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Abstract

In this paper, we prove the correspondence between complete extensions
in abstract argumentation and 3-valued stable models in logic program-
ming. This result is in line with earlier work of [6] that identified the
correspondence between the grounded extension in abstract argumenta-
tion and the well-founded model in logic programming, as well as between
the stable extensions in abstract argumentation and the stable models in
logic programming.

1 Introduction

Dung’s theory of abstract argumentation has been shown to be suitable to ex-
press a whole range of logical formalisms for nonmonotonic reasoning, including
logic programming with weak negation [6]. The main concept in Dung’s theory
is that of an argumentation framework, which is essentially a directed graph
in which the nodes represent arguments and the arrows represent the defeat
relation.

Given such a graph, different sets of nodes can be accepted according to vari-
ous argument based semantics such as grounded, preferred and stable semantics
[6], semi-stable semantics [4] or ideal semantics [7]. Many of these semantics
can be seen as restricted cases of complete semantics; an overview is provided
at the left hand side of Figure 1. The facts that every stable extension is also
a semi-stable extension and that every semi-stable extension is also a preferred
extension has been proved in [4]. The facts that every preferred extension is
also a complete extension and that the grounded extension is also a complete
extension have been stated in [6].

At the right hand side of Figure 1 we find a number of logic programming
semantics. The 3-valued stable semantics in logic programming was introduced
in [14]. It has been used as the basis for describing other semantics in logic
programming such as well-founded model, regular models, stable models and L-
stable models. It has been proved that the well-founded model is also a 3-valued
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Figure 1: An overview of the different semantics

stable model [14]. In [8] it is shown that every L-stable model is also a regular
model, that every regular model is also a 3-valued stable model and that every
(2-valued) stable model is also an L-stable model.

Many of the existing semantics for logic programing can be understood in a
uniform way using argumentation. The overlap between logic programming and
abstract argumentation has been studied by Dung in [6] which shows that the
grounded extension in abstract argumentation corresponds to the well-founded
model in logic programming, and that the stable extensions in abstract argu-
mentation correspond to the stable models in logic programming.

In the current paper we will examine an additional similarity between argu-
mentation theory and logic programming, namely the correspondence between
3-valued stable models in logic programming and complete extensions in ab-
stract argumentation. This correspondence can easily lead to other overlaps
between abstract argumentation semantics and logic programming semantics
since they are both used as basis of defining other semantics in abstract argu-
mentation and logic programming.

The remaining part of this paper is organized in the following way. Section
2 and Section 3 state some preliminaries on argument semantics, argument
labellings and logic programing. Section 4 demonstrates the equivalence between
complete labellings (which coincide with complete extensions [2]) and 3-valued
stable models. Finally in Section 5 we discuss the main results of the paper and
identify some possibilities for further research.

2 Argument Semantics and Argument Labellings

In this section, we briefly restate some preliminaries regarding argument seman-
tics and argument-labellings. For simplicity, we only consider finite argumenta-
tion frameworks.

Definition 1. An argumentation framework is a pair (Ar , att) where Ar is a
finite set of arguments and att ⊆ Ar ×Ar.

We say that argument A attacks argument B iff (A, B) ∈ att . An argumen-
tation framework can be represented as a directed graph in which the arguments
are represented as nodes and the attack relation is represented as arrows.
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Definition 2 (defense / conflict-free). Let (Ar , att) be an argumentation frame-
work, A ∈ Ar and Args ⊆ Ar. Args is conflict-free iff ¬∃A, B ∈ Args : A at-
tacks B. Args defends argument A iff ∀B ∈ Ar : (B attacks A ⊃ ∃C ∈ Args : C
attacks B). Let F (Args) = {A | A is defended by Args}.

Definition 3 (acceptability semantics). Let (Ar , att) be an argumentation frame-
work. A conflict-free set Args ⊆ Ar is called a complete extension iff Args =
F (Args).

The concept of complete semantics was originally stated in terms of sets of
arguments. It is equally well possible, however, to express this concept in terms
of argument labellings. The approach of (argument) labellings has been used by
Pollock [11] and by Jakobovits and Vermeir [10], and has recently been extended
by Caminada [2], Vreeswijk [17] and Verheij [16]. The idea of a labelling is to
associate with each argument exactly one label, which can either be in, out
or undec. The label in indicates that the argument is explicitly accepted,
the label out indicates that the argument is explicitly rejected, and the label
undec indicates that the status of the argument is undecided, meaning that one
abstains from an explicit judgment whether the argument is in or out.

Definition 4. A labelling is a function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and
undec(L) for {A | L(A) = undec}. We say that an argument A is legally in iff
L(A) = in and all the attackers of A are labelled out. We say that an argument
A is legally out iff L(A) = out and there exists an attacker of A which is labelled
in. We say that an argument A is legally undec iff L(A) = undec and there is
no attacker of A that is labelled in and not all the attackers of A are labelled
out.

Definition 5. Let L be a labelling of argumentation framework (Ar , att) and
A ∈ Ar. We say that:

1. A is legally in iff L(A) = in and ∀B ∈ Ar : (B att A ⊃ L(B) = out)

2. A is legally out iff L(A) = out and ∃B ∈ Ar : (B att A ∧ L(B) = in).

3. A is legally undec iff L(A) = undec

and ¬∀B ∈ Ar : (B att A ⊃ L(B) = out)
and ¬∃B ∈ Ar : (B att A ∧ L(B) = in).

