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Argumentation Semantics

as Formal Discussion

Martin Caminada

abstract. In the current chapter, we interpret a number of main-
stream argumentation semantics by means of structured discussion. The
idea is that an argument is justified according to a particular argumen-
tation semantics iff it is possible to win a discussion of a particular type.
Hence, different argumentation semantics correspond to different types of
discussion. Our aim is to provide an overview of what these discussions
look like, and their formal correspondence to argumentation semantics.

1 Introduction

The term “argumentation”, when used in an informal way, calls upon intuitions

of arguments being exchanged in some kind of interactive discussion. Yet, the

notion of discussion plays a relatively limited role in abstract argumentation

theory, which mainly focuses on various principles (called “argumentation se-

mantics”) for selecting nodes from a graph. As such, there seems to be quite

a gap between (abstract) argumentation theory as described in much of the

literature,1 as it occurs in everyday life.2

In order to address this gap, attempts have been made to express argumen-

tation semantics in terms of structured discussion. More precisely, the idea

is that an argument is accepted w.r.t. a particular argumentation semantics

iff it is possible to successfully defend the argument using a particular kind of

discussion. In the current chapter we provide an overview of what the differ-

ent kinds of discussion are, and how they formally relate to their associated

argumentation semantics.

Although the discussion protocols (which we will often refer to as “discus-

sion games”) can serve as proof procedures of their associated argumentation

semantics, their potential application is much wider than that. One could for

instance use the discussion games for the purpose of human computer inter-

action. Suppose a knowledge-based system has determined that a particular

argument (say, about how to treat a patient) should be accepted, and com-

municates this to its user (say, a doctor). When the user asks why this is the

1
As for instance described in chapters 4 (“Abstract argumentation frameworks and their

semantics”), 5 (“Abstract dialectical frameworks”), 6 (“Abstract rule-based argumentation”)

9 (“A review of argumentation based on deductive arguments”) and 19 (“Argumentation,

nonmonotonic reasoning and argumentation and logic”) of this volume.
2
As for instance described in Chapter 12 (“Processing natural language argumentation”)

of this volume.
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case, what should probably be avoided is a highly technical answer of the form

“because the argument is in the minimal fixpoint of monotonic function F”.3

Instead, one would like the user to critically question the answer,4 and be able

to utter counter arguments to see whether these are properly addressed (by

the system providing counter counter arguments). As an example of such a

human-computer discussion, consider the following dialogue:

System: The patient is best off with medicine X, because this is the most ef-

fective.

User: But the patient is diabetic, for which medicine X could have side effects.

System: Recent studies have shown that these side effects are relatively minor.

So instead of the system immediately providing the full justification for its an-

swer (say, by providing the entire grounded extension) in engages in a discussion

with its user. Ideally, such a discussion should be “natural” in the sense that

the human-computer interaction looks as much as possible as human-human

interaction (say, if the doctor were to discuss the case with a more senior col-

league).

Apart from being natural, the discussion should also be sound and complete.

That is, the ability to win the discussion for a particular argument (that is,

to have a winning strategy for the argument in the discussion game) should

coincide with the argument being justified according to a pre-defined argu-

mentation semantics. Soundness and completeness imply that if the system

provides an answer (“argument A is (or is not) justified according to a par-

ticular argumentation semantics”) the system can successfully defend itself in

the discussion with the user. When this discussion is also perceived as natural

by the user, this will hopefully increase the user’s confidence in the system’s

answer.

Soundness and completeness also imply that what we are looking for are

essentially proof procedures for particular argumentation semantics. Several of

these have been stated in the literature. Inclusion in the current book chapter

is done based on two criteria:

(1) does the discussion game have any link with natural discussion concepts,

like described in philosophy or linguistics?

(2) is the discussion game such that it guarantees the absence of any expo-

nential blowups, in either time or space?

Criterion (1) is the reason why for instance we have not included any discussion

games for sceptical preferred semantics (like those of Doutre and Mengin [2004]

and Dung and Thang [2007]). Criterion (2) is the reason why we did not include

a detailed treatment of tree-based discussion games (like those of Prakken and

Sartor [1997], Caminada [2004], Modgil and Caminada [2009] and Dung et al.

3
which basically says the argument is in the grounded extension.

