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In the current paper, we re-examine the connection betwestreat argumentation and assumption-
based argumentation. Although these are often claimed &mbiralent, we observe that there exist
well-studied admissibility-based semantics (semi-stainld eager) under which equivalence does not
hold.

1 Introduction

The 1990s saw some of the foundational work in argumentatienry. This includes the work of
Simari and Loui [17] that later evolved into Defeasible Lofirogramming (DeLP) [13] as well as
the ground-breaking work of Vreeswijk [20] whose way of doasting arguments has subsequently
been applied in the various versions of the ASPIC formaligip, 15]. Two approaches, however,
stand out for their ability to model a wide range of existingnialisms for non-monotonic inference.
First of all, there is the abstract argumentation approdddumg [11], which is shown to be able
to model formalisms like Default Logic, logic programmingder stable and well-founded model
semantics [11], as well as Nute's Defeasible Logic [14] avgld programming under the 3-valued
stable model semantics [21]. Secondly, there is the assmmApased argumentation approach of
Bondarenko, Dung, Kowalski and Toni [2], which is shown todabformalisms like Default Logic,
logic programming under stable model semantics, autoarpistlogic and circumscription [2].

One of the essential differences between these two apmeastihat abstract argumentation is
argument-based. One uses the information in the knowledge o construct arguments and to exam-
ine how these arguments attack each other. Semantics isliéffimed on the resulting argumentation
framework (the directed graph in which the nodes represgpingents and the arrows represent the
attack relation). In assumption-based argumentationherother hand, semantics is defined based
not on arguments but on sets of assumptions that attack daehlbmsed on their possible inferences.

One claim that occurs several times in the literature isdabatract argumentation and assumption-
based argumentation are somehow equivalent. That is, tieeroa (in terms of conclusions) of ab-
stract argumentation would be the same as the outcome ghptisu-based argumentation [10, 16].
In the current paper, we argue that although this equivaleloes hold undesomesemantics, it def-
initely does not hold undegverysemantics. In particular, we show that under two well-kn@md
well-studied admissibility-based semantics (semi-st§bd, 4, 7] and eager [5, 1, 12]) the outcome of



assumption-based argumentation is fundamentally diffdrem the outcome of abstract argumenta-
tion.

2 Preliminaries

Over the years, different versions of the assumption-basgdmentation framework have become
available [2, 9, 10] and these versions use slightly difiemeays of describing formal detail. For

current purposes, we apply the formalization described® \vhich not only is the most recent, but
is also relatively easy to explain.

Definition 1 ([10]). Given a deductive systefff, R) whereL is a logical language an®R is a set
of inference rules on this language, and a set of assumptibns £, an argumentfor ¢ € £ (the
conclusionor claim) supported byS C A is a tree with nodes labelled by formulas dhor by the
special symboll” such that:

e the root is labelled:
o for every nodeV

— if N is aleaf thenN is labelled either by an assumption or By

— if Nis not aleaf and is the label of/V, then there exists an inference riéle— b4, ..., b,,
(m > 0) and eitherm = 0 and the child ofN is labelled by T, or m > 0 and N hasm
children, labelled by, ..., b,, respectively

e S is the set of all assumptions labelling the leaves

We say that a set of assumptiodlsms C A enables the construction of an argumeh{or
alternatively, thatd can be constructed based drms) if A is supported by a subset dfsms.

Definition 2 ([10]). An ABA framework is a tupleC, R, A,”) where:
e (L,R)is adeductive system

e A C Lisa(non-empty) set, whose elements are referred to as atisuns
e ~is a total mapping fronH into £, wherea is called the contrary of

For current purposes, we restrict ourselves to ABA-frantkwthat areflat [2], meaning that no
assumption is the head of an inference rule. Furthermordolaesv [10] in that each assumption has
a unique contrary.

We are now ready to define the various abstract argumenta@iprantics (in the context of an
ABA-framework). We say that an argumest attacksan argument, iff the conclusion of4, is the
contrary of an assumption ids. Also, if Args is a set of arguments, then we writegs™ for {A |
there exists an argument jrgs that attacksd }. We say that a set of argumendsys is conflict-free
iff Args N Argst = (). We say that a set of argumensys defendsan argumentl iff each argument
that attacksA is attacked by an argument iirgs.