We say that an argument A is illegally in iff L(A) = in but A is not legally
in. We say that an argument A is illegally out iff L(A) = out but A is not
legally out. We say that an argument A is illegally undec iff L(A) = out but A
is not legally undec.

Definition 6. An admissible labelling L is a labelling where each argument
that is labelled in is legally in and each argument that is labelled out is legally
out. A complete labelling is an admissible labelling where each argument that
is labelled undec is legally undec.
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We now define two functions that, given an argumentation framework, allow
a set of arguments to be converted to a labelling and vice versa. The function
Ext2Lab(Ar ,att) takes a set of arguments (possibly an extension) and converts it
to a labelling. The function Lab2Ext(Ar ,att) takes an labelling and converts it
to a set of arguments (possibly an extension). Since a labelling is a function, it
is possible to represent the labelling as a set of pairs.

Definition 7. Let (Ar , att) be an argumentation framework, Args ⊆ Ar such
that Args is conflict-free, and L : Ar → {in, out, undec} a labelling. We define
Ext2Lab(Ar ,att)(Args) as {(A, in) | A ∈ Args} ∪ {(A, out) | ∃A′ ∈ Args :
A′attA} ∪ {(A, undec) | A /∈ Args ∧ ¬∃A′ ∈ Args : A′attA}. We define
Lab2Ext(Ar ,att)(L) as {A | (A, in) ∈ L)}.

When the associated argumentation framework is clear, we sometimes simply
write Ext2Lab and Lab2Ext instead of Ext2Lab(Ar ,att) and Lab2Ext(Ar ,att).

It can be proved that the various types of labellings correspond to the various
kinds of argument semantics [2, 5].

Theorem 8. [2] Let (Ar , att) be an argumentation framework. If L is a com-
plete labelling then Lab2Ext(L) is a complete extension. If Args is a complete
extension then Ext2Lab(Args) is a complete labelling.

Proof. Please refer to [3].

When the domain and the range of Lab2Ext are restricted to complete la-
bellings and complete extensions, and the domain and the range of Ext2Lab
are restricted to complete extensions and complete labellings, then the resulting
functions (call them Lab2Ext

r and Ext2Lab
r) are bijective and are each other’s

inverse.

Theorem 9. [2] Let Lab2Ext
r
(Ar ,att) : {L | L is a complete labelling of

(Ar , att)} → {Args | Args is a complete extension of (Ar , att)} be a function
defined by Lab2Ext

r
(Ar ,att)(L) = Lab2Ext(Ar ,att)(L).

Let Ext2Labr
(Ar ,att) : {Args | Args is a complete extension of (Ar , att)} → {L |

L is a complete labeling of (Ar , att)} be a function defined by Ext2Lab
r
(Ar ,att)(Args) =

Ext2Lab(Ar ,att)(Args).
The functions Lab2Ext

r
(Ar ,att) and Ext2Lab

r
(Ar ,att) are bijective and are each

other’s inverse.

Proof. Please refer to [3].

From Theorem 9 it follows that complete labellings and complete extensions
stand in a one-to-one relationship to each other. In essence, complete labellings
and complete extensions are different ways to describe the same concept.
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3 3-Valued Stable Models in Logic Programming

We will first summarize some basic concepts and terminologies in the field of
logic programming.

A logic program is a finite set of rules of the form A← A1, . . . , An, not B1, . . . ,
not Bm, where n, m ≥ 0 and A, Ai, Bj (0 ≤ i ≤ n, 0 ≤ j ≤ m) are atoms. A
is called the head of the rule. A1, . . . , An, not B1, . . . , not Bm is the body of the
rule.

Given a logic program P , AP is the set of all atoms occurring in P . An
interpretation I =< T ; F > for a program P can be viewed as a mapping from
AP to the set of truth values {t, f, u}, denoted by:

I(A) =







t if A ∈ T,
u if A ∈ I
f if A ∈ F

where I = AP −(T ∪F ). t, f, u denote true, false and undefined respectively,
ordered as f < u < t.

Definition 10. [15] Let P be a logic program and 3-valued model M be an
interpretation for P . Then M is a 3-valued model for P if every rule r in
ground(P ) is satisfied by M .

Let P be a logic program and I be any 3-valued interpretation. The GL-
transformation P

I
of P w.r.t. I is obtained by replacing in the body of every

rule of P all negative literals which are true (respectively undefined, false) by t
(respectively u, f). The resulting program P

I
is definite, so it has a least model

J . We define Γ∗(I) = J .

Definition 11. [14] A 3-valued interpretation M of a logic program P is a
3-valued stable model of P if Γ∗(M) = M .

4 Complete Labellings Coincide with 3-Valued

Stable Models

In this section we first transform argumentation frameworks into logic programs
and prove that the complete labellings of an argumentation framework coin-
cide with the 3-valued stable models of the associated logic program (Section
4.1). Then, in Section 4.2 we transform logic programs into argumentation
frameworks and prove 3-valued stable models of a logic program coincide with
complete labellings of the associated argumentation framework.

4.1 Transforming Argumentation Frameworks into Logic

Programs

We use the approach of [9] to transform argumentation frameworks into logic
programs.
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An argumentation framework can be transformed into a logic program by gen-
erating a rule for each argument in the argumentation framework such that the
argument itself is in the head of the rule and the negations of all its attackers
are in the body of the rule.

Definition 12. Let AF = (Ar , att) be an argumentation framework. We define
the associated logic program PAF as follows,
PAF = {A ← not B1, . . . ,not Bn | A, B1, . . . , Bn ∈ Ar (n ≥ 0) and {Bi |
(Bi, A) ∈ att} = {B1, . . . , Bn}}.