4
See for instance Chapter 11 (“Argumentation schemes”) of this volume.
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[2007]).5

The remaining part of this chapter is structured as follows. First, in Section 2

we briefly recall some basic definitions and results from abstract argumentation

theory. Then, in Section 3 we describe a discussion game for (credulous) pre-

ferred semantics [Caminada et al., 2014], and explain that it contains aspects

of Socratic discussion. Then, in Section 4 we briefly state how this discussion

game can be reapplied in the context of ideal semantics [Caminada et al., 2014].
In Section 5 we subsequently describe a discussion game for stable semantics
[Caminada and Wu, 2009], basically by making minor modifications to the ear-

lier described discussion game for (credulous) preferred semantics. In Section 6

we then describe a different discussion game in the context of grounded seman-

tics [Caminada, 2015a] and explain its relationship with persuasion dialogue.

Then, in Section 7 we briefly examine tree-based discussion games and explain

one of their main disadvantages: the possibility of an exponential blowup in

time or space. We round off with a discussion in Section 8.

2 Formal Preliminaries

In the current section, we briefly recall some basic definitions from abstract

argumentation theory.6 For current purposes, we restrict ourselves to finite

argumentation frameworks.

Definition 1 (argumentation framework) An argumentation framework

is a pair (Ar , att) where Ar is a finite set of entities called arguments and
att is a binary relation on Ar.

Given an argumentation framework (Ar , att), A,A′ ∈ Ar and Args, Args ′ ⊆
Ar , we say that (1) A attacks A′ iff (A,A′) ∈ att , (2) A attacks Args iff A
attacks some argument in Args, (3) Args attacks A iff some argument in Args
attacks A, and (4) Args attacks Args ′ iff some argument in Args attacks some

argument in Args ′.

Definition 2 (preliminaries, extension-based) Let (Ar , att) be an argu-
mentation framework. A set Args ⊆ Ar is conflict-free iff Args does not attack
itself. A set Args ⊆ Ar defends A ∈ Ar iff for each B ∈ Ar that attacks A, it
holds that Args attacks B.

Definition 3 (admissibility, extension-based) Let (Ar , att) be an argumen-
tation framework. A set Args ⊆ Ar is admissible iff Args is conflict-free and
each A ∈ Args is defended by Args.

Definition 4 (strong admissibility, extension-based) Let (Ar , att) be an
argumentation framework. A set Args ⊆ Ar is strongly admissible iff each

5
How tree-based discussion games can lead to an exponential blowup is explained in

Section 7.
6
We refer Chapter 4 (“Abstract argumentation frameworks and their semantics”) of this

volume for a more thorough discussion.
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Figure 1. An argumentation framework to illustrate strong admissibility.

A ∈ Args is defended by some Args ′ ⊆ Args \ {A} which in its turn is again
strongly admissible.

It has been proved that each strongly admissible set is conflict-free as well

as admissible [Baroni and Giacomin, 2007; Caminada, 2014].

As an example, consider the argumentation framework of Figure 1. Here, the

set {A,C} is strongly admissible as A is defended by ∅ ⊆ {A,C}\{A} which is

trivially strongly admissible, and C is defended by {A} ⊆ {A,C} \ {C} which
is strongly admissible (as A is defended by ∅ ⊆ {A} \ {A}). The set {G},
however, is admissible but not strongly admissible as G is not defended by any

subset of {G} \ {G}.

Definition 5 (completeness, extension-based) Let (Ar , att) be an argu-
mentation framework. A set Args ⊆ Ar is a complete extension iff Args is
conflict-free and the set of arguments defended by Args is equal to Args.

Definition 6 (semantics, extension-based) Let (Ar , att) be an argumen-
tation framework. A set Args ⊆ Ar is called

1. a grounded extension iff Args is the minimal (w.r.t. ⊆) complete exten-
sion

2. a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

3. a stable extension iff Args is a complete extension that attacks each ar-
gument in Ar \ Args

4. an ideal extension iff Args is the maximal (w.r.t. ⊆) complete extension
that is not attacked by any complete extension

We recall that each argumentation framework has precisely one grounded

extension, precisely one ideal extension, one or more preferred extensions and

zero or more stable extensions.