Definition 3. Let (£, R, .A,”) be an ABA framework, and letr be the associated set of arguments.
We say thatdrgs C Aris:
e acomplete argument extensidfh.Args is conflict-free anddrgs = {A € Ar | Args defends
A}



e agrounded argument extensidhit is the minimal complete argument extension
e apreferred argument extensidhit is a maximal complete argument extension

e asemi-stable argument extensiifiit is a complete argument extension where
Args U Args™ is maximal among all complete argument extensions

e astable argument extensidffit is a complete argument extension where
Args U Args™ = Ar

¢ anideal argument extensidfi it is the maximal complete argument extension that isaioed
in each preferred argument extension

e aneager argument extensidhit is the maximal complete argument extension that id@oed
in each semi-stable argument extension

It should be noticed that the grounded argument extensianitgie, just like the ideal argument
extension and the eager argument extension are unique &), dvery stable argument extension is
a semi-stable argument extension, and every semi-stajplenant extension is a preferred argument
extension [4]. Furthermore, if there exists at least onblstargument extension, then every semi-
stable argument extension is a stable argument extendiol 50 holds that the grounded argument
extension is a subset of the ideal argument extension, vimithturn is a subset of the eager argument
extension [5].

The next step is to describe the various ABA semantics. Theselefined not in terms of sets
of arguments (as is the case for abstract argumentationpliatms of sets of assumptions. A set
of assumptionsdsms; is said toattack an assumption iff Asms; enables the construction of an
argument for conclusiont. A set of assumptionglsms; is said to attack a set of assumptiotsms,
iff Asms; attacks some assumptien € Asmss. Also, if Asms is a set of assumptions, then we
write Asms™ for {a € A | Asms attacksa}. We say that a set of assumptiadsms is conflict-free
iff Asms N Asms™ = (). We say that a set of assumptiomsfendsan assumption iff each set of
assumptions that attacksis attacked byAsms.

Apart from the ABA-semantics defined in [9], we also define isstable and eager semantics in
the context of ABA!

Definition 4. Let (L, R, A,”) be an ABA framework, and letsms C A. We say thatdsms is:
e acomplete assumption extensiifivdsms N Asmst = 0 and.Asms = {a | Asms defendsy}

e agrounded assumption extensiifiit is the minimal complete assumption extension
o apreferred assumption extensiihit is a maximal complete assumption extension

e asemi-stable assumption extensiffit is a complete assumption extension where
Asms U Asms™ is maximal among all complete assumption extensions

e astable assumption extensidhit is a complete assumption extension where
Asms U Asmst = A

e anideal assumption extensidaffi it is the maximal complete assumption extension thabis c
tained in each preferred assumption extension

!Please notice that our definitions are slightly differeminirthe ones in [9] (as we define all semantics in terms of
complete extensions) but equivalence is proved in the afipen



e aneager assumption extensighit is the maximal complete assumption extension thabis ¢
tained in each semi-stable assumption extension

It should be noticed that the grounded assumption extensionique, just like the ideal assump-
tion extension and the eager assumption extension areaunfdgo, every stable assumption extension
is a semi-stable assumption extension, and every semesiabumption extension is a preferred as-
sumption extension. Furthermore, if there exists at leastatable assumption extension, then every
semi-stable assumption extension is a stable assumpttensian. It also holds that the grounded
assumption extension is a subset of the ideal assumptiensah, which in its turn is a subset of the
eager assumption extension. Formal proofs are provideleimppendix. For now, we observe that
in the context of ABA, semi-stable and eager semantics alledefined and have properties that are
similar to their abstract argumentation variants (as desdrin [4, 5]).

3 Equivalence and Inequivalence

As can be observed from Definition 4 and Definition 3, the weasuagption-based argumentation
works is very similar to the way abstract argumentation wotk fact, there is a clear correspondence
between these approaches, that allows one to convert AB#sions to abstract argumentation ex-
tensions, and vice versa.

Definition 5. Let (£, R,.A,”) be an ABA framework, and letr be the set of all arguments that can
be constructed using this ABA framework.
e We define\sms2Args : 24 — 247 to be a function such thatsms2Args(Asms) = {A € Ar |
A can be constructed based otsms}

e We define\rgs2Asms : 247 — 24 to be a function such thatrgs2Asms(Args) = {a € A | o
is an assumption occurring in aA € Args}

Theorem 6([9]). Let(L,R,.A,") be an ABA framework, and letr be the set of all arguments that
can be constructed using this ABA framework.
1. If Asms C Ais a complete assumption extension, thens2Args(.Asms) is a complete argu-
ment extension, and lrgs C Ar is a complete argument extension, thegs2Asms(Args)
is a complete assumption extension.