We now define two functions that, given an argumentation framework AF ,
allow a labelling to be converted to a 3-valued interpretation of PAF and vice
versa.

Definition 13. Let Labellings be the set of all labellings of AF and Models
be all the 3-valued interpretations of PAF . Let L ∈ Labellings. We intro-
duce a function Lab2Mod : Labellings → Models such that Lab2Mod(L) =<
in(L); out(L) > and Lab2Mod(L) = undec(L).

Definition 14. Let Labellings be the set of all labellings of AF andModels be
all the 3-valued interpretations of PAF . Let I ∈ Models and I =< T, F >. We
define a function Mod2Lab :Models→ Labellings such that in(Mod2Lab(I)) =
T and out(Mod2Lab(I)) = F and undec(Mod2Lab(I)) = I.

When L is a complete labelling of an argumentation framework, then Lab2Mod(L)
is a 3-valued stable model of the associated logic program, as is stated by the
following theorem.

Theorem 15. Let AF = (Ar , att) be an argumentation framework and L be a
complete labelling of AF . Then Lab2Mod(L) is a 3-valued stable model of PAF .

Proof. In order to prove Lab2Mod(L) is a 3-valued stable model of PAF we have
to verify that Lab2Mod(L) is a fixed point of Γ∗. We first examine PAF

Lab2Mod(L)

(the reduct of PAF under Lab2Mod(L)).
Let A← not B1, . . . , not Bn be a rule of PAF (corresponding with an argu-

ment A that has attackers B1, . . . , Bn). We distinguish three cases.

1. A is labelled in by L.
Then from the fact that L is a complete labelling it follows that B1, . . . , Bn

are labelled out by L. The reduct of the rule is therefore A← t, so in the
smallest model of PAF

Lab2Mod(L) , A will be true in Γ∗(Lab2Mod(L)).

2. A is labelled out by L.
Then, from the fact that L is a complete labelling it follows that there is
a Bi (1 ≤ i ≤ n) that is labelled in. The reduct of the rule is therefore
A← v1, . . . , f, . . . , vn (vi ∈ {t, f, u}) which is equivalent to A← f . Since
there is no other rule with A in the head, this means that in the smallest
model of PAF

Lab2Mod(L) , A will be false in Γ∗(Lab2Mod(L)).
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3. A is labelled undec by L.
Then from the fact that L is a complete labelling it follows that not
each B1, . . . , Bn is labelled out by L and there is no Bi (i ≤ i ≤ n)
that is labelled in by L. It also follows that there is at least one Bi

labelled undec. The reduct of the rule is therefore A ←, v1, . . . , u, . . . , vn

(vi ∈ {t, u}). Since this is the only rule that has A in the head, A will be
undefined in Γ∗(Lab2Mod(L)).

Since for any arbitrary argument A, it holds that Lab2Mod(L)(A) = Γ∗(Lab2Mod(L))(A),
it follows that Lab2Mod(L) = Γ∗(Lab2Mod(L)). Hence Lab2Mod(L) is a fixed
point of Γ∗, so Lab2Mod(L) is a 3-valued stable model of PAF .

The next thing to be proved is that when an argumentation framework is
transformed into a logic program, andM is a 3-valued stable model of this logic
program, then Mod2Lab(M) is a complete labelling of the original argumentation
framework.

Theorem 16. Let AF = (Ar , att) be an argumentation framework and M be
a 3-valued stable model of PAF . Then Mod2Lab(M) is a complete labelling of
AF .

Proof. M is a 3-valued stable model of PAF . Then M is a fixed point of Γ∗,
that is Γ∗(M) =M. We now prove that Mod2Lab(M) is a complete labelling
of AF .
Let A be an arbitrary argument in Ar . We distinguish three cases.

1. M(A) = t.
From the fact that Γ∗(M) = M it follows that the reduct of the rule
A ← not B1, . . . , not Bn is equivalent to A ← t. This means that each
Bi (1 ≤ i ≤ n) is labelled out in Mod2Lab(M). So A is legally in in
Mod2Lab(M).

2. M(A) = f .
From the fact that Γ∗(M) = M it follows that the reduct of the rule
A ← not B1, . . . , not Bn is equivalent to A ← f . This implies that there
exists a Bi (1 ≤ i ≤ n) that is labelled in in Mod2Lab(M). So A is legally
out in Mod2Lab(M).

3. M(A) = u.
From the fact that Γ∗(M) = M it follows that the reduct of the rule
A ← not B1, . . . , not Bn is equivalent to A ← u. This implies that there
exists a Bi (1 ≤ i ≤ n) that is undefined in M and that each of the Bj

(1 ≤ j ≤ n, j 6= i) is either false or undefined in M . Hence, A has no
attackers that is labelled in by Mod2Lab(M) and not all its attackers are
labelled out by Mod2Lab(M). Thus A is legally undec in Mod2Lab(M).

Since this holds for any arbitrary argument A, it follows that each argument that
is in is legally in, each argument that is out is legally out, and each argument
that is undec is legally undec. Hence, Mod2Lab(M) is a complete labelling of
AF .
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When Lab2Mod and Mod2Lab are restricted to work only on complete la-
bellings and 3-valued stable models, they turn out to be bijective and each
other’s inverse.

