
An Implementation of Argument-Based
Discussion using aspic-

Martin CAMINADA a,1 Sören UEBIS b

a Cardiff University, Cardiff, UK
b FernUniversität in Hagen, Hagen, Germany

Keywords. argument-based discussion, chatbot, aspic-

An often mentioned advantage of argumentation theory (compared to other
formalisms for non-monotonic reasoning) is that it is based on concepts of human
reasoning. However, quite some of the argumentation semantics are defined in
terms of fixpoints [1] which, although appealing to mathematicians, do not seem
to coincide with how most humans tend to reason in everyday life. In order to
bring argument-based entailment closer to human intuitions, we propose to use
formal discussion as a bridge technology. For this, we are applying argument-
based discussion theory [3] which reformulates argument-based reasoning as the
ability to win a particular type of discussion.2 More specifically, an argument is
in the grounded extension iff a proponent of the argument has a winning strategy
in the Grounded Discussion Game [3].

In the context of abstract argumentation theory, an implementation of the
Grounded Discussion Game (as well as of the Preferred Discussion Game) is
already available [2]. With the current demonstrator, however, we are going one
step further by basing the discussion not on abstract arguments, but on rule-based
arguments that are constructed from an underlying knowledge base. For this, we
base ourselves on the aspic- framework, which is a variant of aspic+ where the
definition of attack is more suitable for interactive applications [4].

Our demonstrator, called abda (Argument-Based Discussion using aspic-)
is written in Python3, does not require any non-standard libraries, and has been
tested to work under both Windows and Linux. The knowledge base is stored
in a file called aspic-rules.txt. The file starts with a number of strict rules
(such as a, b, c -> d), each on its own line. After that comes a blank line,
followed by a number of defeasible rules (such as a, b, c => d [r1] where r1

is the name of the rule, to be used for purposes of undercutting [4]), each on its
own line. These defeasible rules come in blocks consisting of several lines, which
are seperated by blank lines. Defeasible rules in the same block have the same
strength, whereas those in later blocks have a higher strength than those in earlier
blocks. For instance, if the file contains three defeasible rules, followed by a blank

1Corresponding Author. Email: CaminadaM@cardiff.ac.uk
2One of the advantages of [3] above previous approaches (e.g. [6,5]) is that it avoids an

exponential blowup in the number of moves required. We refer to [3] for details.



line, and then two other defeasible rules, then the first three rules have strength
1 and the last two rules have strength 2.

The demonstrator can be started from the command line, and takes as pa-
rameters -wl (to implement the weakest link principle [4]) or -ll (to implement
the last link principle [4]), as well as -do (to implement the democratic order [4])
or -eo (to implement the elitist order [4]).

Once the demonstrator has been started, it is possible to query the infer-
ence engine if a particular statement is justified (that is, if the statement is the
conclusion of an argument in the grounded extension), e.g. warranted car safe.
The system would then reply with either car safe is warranted or car safe

is not warranted. The user can then ask for explanation and start a discussion
with the system, e.g. discuss car safe. If the statement is justified, the system
will assume the role of the proponent and the user the role of the opponent. If
the statement is not justified, the user will assume the role of the proponent and
the system the role of the opponent. As the discussion is sound and complete for
grounded semantics [3], the system is able to play a winning strategy.

At the moment, the arguments played in the game are written in a nested,
machine readable way, as specified by aspic- (a format that is very close to
aspic+). However, in future work we aim to be able to convert between machine
readable (structured) arguments and arguments in (controlled) natural language.
The overall aim is to bring human-to-computer discussion as close as possible to
human-to-human discussion. For instance, when applied to the medical domain,
talking to the system should resemble as much as possible talking to a more senior
colleague.

The source code of abda, together with examples of knowledge bases, can
be downloaded from http://users.cs.cf.ac.uk/CaminadaM/demonstrators.

html

References

[1] P. Baroni, M.W.A. Caminada, and M. Giacomin. An introduction to argumentation se-

mantics. Knowledge Engineering Review, 26(4):365–410, 2011.
[2] R. Booth, M.W.A. Caminada, and B. Marshall. disco: A web-based implementation of

discussion games for grounded and preferred semantics. In S. Modgil, K. Budzynska, and

J. Lawrence, editors, Proceedings of COMMA 2018, pages 453–454. IOS Press, 2018.
[3] M.W.A. Caminada. A discussion game for grounded semantics. In E. Black, S. Modgil, and

N. Oren, editors, Theory and Applications of Formal Argumentation (proceedings TAFA

2015), pages 59–73. Springer, 2015.
[4] M.W.A. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In Simon

Parsons, Nir Oren, Chris Reed, and Federico Cerutti, editors, Computational Models of
Argument; Proceedings of COMMA 2014, pages 209–220. IOS Press, 2014.

[5] S. Modgil and M.W.A. Caminada. Proof theories and algorithms for abstract argumen-
tation frameworks. In I. Rahwan and G.R. Simari, editors, Argumentation in Artificial
Intelligence, pages 105–129. Springer, 2009.

[6] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible

priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.