2. If Asms C Ais the grounded assumption extension, thens2Args(Asms) is the grounded
argument extension, andifrgs C Ar is the grounded argument extension, thegs2Asms(Args)
is the grounded assumption extension.

3. If Asms C Ais a preferred assumption extension, thens2Args(.Asms) is a preferred argu-
ment extension, and flrgs C Ar is a preferred argument extension, thergs2Asms(Args)
is a preferred assumption extension.

4. If Asms C A s the ideal assumption extension, thems2Args(Asms) is the ideal argument
extension, and ifdrgs C Ar is the ideal argument extension, théngs2Asms(.Args) is the
ideal assumption extension.

5. If Asms C A is a stable assumption extension, thems2Args(Asms) is a stable argument
extension, and iflrgs C Ar is a stable argument extension, thergs2Asms(Args) is a stable
assumption extension.



Proof. Points 2 and 4 have been proved in [9], and point 5 has beergio18, Theorem 13,s0
we only need to prove points 1 and 3.

1, first conjunct: Let.Asms C.Abe a complete assumption extension andllets= Asms2Args(Asms).
The fact that4dsms is conflict-free (that isdsms N Asms™ = ()) means one cannot construct
an argument based adsms that attacks any assumption jisms.> Therefore, one cannot
construct an argument based.dams that attacks any argument based4sms. Hence, Args
is conflict-free (that isArgs N Args™ = ().

The fact that4dsms defends itself means thatsms defends each assumptiontsms. Hence,
Asms defends each argument based4¥ms (each argument inlrgs). That is,.Args defends
itself.

The fact that each assumption defended4syns is in Asms means that each argument whose
assumptions are defended Hyms is in Args. Hence, each argument defendedAys is in
Args.

Altogether, we have observed thdtygs is conflict-free and contains precisely the arguments it
defends. That isdrgs is a complete argument extension.

1, second conjunct: Let Args C Ar be a complete argument extension anddetns = Args2Asms(Args).
Supposedsms is not conflict-free. Then it is possible to construct an axgat based ol sms
(sayA) whose conclusion is the contrary of an assumptiod #ms. A cannot be an element of
Args (otherwiseArgs would not be conflict-free). From the thus obtained fact that Args,
together with the fact thatirgs is a complete argument extension, it follows thays does not
defendA. But this is impossible, becausérgs does defend all assumptions4n Contradic-
tion. Therefore, Asms is conflict-free.

The fact thatdrgs defends itself means that evedye Args is defended byArgs, which im-
plies that every assumption occurring ftrgs is defended byArgs, so everya € Asms is
defended bydsms. Hence, Asms defends itself.

The final thing to be shown is thatsms contains every assumption it defends. Suppdse:s
defendsa € A. This means that for each arguméstwith conclusiona, Asms enables the
construction of an argumeidt that attacksB. The fact that all assumptions @i are found in
arguments fromAdrgs means that is defended byArgs (this is becausedrgs defends all its
arguments). The fact thatrgs is a complete argument extension then implies (hat Arygs.
This means thadrgs defends the argument (say) consisting of the single assumptian
Hence, A € Args, soa € Asms.

Altogether, we have observed thdtms is conflict-free and contains precisely the assumptions
it defends. That isdsms is a complete assumption extension.

3, first conjunct: Let.4sms C A be apreferred assumption extension andllets = Asms2Args(Asms).
From point 1, it then follows thatlrgs is a complete assumption extension. Suppose, towards
a contradiction, thatdrgs is not amaximalcomplete argument extension. Then there exists a
complete argument extensiofrgs’ 2 Args. Let Asms’ = Args2Asms(Args’). It then holds
that Asms’ 2 Asms. Moreover, from point 1 it follows thatlsms’ is a complete assumption

2Please note that our definition of ideal and stable semast&ightly different than in [9, 18] but equivalence is peov
in the appendix.

3We abuse terminology a bit and say that arguméittacks assumption iff the conclusion of4 is @. Similarly, we
say that a set of assumptionsms defends an argument iff it defends each assumption ih, and we say that a set of
argumentsdrgs defends an assumptieniff for each argumenB with conclusiona, there is an argumeid € Args that
attacksB.



extension. But this would mean thdtsms is not amaximalcomplete assumption extension.
Contradiction.