Theorem 17. Let AF = (Ar , att) be an argumentation framework.
Let Lab2Modr : {L | L is a complete labelling of AF} → {M | M is a 3-valued
stable model of PAF } be a function defined by Lab2Mod

r(L) = Lab2Mod(L).
Let Mod2Lab

r : {M | M is a 3-valued stable of model of PAF } → {L | L is a
complete labelling of AF} be a function defined by Mod2Labr(M) = Mod2Lab(M).
Lab2Mod

r and Mod2Lab
r are bijective and are each other’s inverse.

Proof. As every function that has an inverse is bijective, we only need to prove
that Lab2Modr and Mod2Lab

r are each other’s inverse, meaning that (Lab2Modr)−1 =
Mod2Lab

r and (Mod2Labr)−1 = Lab2Mod
r. Let AF = (Ar , att) be an argumen-

tation framework, we prove the following two things:

1. For every complete labelling L of AF
it holds that Mod2Labr(Lab2Modr(L)) = L.
Let L be a complete labelling of AF and A ∈ Ar .
If L(A) = in then A is t in Lab2Mod

r(L),
so Mod2Lab

r(Lab2Modr(L))(A) = in.
If L(A) = out then A is f in Lab2Mod

r(L),
so Mod2Lab

r(Lab2Modr(L))(A) = out.
If L(A) = undec then A is u in Lab2Mod

r(L),
so Mod2Lab

r(Lab2Modr(L))(A) = undec.

2. For every 3-valued stable modelM of PAF

it holds that Lab2Modr(Mod2Labr(M)) =M.
Let M be a 3-valued stable modelM of PAF .
IfM(A) = t then Mod2Lab

r(A) = in,
so A is t in Lab2Mod

r(Mod2Labr(M)).
IfM(A) = f then Mod2Lab

r(A) = out,
so A is f in Lab2Mod

r(Mod2Labr(M)).
IfM(A) = u then Mod2Lab

r(A) = undec,
so A is u in Lab2Mod

r(Mod2Labr(M)).

From Theorem 17, it follows that complete labellings of an argumentation
framework and 3-valued stable models of the associated logic program are one-
to-one related.

4.2 Transform Logic Programs to Argumentation Frame-

works

We show that the complete labellings still coincide with 3-valued stable model
transform if we transform logic programs into argumentation frameworks.

We follow the approach of structured arguments (like is taken in [12, 1, 13])
to do the transformation. The reasons for doing so are discussed in the epilogue.
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Definition 18. Let P be a logic program.

• An argument A based on P is a finite tree of rules from P such that
(1) each node (of the form c ← a1, . . . , an, not b1, . . . , not bm with n ≥
0 and m ≥ 0) has exactly n children, each having a different head ai ∈
{a1, . . . , an} and (2) no rule occurs more than once in any root-originated
branch of the tree. The conclusion of A (Conc(A)) is the head of its root.

• An argument a1 attacks an argument a2 iff a1 has conclusion c and a2 has
a rule containing not c.

We say that argument A is a subargument of argument B iff A is a subtree of
B.

In Definition 18 the reasons for including the condition that each rule occurs
no more than once in each root-originated branch is to make sure that a finite
program will yield a finite number of arguments.1

Definition 19. Let P be a logic program. We define the associated argumen-
tation framework AFP =< Ar , att > where Ar is the set of arguments that can
be constructed using P , and att is the attack relation under P .

We define a strict order on the labels {out, undec, in} such that out <
undec < in.

In order to convert labellings to 3-valued stable interpretations, we define a
function that assigns a label to each atom. The idea is that the label of an atom
should be the label of the “best” argument that yields the atom as a conclusion
(or be out if there is no argument at all that yields this atom as a conclusion).

Definition 20. Let P be a logic program and AP be the set of all ground
atoms that occur in P . Let AFP =< Ar , att > be the associated argumenta-
tion framework and L be a labelling of AFP . We define a function W (L) :
AP → {in, undec, out} such that W (L)(c) = max({L(A) | A ∈ Ar ∧ Conc(A) =
c} ∪ {out}).

We now define two functions that, given a logic program P , allow a 3-valued
interpretation to be converted to a labelling of AFP and vice versa.

Definition 21. LetModels be all the 3-valued interpretations of P and c ∈ AP .
Let Labellings be the set of all labellings of AFP and L ∈ Labellings. We intro-
duce a function Lab2Mod : Labellings→Models such that Lab2Mod(L) =<
T ; F > where

• T = {c | c ∈ AP and W (L)(c) = in};

• F = {c | c ∈ AP and W (L)(c) = out};

• M = {c | c ∈ AP and W (L)(c) = undec}.

1Without this condition the logic program {a ←; a ← a} would yield an infinite number

of arguments.
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Definition 22. LetModels be all the 3-valued interpretation of P and Labellings
be the set of all labellings of AFP . Let M ∈ Models and M =< T, F > and A
be an argument in Ar. We define a function Mod2Lab :Models→ Labellings
such that

1. Mod2Lab(M)(A) = in if for each attacker B of A, Conc(B) ∈ F .

2. Mod2Lab(M)(A) = out if there is an attacker B of A such that Conc(B) ∈
T .

3. Mod2Lab(M)(A) = undec if not each attacker of A has a conclusion that
is in F and there is no attacker B of A such that Conc(B) ∈ T .

When a logic program is transformed into an argumentation framework, and
L is a complete labelling of this argumentation framework, then Lab2Mod(L)
is a 3-valued stable model of the logic program.

Theorem 23. Let P be a logic program and L be a complete labelling of AFP .
Then Lab2Mod(L) is a 3-valued stable model of P .