The above definition describes grounded, preferred, stable and ideal seman-

tics uniformly in terms of complete semantics. However, for our purposes it is

sometimes useful to describe these semantics in terms of (strong) admissibility.
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Theorem 1 (semantics, extension-based) Let (Ar , att) be an argumenta-
tion framework. A set Args ⊆ Ar is

1. a preferred extension iff Args is a maximal (w.r.t. ⊆) admissible set

2. a grounded extension iff Args is the maximal (w.r.t. ⊆) strongly admis-
sible set

3. a stable extension iff Args is an admissible set that attacks each argument
in Ar \ Args

4. an ideal extension iff Args is the maximal (w.r.t. ⊆) admissible set that
is not attacked by any admissible set

Apart from the extension-based view on argumentation semantics, there is

also the labelling-based view [Caminada, 2006; Caminada and Gabbay, 2009;

Caminada, 2011; Baroni et al., 2011] of which we now provide a brief overview.

Definition 7 (preliminaries, labelling-based) Let (Ar , att) be an argumen-
tation framework. An argument labelling is a function Lab : Ar → {in, out,
undec}. We define in(Lab) as {A ∈ Ar | Lab(A) = in}, out(Lab) as {A ∈
Ar | Lab(A) = out} and undec(Lab) as {A ∈ Ar | Lab(A) = undec}.
We sometimes write a labelling as a triple (in(Lab), out(Lab), undec(Lab)).
If Lab1 and Lab2 are labellings, we write Lab1 ⊑ Lab2 when in(Lab1) ⊆
in(Lab2) and out(Lab1) ⊆ out(Lab2). Moreover, we write Lab1 ≈ Lab2 when
in(Lab1) ∩ out(Lab2) = ∅ and out(Lab1) ∩ in(Lab2) = ∅.

Definition 8 (admissibility, labelling-based) Let Lab be a labelling of ar-
gumentation framework (Ar , att). Lab is called an admissible labelling iff for
each A ∈ Ar it holds that

1. if Lab(A) = in then for each B ∈ Ar that attacks A it holds that Lab(B) =

out

2. if Lab(A) = out then there exists a B ∈ Ar that attacks A such that
Lab(B) = in

In order to define strong admissibility in the context of argument labellings,

we first need to introduce the concept of a min-max numbering.

Definition 9 (min-max numbering) Given an admissible labelling Lab of
argumentation framework (Ar , att), a min-max numbering is a functionMMLab :

in(Lab) ∪ out(Lab) → N ∪ {∞} such that for each A ∈ in(Lab) ∪ out(Lab) it
holds that

• if Lab(A) = in thenMMLab(A) = max({MMLab(B) | B attacks A and
Lab(B) = out}) + 1 (with max(∅) defined as 0)
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• if Lab(A) = out then MMLab(A) = min({MMLab(B) | B attacks A
and Lab(B) = in}) + 1 (with min(∅) defined as ∞)

It can be proved that each admissible labelling has a unique min-max num-

bering [Caminada, 2014].7

Definition 10 (strong admissibility, labelling-based) Let Lab be a label-
ling of argumentation framework (Ar , att). Lab is called a strongly admissible

labelling iff it is an admissible labelling whose associated min-max numbering
yields natural numbers only (so no argument is numbered ∞).

From Definition 10 it trivially follows that each strongly admissible labelling

is also an admissible labelling.

As an example, consider the argumentation framework shown in Figure 1.

Here Lab1 = ({A,C,E,G}, {B,D,H}, {F}) is an admissible labelling with as-

sociated min-max numbering MMLab1 = {(A : 1), (B : 2), (C : 3), (D : 4), (E :

5), (G:∞), (H :∞)}, which implies that Lab1 is not strongly admissible. Fur-

thermore, Lab2 = ({A,C,E}, {B,D,F}, {G,H}) is an admissible labelling

with associated min-max numbering MMLab2 = {(A : 1), (B : 2), (C : 3), (D :

4), (E : 5), (F : 2)}, which implies that Lab2 is indeed a strongly admissible

labelling.