3, second conjunct: Let. Args C Ar be a complete argument extension anddetns = Args2Asms(.Args).
From point 1, it then follows thatlsms is a complete assumption extension. Suppose, towards
a contradiction, thatlsms is not amaximalcomplete assumption extension. Then there exists
a complete assumption extensigdims’ 2 Asms. Let Args’ = Asms2Args(Asms’). It then
holds thatArgs’ 2 Args. Moreover, from point 1 it follows thaidrgs’ is a complete argu-
ment extension. But this would mean thétgs is not amaximalcomplete argument extension.
Contradiction.

O

Proposition 1. When restricted to complete assumption extensions andletagigument extensions,
the functionAsms2Args and Args2Asms become bijections and each other’s inverses.

Proof. Let.Asms be a complete assumption extension andilgts be a complete argument extension.
It suffices to prove statements (1) and (2) below.

1. Args2Asms(Asms2Args(Asms)) = Asms

(a) Supposer € Asms. Then there exists an argumentdne Asms2Args(.Asms) consisting
of a single assumptioa. Thereforep € Args2Asms(Asms2Args(Asms)).

(b) Supposex ¢ Asms (assume without loss of generality thate A). Then there ex-
ists no argument iMsms2Args(Asms) that containse.  Therefore,a ¢ Args2Asms
(Asms2Args(Asms)).

2. Asms2Args(Args2Asms(Args)) = Args.

(a) Supposed € Args. Then all assumptions used i will be in Args2Asms(.Args).
This means thatd can be constructed based angs2Asms(.Args). Therefore,A €
Asms2Args(Args2Asms(Args)).

(b) Supposed ¢ Args (assume without loss of generality that € Ar). The fact that
Args is a complete argument extension implies tHaits not defended bydrgs. There-
fore, there exists an argumeRt € Ar that attacksA, such that4rgs contains noC
that attacksB. Assume, without loss of generality, thBtattacksA by having a conclu-
sion 3, where/ is an assumption used id. Then.Args cannot contain any argument
that uses assumptiof (otherwise, this argument would not be defended agdisto
Args would not be a complete arguments extension). TherefoeeArgs2Asms(Args).
This means thatl cannot be constructed based krgs2Asms(.Args). Therefore,A ¢
Asms2Args(Args2Asms(Arygs))

O

From Proposition 1, together with Theorem 6 and the factelah preferred, grounded, stable,
or ideal extension is also a complete extension, it folldwa tinder complete, grounded, preferred,
stable or ideal semantics, argument extensions and assunegtensions are one-to-one related.

The above results might cause one to believe that similareagons can also be made for other
semantics. Unfortunately, this is not always the case.



Theorem 7. Let (L, R, A,”) be an ABA framework, and letr be the set of all arguments that can
be constructed using this ABA framework.
1. ltisnotthe case that ifdsms C A is a semi-stable assumption extension, then
Asms2Args(Asms) is a semi-stable argument extension, and it is not the casdfttlrgs C
Ar is a semi-stable argument extension, thegs2Asms(Args) is a semi-stable assumption
extension.

2. Itisnotthe case that ifdsms C A is an eager assumption extension, then
Asms2Args(Asms) is an eager argument extension, and it is not the case thétjt C Aris
an eager argument extension, thiergs2Asms(Args) is an eager assumption extension.

Proof. Let F.,1 = (£, R, A,”) be an ABA framework withC = {a, b, ¢, e, o, 8,7, €}, A = {a, 8,7, €},

a=a,f=b7y=c,e=eandR = {ry,rq, 13,714,175} as follows:
ri:oCc+ 7y ro: a<+pf rg: b+ « T4 CH Y, @ r5: e+ €0

The following arguments can be constructed from this ABArfeavork.
Aj, using the single rule;, with conclusionc and supported by}

A,, using the single rules, with conclusiona and supported bys}

As, using the single rules, with conclusionb and supported by}

Ay, using the single ruley, with conclusionc and supported by, o}

As, using the single rules, with conclusione and supported bye, 5}

o A,, Ag, A, and A, consisting of a single assumption 3, v ande, respectively.

These arguments, as well as their attack relation, are shofigure 1.