Proof. LetM = Lab2Mod(L). In order to proveM is a 3-valued stable model
of P we have to verify thatM is a fixed point of Γ∗. We first examine P

M
(the

reduct of P under M).
Let A ∈ Ar and c← a1, . . . , an, not b1, . . . , not bm (n, m ≥ 0) be the root of

A. We distinguish three cases.

1. c ∈ T .
This means that W (L)(c) = in. It follows that there exists an argument
A such that A is labelled in and Conc(A) = c. Then all attackers of A
are labelled out. Let c′ ← a′

1, . . . , a
′
k, not b′1, . . . , not b′l (k, l ≥ 0) be an

arbitrary rule of A. It follows that W (L)(b′j) = out (0 ≤ j ≤ l). Then b′j
is false inM. We prove that all the conclusions of subarguments of A are
true in Γ∗(M) by induction.

• Basis. Let c′′′ ← not b′′′1 , . . . , not b′′′m′′′ (m′′′ ≥ 0) be an arbitrary leaf
in A such that the distance between the leaf and the root of A is
the furthest. The distance between two nodes is the vertical distance
between the two nodes in the direction from root down to leaves.
Since b′′′j′′′ (0 ≤ j′′′ ≤ m′′′) is false in M, then the reduct of the leaf

is c′′′ ← t. So in the least model of P
M

, c′′′ will be true in Γ∗(M).

• Step. Let a′′
1 , . . . , a′′

n′′ (n′′ ≥ 0) be heads of nodes such that the
distance between them and the furthest leaf is n′. Assume that
a′′
1 , . . . , a′′

n′′ are true in Γ∗(M).
Let c′′ ← a′′

i′′ , . . . , a
′′
j′′ , not b′′1 , . . . , not b′′m′′ (0 ≤ i′′, j′′ ≤ n′′, m′′ ≥ 0)

be a node that is n′ + 1 distance from the furthest leaf in the tree of
A. Since b′′1 , . . . , b′′m′′ are false inM and a′′

i′′ , . . . , a
′′
j′′ are true inM,

the reduct of the node is c′′ ← t. So in the least model of P
M

, c′′ will
be true in Γ∗(M).
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So all the conclusions of subarguments of A are true in Γ∗(M). Therefore
in the least model of P

M
, c will be true in Γ∗(M).

2. c ∈ F .
This means that W (L)(c) = out. It follows that for all arguments A
such that Conc(A) = c, A is labelled out. Then there exists an at-
tacker of A that is labelled in. It follows that there exists a rule c′ ←
a′
1, . . . , a

′
k, not b′1, . . . , not b′l (k ≥ 0, l ≥ 1) in A such that W (L)(b′j) =

in (1 ≤ j ≤ l). Then b′j is true inM. Then the reduct of the root of A is

the c← f . So in the least model of P
M

, c will be false in Γ∗(M).

3. c ∈ M.
This means that W (L)(c) = undec. It follows that there exists an argu-
ment A such that Conc(A) = c and L(A) = undec and there is no argu-
ment A such that Conc(A) = c and L(A) = in. Then not each attacker
of A is labelled out and there is no attacker that is labelled in. It follows
that there exists a rule c′′′′ ← a′′′′

1 , . . . , a′′′′
k′ , not b′′′′1 , . . . , not b′′′′l′ (k′, l′ ≥ 0)

in A such that W (L)(b′′′′j ) = undec (1 ≤ j ≤ l′). Then b′′′′j is undefined in
M. Let c′ ← a′

1, . . . , a
′
k, not b′1, . . . , not b′l (k ≥ 0, l ≥ 1) be an arbitrary

rule in A. Since there is no attacker that is labelled in, then for each
b′i (0 ≤ i ≤ l), b′i is not true in M. We prove that the conclusions of
subarguments of A are undefined in Γ∗(M) if they have attackers that are
labelled undec by induction.

• Basis. Let c′′′ ← not b′′′1 , . . . , not b′′′m′′′ (m′′′ ≥ 0) be an arbitrary leaf
in A such that the distance between the leaf and the root of A is the
furthest. Since b′′′j′′′ (0 ≤ j′′′ ≤ m′′′) is either false or undefined inM,
then the reduct of the leaf is c′′′ ← v1, . . . , vm′′′ (vi ∈ {t, u}, 0 ≤ i ≤
m′′′). If the leaf has no attacker that is labelled undec the reduct of
the leaf is c′′′ ← t. So in the least model of P

M
, c′′′ will be true in

Γ∗(M). If the leaf has an attacker that is labelled undec the reduct
of the leaf is c′′′ ← v1, . . . , u, . . . , vm′′′ (vi ∈ {t, u}, 0 ≤ i ≤ m′′′). So
in the least model of P

M
, c′′′ will be undefined in Γ∗(M).

• Step. Let A′′
1 , . . . , A′′

n′′ (n′′ ≥ 0) be subarguments of A and their roots
are n′ distance from the furthest leaf. Let a′′

1 , . . . , a′′
n′′ be conclusions

of A′′
1 , . . . , A′′

n′′ respectively. Assume that a′′
i (0 ≤ i ≤ n′′) is true in

Γ∗(M) if A′′
i does not have an attacker that is labelled undec and a′′

i

is undefined in Γ∗(M) if A′′
i has an attacker that is labelled undec.