Definition 11 (completeness, labelling-based) Let Lab be a labelling of
argumentation framework (Ar , att). Lab is called a complete labelling iff for
each A ∈ Ar it holds that

1. if Lab(A) = in then for each B ∈ Ar that attacks A it holds that Lab(B) =

out

2. if Lab(A) = out then there exists a B ∈ Ar that attacks A such that
Lab(B) = in

3. if Lab(A) = undec then not for each B ∈ Ar that attacks A it holds that
Lab(B) = out and there does not exist a B ∈ Ar that attacks A such that
Lab(B) = in

Definition 12 (semantics, labelling-based) Let (Ar , att) be an argumen-
tation framework. A labelling Lab is called

1. a grounded labelling iff it is the minimal (w.r.t. ⊑) complete labelling

2. a preferred labelling iff it is a maximal (w.r.t. ⊑) complete labelling

7
The min-max numbering can be constructed in an iterative way, starting from the un-

numbered in-labelled arguments without attackers (these are numbered 1), then the unnum-

bered out-labelled arguments that are attacked by these (these are numbered 2), etc. When

a particular iteration provides no new argument numbers, the remaining unnumbered in and

out-labelled arguments are numbered ∞. See the work of Caminada [2014] for details.
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3. a stable labelling iff it is a complete labelling with undec(Lab) = ∅

4. an ideal labelling iff it is the maximal (w.r.t. ⊑) complete labelling that
is compatible (≈) with every complete labelling

We recall that each argumentation framework has precisely one grounded

labelling, precisely one ideal labelling, one or more preferred labellings and

zero or more stable labellings.

The above definition describes grounded, preferred, stable and ideal seman-

tics in terms of complete labellings. However, it is sometimes useful to be able

to describe these semantics in terms of (strong) admissibility, similar to what

was done earlier for the extension-based semantics.

Theorem 2 (semantics, labelling-based) Let (Ar , att) be an argumenta-
tion framework. A labelling Lab is called

1. a preferred labelling iff it is a maximal (w.r.t. ⊑) admissible labelling

2. a grounded labelling iff it is the maximal (w.r.t. ⊑) strongly admissible
labelling

3. a stable labelling iff it is an admissible labelling with undec(Lab) = ∅

4. an ideal labelling iff it is the maximal (w.r.t. ⊑) admissible labelling that
is compatible (≈) with every admissible labelling

To be able to easily switch between the labelling-based approach and the

extension-based approach, we introduce two functions Lab2Ext and Ext2Lab,

such that for an admissible labelling Lab, Lab2Ext(Lab) is defined as in(Lab),
and for an admissible set Args, Ext2Lab(Args) is defined as (Args, {A ∈ Ar | A
is attacked by Args}, {A ∈ Ar | A ̸∈ Args and A is not attacked by Args})
where Ar is the set of all arguments in the argumentation framework. It holds

that if Lab is a (strongly) admissible labelling (resp. a complete, grounded, pre-

ferred, stable or ideal labelling) then Lab2Ext(Lab) is a (strongly) admissible

set (resp. a complete, grounded, preferred, stable or ideal extension). It also

holds that if Args is a (strongly) admissible set (resp. a complete, grounded,

preferred, stable or ideal extension) then Ext2Lab(Args) is a (strongly) ad-

missible labelling (resp. complete, grounded, preferred, stable or ideal la-

belling). Moreover, when restricted to complete (or resp. grounded, pre-

ferred, stable or ideal) extensions and labellings, the functions Lab2Ext and

Ext2Lab become bijections that are each other’s inverses [Caminada, 2006;

Caminada and Gabbay, 2009].

The above results imply that:

• in order to determine whether an argument is in a preferred extension, it

suffices to determine whether the argument is labelled in by an admissible

labelling
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• in order to determine whether an argument is in the grounded extension,

it suffices to determine whether the argument is labelled in by a strongly

admissible labelling

• in order to determine whether an argument is in a stable extension, it

suffices to determine whether the argument is labelled in by an admissible

labelling without undec

• in order to determine whether an argument is in the ideal extension, it

suffices to determine whether the argument is labelled in by an admissible

labelling that is compatible with every admissible labelling

In the sections that follow, we will apply the above observations to provide

discussion games for preferred, grounded, stable and ideal semantics.

3 Preferred Semantics

In the current section, we describe the discussion game for preferred semantics

as stated by Caminada et al. [2014].8 The idea of the preferred discussion game

is to show membership of a preferred extension by constructing an admissible

labelling where the argument in question is labelled in.