S

D———@

Figure 1: The argumentation framewadiF,,.; associated with ABA framework,1.

The complete argument extensionsAF,,; are Args; = (), Args, = {A2, Ag}, andArgs; =
{As, Aa, Ac}. The associated complete assumption extensio& gf are Asms, = 0, Asmss =
{B}, and Asms3 = {a,e}. Notice that, as one would expectirgs; = Asms2Args(Asmsi),
Argsy = Asms2Args(Asmsy) andArgs; = Asms2Args(Asmss), aswell asdsms; = Args2Asms(Args; ),
Asmso = Args2Asms(Args,) andAsmss = Args2Asms(Argss).
It holds thatArgs, UArgs] = 0, ArgsyUArgsy = {As, A3, A4, Aa, Ag} andArgss U Argss =
{As, A3, A5, Au, Ap, Ac}, as well asdsms UAsmsT = 0, AsmsaUAsmss = {a, B} andAsmszU
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Asms; = {a, B,€}. Hence,Args, and.Args; are semi-stable argument extensions, whereas only
Asmss is a semi-stable assumption extension. We thus have a cexateple against the claim
that if Args (Args,) is a semi-stable argument extensiotgms = Args2Asms(Args) (Asmss) is a
semi-stable assumption extension.

We also observe that the eager argument extensidngs, whereas the eager assumption exten-
sion isAsms3. Hence, we have a counterexample against the claim thtif is an eager argument
extension themdsms = Args2Asms(Args) is an eager assumption extension, as well as against the
claim that isAsms is an eager assumption extension thérys = Asms2Args(.Asms) is an eager
argument extension.

The only thing left to be shown is thatfsms is a semi-stable assumption extension, tHens =
Asms2Args(Asms) is not necessarily a semi-stable argument extension. ok slightly alter the
ABA framework F.,1 by removing ruler; and the assumption(call the resulting ABA framework
Fez2). Thus the argumentsls and A. no longer exists and hencérgs; = {As, Ay}. As now
Argss U Args3 = {As, A3, Aa, Ag} is a proper subset odlrgs, U Args3 the setdrgss is no longer
semi-stable. On the other side bottsmss, = {8}, and.Asms; = {a} are semi-stable assumption
extensions. O

oy

Figure 2: The argumentation framewadiF, .o associated with ABA framework, ...

4 Discussion

The connection between assumption-based argumentatbakzsiract argumentation has received
quite some attention in the literature. Duagal, for instance, claim that “ABA is an instance of
abstract argumentation (AA), and consequently it inhétstyarious notions of ‘acceptable’ sets of
arguments” [10]. Similarly, Toni claims that “ABA can be se&s an instance of AA, and (...) AAisan
instance of ABA’ [18]. While we agree that this holds fwmeof the admissibility-based semantics
(like preferred and grounded), we have pointed out in theectimpaper that this certainly does not
hold for all admissibility-based semantics (semi-stable and eager® dould argue that claims like
those above are perhaps a bit too general.

Prakken claims that “assumption-based argumentation (ABAa special case of the present
framework [ASPIC+] with only strict inference rules, onlgsamption-type premises and no pref-
erences.” [16]. This claim is later repeated in the work ofddib and Prakken, who state that “A
well-known and established framework is that of assumpgbiased argumentation (ABA) [2], which
(...) is shown (in [16])) to be a special case of the ASPICHiavork in which arguments are built
from assumption premises and strict inference rules onty innwhich all arguments are equally



strong” [15]. However, we observe that the argumentatiaméworks of Figure 1 and Figure 2 are
counterexamples against this claim, in the context of satite and eager semantics. These seman-
tics, being admissibility-based, should work perfectlyefin the context of ASPIC+ (the rationality
postulates of [6] would be satisfied). Nevertheless, cpmedence with ABA does not hold.

A possible criticism against our counter example of Figurs that it uses a ruler{) that is
subsumed by another rule;§. This raises the quesion of whether counter examplesesidt when
no rule subsumes another rule. Our answer is affirmativeplgiadd an assumptiofi and an atom
d such thatd = d, replacer; by c < v, and add another rule:() d < §. For the resulting ABA
theory, the semi-stable assumption extensions still docoatspond to the semi-stable argument
extensions. Hence, the difference between ABA semi-st@bip. ABA eager) and AA semi-stable
(resp. AA eager) can be seen as a general phenomenon, tisatatodepend on whether some rules
are subsumed by others.