Let c′′ ← a′′
i′′ , . . . , a

′′
j′′ , not b′′1 , . . . , not b′′m′′ (0 ≤ i′′, j′′ ≤ n′′, m′′ ≥ 0)

be a node that is n′ + 1 distance from the furthest leaf in the tree of
A. b′′1 , . . . , b′′m′′ are either true or undefined in M and a′′

i′′ , . . . , a
′′
j′′

are either true or undefined in M. Then the reduct of the node is
c′′ ← v1, . . . , vj′′−i′′+1+m′′ (vi ∈ {t, u}, 0 ≤ i ≤ j′′ − i′′ + 1 + m′′). If
there is an attacker that is labelled undec the reduct of the node is
c′′ ← v1, . . . , u, . . . , vj′′−i′′+1+m′′ (vi ∈ {t, u}, 0 ≤ i ≤ j′′ − i′′ + 1 +
m′′). So in the least model of P

M
, c′′ will be undec in Γ∗(M) if the

subargument has an attacker that is labelled undec.
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A has an attacker that is labelled undec and A is a subargument of A.
Then in the least model of P

M
, c will be undefined in Γ∗(M).

Since for any arbitrary atom c, it holds that M(c) = Γ∗(M)(c), it follows
that M = Γ∗(M). Hence M is a fixed point of Γ∗, so M is a 3-valued stable
model of P .

WhenM is a 3-valued stable model of a logic program, thenMod2Lab(M)
is a complete labelling of the associated argumentation framework, as is stated
by the following theorem.

Theorem 24. Let P be a logic program and M =< T ; F > be a 3-valued
stable model of P . Let L = Mod2Lab(M) and c be a ground atom. Then L
is a complete labelling of AFP such that W (L)(c) = in if c ∈ T , W (L)(c) =
out if c ∈ F and W (L)(c) = undec if c ∈ M.

Proof. M is a 3-valued stable model of P . ThenM is a fixed point of Γ∗, that is
Γ∗(M) =M. Let A be an argument in Ar . We now prove that L is a complete
labelling of AFP . We distinguish three cases.

1. L(A) = in.
According to Definition 22, for each attacker B of A, Conc(B) ∈ F . Let
c ← a1, . . . , am, not b1, . . . , not bn be the root of B. Then c ∈ F . From
the fact that Γ∗(M) =M it follows that reduct of the rule is equivalent
to c← f . Then there exists a rule c′ ← a′

1, . . . , a
′
k, not b′1, . . . , not b′l (k ≥

0, l ≥ 1) in B such that there is a b′j ∈ T (1 ≤ j ≤ l). It follows that
B has an attacker whose conclusion is in T which implies B is labelled
out. Since this holds for an arbitrary attacker B of A it follows that each
attacker of A is labelled out. So A is legally in in Mod2Lab(M).

2. L(A) = out.
According to Definition 22, there exists an attacker B of A such that
Conc(B) ∈ T . Then from the fact that Γ∗(M) = M it follows that the
reduct of the root of B is Conc(B)← t. Let c← a1, . . . , am, not b1, . . . , not bn

be the root of B and c′ ← a′
1, . . . , a

′
k, not b′1, . . . , not b′l (k, l ≥ 0) be an

arbitrary rule of B. So c ∈ T and c ← t. Then for all b′j (0 ≤ j ≤ l),
b′j ∈ F . It follows that the conclusions of all attackers of B are in F which
implies B is labelled in. So A is legally out in Mod2Lab(M).

3. L(A) = undec.
According to Definition 22, there is no attacker of A that has a conclusion
that is in T and not all attackers of A have a conclusion that is in F .

(a) Assume there is an attacker B of A that is labelled in. Let c ←
a1, . . . , am, not b1, . . . , not bn (m, n ≥ 0) be the root of B and c′ ←
a′
1, . . . , a

′
k, not b′1, . . . , not b′l (k, l ≥ 0) be an arbitrary rule of B.

According to Definition 22, the conclusion of each attacker of B is
false in M. Then for all b′j (0 ≤ j ≤ l), b′j ∈ F . So the reduct of the
root of B is equivalent to c ← t. From the fact that Γ∗(M) =M it
follows that c ∈ T . Contradiction.
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(b) Assume all attackers of A are labelled out. Let B be an arbi-
trary attacker of A and c ← a1, . . . , am, not b1, . . . , not bn be the
root of B. According to Definition 22, there exists an attacker of
B whose conclusion is true in M. Then there exists a rule c′ ←
a′
1, . . . , a

′
k, not b′1, . . . , not b′l (k ≥ 0, l ≥ 1) in B such that there is a

b′j ∈ T (1 ≤ j ≤ l). Then the reduct of the root of B is equivalent to
c← f . From the fact that Γ∗(M) =M it follows that c ∈ F . Then
each attacker of A has a conclusion that is in F . Contradiction.

Therefore there is no attacker of A that is labelled in and not all attackers
of A are labelled out. So A is legally undec in Mod2Lab(M).

Since this holds for any arbitrary argument A, it follows that each argument that
is in is legally in, each argument that is out is legally out, and each argument
that is undec is legally undec. Hence, L is a complete labelling of AFP .

The next things to be proved is that (1) if c ∈ T then W (L)(c) = in, (2) if
c ∈ F then W (L)(c) = out and (3) if c ∈M then W (L)(c) = undec.

1. If c ∈ T .
From the fact that Γ∗(M) =M it follows that there is a rule whose reduct
is equivalent to c ← t. Let this rule be the root of an argument A which
implies that Conc(A) = c. Let c ← a1, . . . , am, not b1, . . . , not bn (m, n ≥
0) be the root of A and c′ ← a′

1, . . . , a
′
k, not b′1, . . . , not b′l (k, l ≥ 0) be an

arbitrary rule of A. Then for all b′j (0 ≤ j ≤ l), b′j ∈ F . It follows that the
conclusions of all attackers of A are in F which implies that A is labelled
in. So L(A) = in = max({L(A′) | A′ ∈ Ar ∧ Conc(A′) = c} ∪ {out}).
Then W (L)(c) = in.

