = b)
d ← not c, not f (with not f = f )
e ← a, not d (with not d = d)
f ← a, not e (with not e = e)

with the set of assumptions in the underlying language being
{not a, not b, not c, not d, not e, not f}. Note that the
assumption not a does not occur in any of the ABA rules.

We observe that when translating a logic program to an
ABA framework and then back to a logic program, the final
logic program is precisely the same as the one at the start.
This makes it possible to reuse part of our existing techni-
cal results from the “ABA to LP” direction to apply to the
“LP to ABA” direction (see the full paper for details). In
particular, it turns out that the various types of models of a
logic program P coincide (through the functions Mod2Lab
and Lab2Mod) with the various types of assumption labellings

2Apart from that, the resulting ABA framework has an assump-
tion not x ∈ A (with not x = x) for each atom x occurring in the
logic program, even in cases when not x itself does not occur in any
of the ABA inference rules in R. This makes sure that the resulting
ABA framework is assumption-spanning

logic programming assumption labelling
model of P of FP

3-valued stable complete
regular preferred
L-stable semi-stable

(2-valued) stable stable
well-founded well-founded

ideal ideal

Table 2: Semantic equivalences when translating from LP to ABA

of the associated ABA framework FP , thus generalising ex-
isting work [Bondarenko et al., 1997; Schulz and Toni, 2015;
2016]. An overview of the semantic correspondence is pro-
vided in Table 2.

As indicated in Table 2, for the “LP to ABA” direction,
we do obtain equivalence between L-stable models and semi-
stable assumption labellings (which is not the case for the
“ABA to LP” direction, see Table 1). This is because trans-
lating a logic program results in an ABA framework that is
assumption-spanning.

6 Discussion
In this work we re-examined the relationship between ABA
and LP and found that the most frequently studied fragment
of ABA, namely flat ABA frameworks, does not only sub-
sume normal logic programming as previously shown [Bon-
darenko et al., 1997; Toni, 2007; 2008; Schulz and Toni,
2015], but is in fact also itself subsumed by normal logic
programming through a straightforward translation. That is,
flat ABA can be seen as LP with a slightly different syntax
since the outcome that is yielded by a flat ABA framework
under common ABA semantics (that is: complete, grounded,
preferred, stable and ideal) is essentially the same as the out-
come yielded by its (syntactically nearly identical) associated
normal logic program under common LP semantics, and vice
versa. The difference is that in ABA the outcome is defined
in terms of assumptions (which correspond to negation-as-
failure atoms in the associated logic program) whereas in LP
the outcome is defined in terms of atoms in the logic pro-
gram. However, since in LP the status of the atoms is deter-
mined solely by the status of the negation-as-failure atoms,
flat ABA and normal LP are semantically equivalent. As a
by-product of our work, we prove that the ideal semantics
for ABA is not just inspired by, but coincides with, the ideal
scenario semantics for LP [Alferes et al., 1993].

ABA methods have already been successfully applied to
LP, e.g. for explaining [Schulz and Toni, 2016] as well as
visualizing [Schulz, 2015] logic programs under certain se-
mantics. Our results pave the way for the application of LP
methods to (flat) ABA frameworks, since our translation pre-
vents an exponential blow-up while preserving the semantics.
Efficient computation methods for LP semantics [Janhunen
et al., 2006; Gebser et al., 2011] could for instance be used
to determine the semantics of ABA frameworks, which is a
promising direction for future work.
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