Appendix: ABA semantics revisited

As mentioned earlier, the way the various ABA-semanticsdafened in Definition 4 is slightly dif-
ferent from the way these were originally defined in [2, 9]. Wae chosen to describe all ABA-
semantics in a uniform way, based on the notion of complateastics. This has been done not only
for theoretical elegance, but also with an eye to possillerduwork. Ultimately, we would like to
compare the various ABA-semantics to the various logic wgning semantics, which in their turn
can also be described in a uniform way using the concept optaimsemantics (see [8, 3] for details).

We will now proceed to show that our description of ABA-seti@nin Definition 4 is equivalent
to the original description of ABA-semantics in [2, 9]. Wartwith preferred semantics. Notice that
a set of assumptions is calladmissibléff it is conflict-free and defends each of its elements.

Theorem 8. Let F = (£, R, A,”) be an ABA framework. The following two statements are egquiva
lent:
1. Asms is a maximal admissible assumption seffof

2. Asms is preferred assumption extension/ef

Proof. From 1to 2: Let4sms be a maximal admissible assumption set. It follows from [@dllary
5.8] that.Asms is a complete assumption extension. Suppdse.s is notmaximalcomplete. Then
there exists a complete assumption extensiems’ with Asms C Asms’. But since by definition,
every complete assumption extension is also an admissiblegtion set, it holds thatsms’ is an
admissible assumption set. But this would mean that.s is not amaximaladmissible assumption
set. Contradiction.

From 2 to 1: LetAsms be a maximal complete assumption extension. Then by definitlsms is
also an admissible assumption set. We now need to prove thall$o anaximaladmissible assump-
tion set. Suppose this is not the case, then there exists mnalaxdmissible assumption sdtsms’
with Asms C Asms’. It follows from [2, Corollary 5.8] thatdsms’ is also a complete assump-
tion extension. But this would mean thdtsms is not amaximalcomplete assumption extension.
Contradiction. O

The next thing to show is that our description of ideal setcar{Definition 4) coincides with that
in [9]. More specifically, we will show that the notion of are@ assumption extension is equivalent
to that of a maximal ideal assumption set.



Definition 9. Let F = (£, R,.A,”) be an ABA framework. Aidleal assumption sé$ defined as an
admissible assumption set that is a subset of each prefasgdmption extension.

Lemma 1. LetF = (L, R, A,”) be an ABA framework, and letsms;; be a maximal ideal assump-
tion set. It holds thatdsms;, is a complete extension.

Proof. Let . Asms;q be a maximal ideal assumption set. We only need to proveftiatriis;; defends
somea € Athena € Asms;q. Supposedsms;q; defendsa. Then every preferred assumption ex-
tensionAsms, also defends (this follows from.Asms;q C Asms,). As Asms), is also a complete
extension, it follows thatr € Asms,. Hence, is an element of every preferred assumption exten-
sion. Therefore, Asms;q U {a} is a subset of every preferred assumption extension. Anwptd

[2, Theorem 5.7],Asms;q U {a} is also an admissible set. From the fact tHatns;; is amaximal
ideal assumption set, and the trivial observation thatns;,; C Asms;q U {«}, it then follows that
Asms;q = Asms;q U {a}. Thereforep € Asms;q. O

Theorem 10. Let F = (£, R,.A,”) be an ABA framework and letsms C A. The following two
statements are equivalent:
1. Asms is a maximal ideal assumption setBf

2. Asms is an ideal assumption extension®f(in the sense of Definition 4)

Proof. From 1 to 2: LetAsms be a maximal ideal assumption set. It follows from Lemma 1 tha
Asms is a complete assumption extension. Suppdse:s is hot amaximalcomplete assumption
extension that is contained in every preferred assumptibension. Then there exists a complete
assumption extensiad sms’, with Asms C Asms’, that is still contained in every preferred assump-
tion extension. But since, by definition, every completeuagstion extension is also an admissible
assumption set, it holds thatsms’ is an admissible assumption set that is contained in evefgiped
assumption extension. That id,sms’ is an ideal assumption set. But this would mean thaits is
not amaximaladmissible assumption set. Contradiction.