2. If c ∈ F .
From the fact that Γ∗(M) = M it follows that each rule with c in the
head has the reduct c ← f . Let A ∈ Ar be an arbitrary argument such
that Conc(A) = c and c ← a1, . . . , am, not b1, . . . , not bn (m, n ≥ 0) be
the root of A. Then the reduct of the root of A is equivalent to c ← f .
Then there exists a rule c′ ← a′

1, . . . , a
′
k, not b′1, . . . , not b′l (k ≥ 0, l ≥ 1)

in A such that there is a b′j ∈ T (1 ≤ j ≤ l). It follows that A has
an attacker whose conclusion is in T which implies A is labelled out. It
follows that each argument A such that Conc(A) = c is labelled out. So
L(A) = out = max({L(A′) | A′ ∈ Ar ∧ Conc(A′) = c} ∪ {out}). Then
W (L)(c) = out.

3. If c ∈ M then there is no rule whose reduct is c ← t and there is a
rule whose reduct is c ← u. It follows that there is no argument A such
that Conc(A) = c is labelled in and there is an argument A such that
Conc(A) = c is labelled undec. So L(A) = undec = max({L(A′) | A′ ∈
Ar ∧ Conc(A′) = c} ∪ {out}). Then W (L)(c) = undec.
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When Lab2Mod and Mod2Lab are restricted to work only on complete
labellings and 3-valued stable models, they turn out to be bijective and each
other’s inverse.

Theorem 25. Let P be a logic program and AFP be the associated argumenta-
tion framework.
Let Lab2Modr : {L | L is a complete labelling of AFP } → {M | M is a 3-
valued stable model of P} be a function defined by Lab2Modr(L) = Lab2Mod(L).
Let Mod2Labr : {M | M is a 3-valued stable of model of P} → {L | L is a
complete labelling of AFP } be a function defined byMod2Labr(M) =Mod2Lab(M).
Lab2Modr and Mod2Labr are bijective and are each other’s inverses.

Proof. As every function that has an inverse is bijective, we only need to prove
that Lab2Modr andMod2Labr are each other’s inverses. That is (Lab2Modr)−1 =
Mod2Labr and (Mod2Labr)−1 = Lab2Modr. Let AFP = (Ar , att) be an ar-
gumentation framework, we prove the following two things:

1. For every 3-valued stable modelM of P it holds that
Lab2Modr(Mod2Labr(M)) =M.
Let M be a 3-valued stable modelM of P .
If M(c) = t then W (Mod2Labr)(c) = in (Theorem 24), so c is true in
Lab2Modr(Mod2Labr(M)).
If M(c) = f then W (Mod2Labr)(c) = out (Theorem 24), so c is false in
Lab2Modr(Mod2Labr(M)).
IfM(c) = u then W (Mod2Labr)(c) = undec (Theorem 24), so c is unde-
fined in Lab2Modr(Mod2Labr(M)).

2. For every complete labelling L of AFP it holds that
Mod2Labr(Lab2Modr(L)) = L.
Let L be a complete labelling of AFP and let A ∈ Ar .
If L(A) = in then each attacker of A is labelled out. Let B be an arbitrary
attacker of A and Conc(B) = b, then L(B) = out = max({L(B′) | B′ ∈
Ar∧Conc(B′) = b}∪{out}). Then W (L)(b) = out. So Lab2Modr(L)(b) =
f . Then for each attacker B of A, Conc(B) = b is false in Lab2Modr(L). It
follows from Definition 22 that A is labelled in inMod2Labr(Lab2Modr(L)).
So Mod2Labr(Lab2Modr(L))(A) = in.

If L(A) = out then there is an attacker B of A that is labelled in. Let
Conc(B) = b, then L(B) = in = max({L(B′) | B′ ∈ Ar ∧Conc(B′) = b}∪
{out}). Then W (L)(b) = in. So Lab2Modr(L)(b) = t. Then there is an
attacker B of A such that Conc(B) = b is true in Lab2Modr(L). It follows
from Definition 22 that A is labelled out in Mod2Labr(Lab2Modr(L)).
So Mod2Labr(Lab2Modr(L))(A) = out.

If L(A) = undec then there is an attacker B of A that is labelled undec

and there is no attacker of A that is labelled in. Let Conc(B) = b, then
L(B) = undec = max({L(B′) | B′ ∈ Ar ∧ Conc(B′) = b} ∪ {out}). Then
W (L)(b) = undec. So Lab2Modr(L)(b) = u. Then there is an attacker B
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of A such that Conc(B) = b is undefined in Lab2Modr(L).
Assume there is an attacker C of A such that Conc(C) is true in Lab2Modr(L).
Let Conc(C) = b′, then W (L)(b′) = in. It follows that in = max({L(B′) |
B′ ∈ Ar ∧ Conc(B′) = b′} ∪ {out}). Then there is an attacker (C) of A
such that Conc(C) = b′ and L(C) = in. Then from the fact that L is a
complete labelling it follows that L(A) = out. Contradiction.
So there is no attacker of A has a conclusion that is true in Lab2Modr(L)
and not each attacker of A has a conclusion that is false in Lab2Modr(L).
So Mod2Labr(Lab2Modr(L))(A) = undec.