From 2 to 1. Letdsms be an ideal assumption extension. Then, by definitibsms is also an ideal
assumption set. We now need to prove that it is alseaaimalideal assumption set. Suppose this
is not the case, then there exists a maximal ideal assumgginAsms’ with Asms C Asms’. It
follows from Lemma 1 thatdsms’ is also a complete assumption extension. But this would rtiegn
Asms is not amaximalcomplete assumption extension that is contained in evefgped assumption
extension. That isdsms is not an ideal assumption extension. Contradiction. O

We proceed to show that our notion of stable semantics (iefindl) coincides with the notion
of stable semantics in [2].

Theorem 11. Let F = (L, R,.A,”) be an ABA framework, and letsms C A. The following two
statements are equivalent:
1. Asms does not attack itself and attacks eageh} with o € A\ Asms

2. Asms is a stable assumption extension®{in the sense of Definition 4)

Proof. From 1 to 2: Supposgélsms does not attack itself and attacks edet} with oo € A\ Asms.
Then, according to [2, Theorem 5.5},sms is a complete extension. Moreover, the fact tHatns
attacks everfa} with a € A\ Asms means thatdsms U Asms'™ = A, soAsms is a complete
extension with4dsms U Asmst = A. That is, Asms is a stable extension.

From 2to 1: Supposdsms is a stable assumption extension. Thatdsins is a complete assumption
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extension withdsms U Asms™ = A. From the fact thatdsms is a complete assumption extension, it
follows thatAsms N Asms™ = () so.Asms does not attack itself. From the fadtsms U Asmst = A
it follows that.Asms™ = A\ Asms, so.Asms attacks eacla} with a € A\ Asms. O

So far, we have examined our characterization of existind\ABmantics (stable, preferred and
ideal semantics) and found them to be equivalent to what bega stated in the literature. The next
step is to focus on the ABA-semantics that have not yet besedsin the literature (semi-stable
and eager). Our aim is to show that, in the context of ABA, ¢éhemmantics behave in a very similar
way as they do in the context of abstract argumentation. \af¢ with the relation between stable,
semi-stable and preferred semantics.

Theorem 12. Let F = (L, R,.A,”) be an ABA framework. It holds that:
1. every stable assumption extension is also a semi-stablagption

2. every semi-stable assumption extension is also a pesfeassumption extension

3. if there exists at least one stable assumption extentien, the stable assumption extensions
and the semi-stable assumption extensions coincide

Proof. 1. LetAsms be a stable assumption extensionfaf Then, by definition,Asms is a com-
plete assumption extension withsms U Asms™ = A. The fact thatdsms U Asms™ is A
implies that it is maximal (by definition, it cannot be a progeperset ofd). Hence,Asms
is a complete assumption extension wherens U Asms™ is maximal. That is,Asms is a
semi-stable assumption extension.

2. Let Asms be a semi-stable assumption extensioFofThem, by definition,Asms is a com-
plete assumption extension whetemsUAsms™ is maximal. We now show thad sms itself is
also maximal. Suppose there is a complete assumption éxteAsms’ with Asms C Asms’.
Then, from the fact that the -operator is monotonic, it follows thadsms™ C Asms’t. This,
together with the fact thatlsms C Asms’ implies thatdsms U Asms™ C Asms’ U Asms'T.
But that would mean thatdsms is not a semi-stable assumption extension. Contradiction.
Therefore, Asms is a maximal complete assumption extension. Thatigns is a preferred
assumption extension.

3. Suppose there exists at least one stable assumptiorsiextgfd sms,;). The fact that every
stable assumption extension is also a semi-stable asamgtiension has already been proven
by point 1, so the only thing left to prove is that every setabfe assumption extension is
also a stable assumption extension. Matns be a semi-stable assumption extension. Then,
by definition, 4sms is a complete assumption extension whelrens U Asms™ is maximal.
From the fact thatdsms,; is a complete assumption extension withms; U Asms], = A, it
follows that for.4sms U Asms™ to be maximal, it has to he as well. This implies thatdsms
is a stable assumption extension.

]

We proceed to examine the concept of eager semantics in tiextof ABA. Our aim is to show
that the eager assumption extension is unigue. In order smgdwe first need to define the concept of
an eager assumption set. Notice that an eager assumpti@teses to the eager assumption extension
in the same way as an ideal assumption set relates to theasainption extension.

4At least, not in the specific assumption-based ABA-context.
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Definition 13. LetF = (£, R, .A,”) be an ABA framework. Aeager assumption sistdefined as an
admissible assumption set that is a subset of each senté gtaumption extension.

Theorem 14. Let F = (L, R, A,") be an ABA framework. There exists precisely one maximakeage
assumption set.

Proof. We first prove that there exists at least one maximal eagemgson set. This is relatively
straightforward, because there exists at least one eagination set (the empty set), which together
with the fact that that there are only finitely many eager agstion sets (which follows from the fact
that A is finite) implies that there exists at least one maximal eagsumption set.

The next thing to prove is that there exists at most one maxé@ager assumption set. Letsms;

and Asmss be maximal eager assumption sets. From the fact that for sewtirstable assump-
tion extensionAsmsgen,, it holds thatAsms; C Asmsge, and Asmsy C Asmsgen, it follows
that Asms; and. Asms, do not attack each other (otherwigsms,.,,, would attack itself). Hence,
Asmss = Asms; U Asmso does not attack itself. Alsodsmss defends itself, aslsms; and.Asmss
defend themselves. Hencdsmss is an admissible assumption set that is a subset of each semi-
stable assumption extension. Thatygs; is an eager assumption set. Also, from the fact that
Asmss = Asmsi U Asmss, it follows that Asms; C Asmss and. Asmss C Asmss. From the fact
that Asms; and Asmso are maximaleager assumption sets, it then follows thetms; = Asmss
andAsmso = Asmss. Therefore, Asmsy = Asmss. O

Lemma 2. Let F = (L, R, A,") be an ABA framework, and ledsms.,, be the maximal eager
assumption set. It holds thatsms is a complete assumption extension.

Proof. Let Asms.., be a maximal eager assumption set. We only need to provef thatis.,, de-
fends somer € Athena € Asmscqy. SUupposedsms.,, defendsy. Then every semi-stable assump-
tion extensionAsms.,, also defendsy (this follows fromAsmscqg C Asmssem). AS Asms e, is
also a complete assumption extension, it follows that Asmsg.,. Hence« is an element of every
semi-stable assumption extension. Therefot@mns.,, U {a} is a subset of every semi-stable as-
sumption extension. According to [2, Theorem 5A}ms.q,U{a} is also an admissible assumption
set. HenceAsms.q, U {a} is an eager assumption set. From the fact thains.,, is a maximal
eager assumption set, and the trivial observationats.,, C Asmseqy U {a}, it then follows that
Asmseag = Asmseqq U {a}. Thereforep € Asmseqg. O

Theorem 15. Let F = (L, R,.A,”) be an ABA framework and ledsms C .A. The following two
statements are equivalent:
1. Asms is a maximal eager assumption set/of

2. Asms is an eager assumption extensionofin the sense of Definition 4)

Proof. From 1 to 2: LetAsms be a maximal eager assumption set. It follows from Lemma £ tha
Asms is a complete assumption extension. Suppdse:s is hot amaximalcomplete assumption
extension that is contained in every semi-stable assumptitension. Then there exists a complete
assumption extensiodsms’, with Asms C Asms’, that is still contained in every semi-stable as-
sumption extension. But since by definition, every compéetsumption extension is also an admis-
sible assumption set, it holds thdtsms’ is an admissible assumption set that is contained in every
semi-stable assumption extension. That4sms’ is an eager assumption set. But this would mean
that.4sms is not amaximaleager assumption set. Contradiction.

From 2 to 1: Letdsms be an eager assumption extension. Then, by definitiems is also an eager
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assumption set. We now need to prove that it is alsgaaimaleager assumption set. Suppose this
is not the case, then there exists a maximal eager assungaiotsms’ with Asms C Asms’. It
follows from Lemma 2 thatdsms’ is also a complete assumption extension. But this would mean
that Asms is not amaximalcomplete assumption extension that is contained in evenj-stable
assumption extension. That jd,sms is not an eager assumption extension. Contradiction. [

From the above observed fact that the eager assumptiorsextda unigue (just like the ideal and
grounded assumption extensions are unique), togethethetfact that every semi-stable assumption
extension is a preferred assumption extension, and evefgrped assumption extension is a com-
plete assumption extension, it follows that the groundedi@mption extension is a subset of the ideal
assumption extension, which is in its turn a subset of theragsumption extension. Overall, we
observe that in ABA context, semi-stable and eager sensatie well-defined and have properties
that are similar to their abstract argumentation variaatsdescribed in [4, 5]).
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