From Theorem 17 and Theorem 25, it follows that complete labellings and
3-valued stable models are one-to-one related. Since Theorem 9 states that
complete extensions and complete labellings are one-to-one related, it follows
that complete extensions, complete labellings and 3-valued stable models are
different ways of describing essentially the same concept.

5 Discussion

The result presented in this paper shows that the complete labellings are se-
mantically equivalent to 3-valued stable models.

We transformed argumentation frameworks into logic programs and proved
that the complete labellings of an argumentation framework coincide with 3-
valued stable models of the associated logic programs. We can obtain the same
correspondence between complete labellings and 3-valued stable models if we
transform logic programs into argumentation frameworks. Since complete ex-
tensions and complete labellings are one-to-one related, complete extensions and
3-valued stable models stand in a one-to-one relationship to each other. There-
fore, complete extensions and 3-valued stable models express the same concept
in different ways.

Since complete extensions and 3-valued stable models are both used as
bases for describing other semantics in abstract argumentation and logic pro-
gramming, the currently proved equivalence between complete semantics and
3-valued stable model semantics could perhaps be used to prove other equiva-
lences as well, between argumentation and logic programming semantics.

One particular topic for further study would for instance be the possible cor-
respondence between the semi-stable extensions in abstract argumentation [4]
and the L-stable models [8] in logic programming. Once established this equiv-
alence would allow for algorithms and complexity results that were found for
argumentation under semi-stable semantics to be applied to logic programming
under the L-stable model approach.
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Epilogue

In section 4.2, the transformation from logic programming to argumentation was
done using arguments that have an internal structure. This internal structure
was then used to determine the attack relationship. This approach is conforming
with Dung’s argumentation theory, which is after all about abstract argumenta-
tion systems, meaning that it is a meta-theory of argumentation that abstracts
from specific aspects of the underlying object level argumentation formalisms.
In particular, it abstracts from the internal structure of the arguments and
the nature of the attack relation. These need to be specified in order for the
Dung-style argumentation theory to be “instantiated” into a full object-level
argumentation formalism.

In this paper, we have chosen to do the translation from logic programming
to argumentation using an instantiated object-level argumentation formalism.
An interesting question is whether one could also perform the translation purely
at the abstract level. In some cases, this would actually be possible, by applying
the procedure of Section 4.1 in reverse order. Recall that the translation from
argumentation to logic programming (Definition 12) produces a logic program
where the arguments are represented by atoms such that each atom occurs in
the head of exactly one rule, and the body of each rule consists of only weakly
negated atoms. So if we have a logic program with these properties, we can
directly transform it back into an argumentation framework. The problems
begin when some atoms occur in the head of more than one rule (or in the head
of no rule at all) or when the body of a rule contains non-negated atoms. One
could, however, devise a program transformation that transforms a “general”
logic program into the shape that is required for further transformation into an
argumentation framework. Such a translation could be done by adding extra
atoms to a logic program to deal with the non-negated atoms in the bodies of
the rules and the occurrences of atoms in the heads of more than one rule. More
specifically, this could be done in the following way. First, we would translate
each rule containing non-negated literals in the body, like

c← a1, . . . , an, not b1, . . . , not bm

by replacing it by a rule

c← not a∗

1, . . . , not a∗

n, not b1, . . . , not bm

and adding the additional rules

a∗

i ← not ai (1 ≤ i ≤ n)

This yields a new program in which each rule contains only weakly negated
literals in the bodies. The next step is to deal with literals that occur in the
head of more than one rule. Suppose there are n rules (n ≥ 2) with atom c in
the head:

c← not ai,1, . . . , not ai,m (1 ≤ i ≤ n)
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a a*

b* b

Figure 2: Argumentation framework associated with logic program P

Then replace these rules by

ci ← not ai,1, . . . , not ai,m (1 ≤ i ≤ n)

and add the rule
c∗∗ ← not c1, . . . , not cn

as well as the rule
c← not c∗∗

Similarly, for each atom c occurring in the program, but not in the head of any
clause, add a clause

c∗∗ ←

as well as a clause
c← not c∗∗

This yields a program in which each literal is the head of exactly one rule, and
in which the body of each rule consists only of weakly negated atoms. Such
a program can be directly translated into an argumentation framework by the
reverse process of Definition 12. This transformation takes place entirely on the
abstract argumentation level, without the need for instantiated arguments.

The problem, however, is that the thus described transformation process,
although intuitive, does not preserve the original meaning of the logic program,
at least not from the perspective of the 3-valued stable model semantics. To see
why things fail, consider the following logic program P.
a← b
b← a
In the 3-valued stable model semantics, this program has only one model:
< ∅; {a, b} >. However, the translation process yields the following program.
a← not b∗

b∗ ← not b
b← not a∗

a∗ ← not a
This program can then be translated into the argumentation framework of Fig-
ure 2.

The program has three 3-valued stable models: < {a, b}; {a∗, b∗} >, <
{a∗, b∗}; {a, b} > and < ∅, ∅ >. Only the second model corresponds with the
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meaning of the original program. Therefore the transformation process is not
meaning-preserving, at least not from the perspective of the 3-valued stable
model semantics.

Although one cannot rule out the existence of another transformation process
that is meaning-preserving, such a process is likely to be more complex than the
process described above. Our approach of instantiated arguments (Section 4.2)
avoids these problems by using abstract argumentation the way it is intended:
as a meta-level theory that is capable of describing instantiated argumentation
formalisms by abstracting from some of their properties.
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