The preferred discussion game has two players which we will refer to as M

and S. Player M starts; his task is to defend the fact that he has a reasonable

position (admissible labelling) in which a particular argument is accepted (la-

belled in). Player S then tries to confront M with the consequences of M’s own

position, and asks for these consequences to be resolved. Player M is successful

if he is able to address all the issues pointed out by player S, without being led

to a contradiction.

As an example of how such a discussion can take place, consider the argu-

mentation framework of Figure 2.

A

B
C

D

E

Figure 2. An argumentation framework

Here, the player M can win the discussion game for argument D in the

following way.

8
The discussion game of Caminada et al. [2014] consists of a labelling-based reinterpre-

tation of the work of Vreeswijk and Prakken [2000].
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Example 1
M: in(D)

“I have an admissible labelling in which D is labelled in.”

S: out(C)
“But then in your labelling it must also be the case that

D’s attacker C is labelled out. Based on which grounds?”

M: in(B)

“C is labelled out because B is labelled in.”

S: out(A)
“But then in your labelling it must also be the case that

B’s attacker A is labelled out. Based on which grounds?”

M: in(B)

“A is labelled out because B is labelled in.”

As is shown in the above example, the discussion moves of player M are

statements that particular arguments are labelled in in M’s labelling. The

moves of player S, on the other hand, are meant to confront M with the con-

sequences of his own position: “if you think that argument X is labelled in

then you must also hold that X’s attacker Y is labelled out in your labelling.”

That is, by uttering out(Y ), player S points out that player M is implicitly

committed to the fact that Y should be rejected. This means that player M

has to explain why Y should be rejected. That is, the moves of player S can

be seen as questions about why a particular argument Y should be labelled

out. The moves of player M (except his first move) can then be interpreted as

the answers to the questions of player S. Each answer follows directly to the

question raised by player S. That is:

Each move of M (except the first) contains an attacker of the argument in
the directly preceding move of S. (1)

Every time player M claims that an argument is labelled in, player S should

be given the opportunity to state that as a consequence of this, player M is

implicitly committed that all attackers of the argument are labelled out. The

problem, however, is that each move of player S is a statement about just one
argument. In order to deal with this problem, player S should be given the op-

portunity to react on the same in-labelled argument several times, each time

confronting player M with a different out-labelled argument. This means that

player S should be allowed to react not just on the immediately preceding move

of player M, but on any previous move of player M.

Each move of player S contains an attacker of an argument contained in some
(not necessarily the directly preceding) move of player M. (2)

Another issue is whether player S should be allowed to repeat his own moves.

Recall that each move essentially contains a question (“Based on which grounds
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is argument Y labelled out?”). At the moment player S repeats one of his

moves, this question has already been answered by player M, so there is no

good reason to ask again. In order to avoid the discussion from going round in

circles, it does not make sense to allow player S to repeat his moves.

Player S is not allowed to repeat his moves. (3)

On the other hand, Example 1 does illustrate the need for player M to be

able to repeat his moves (like in(B)). This is because some of the questions of

S (like “why is argument C out” and “why is argument A out”) can have the

same answer (“because argument B is in”).

Player M is allowed to repeat his moves. (4)

The argumentation framework of Figure 2 can also be used for an example

of a game won by player S:

Example 2
M: in(E)

“I have an admissible labelling in which E is labelled in.”

S: out(D)

“But then in your labelling it must be the case that E’s

attacker D is labelled out. Based on which grounds?”

M: in(C)
“D is labelled out because C is labelled in.”

S: out(E)

“But then in your labelling it must be the case that C’s at-
tacker E is labelled out. This contradicts with your earlier

claim that E is labelled in.”

The above example illustrates that when player S manages to use an argu-

ment uttered previously by player M, player S has won the game. After all, if

player M claims an argument to be in and player S subsequently manages to

confront player M with the fact that in M’s own position, the same argument

should be labelled out, then player S has successfully pointed out a contradic-

tion in M’s position.

If player S uses an argument previously used by player M, then player S wins
the discussion game. (5)

One can ask a similar question regarding what happens when player M uses one

of the arguments previously used by player S. The fact that player S performed

an out move means that the argument must be labelled out in the labelling

of player M. If player M then subsequently claims that the same argument is

labelled in, then he has directly contradicted himself.
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If player M uses an argument previously used by player S, then player S wins
the discussion game. (6)

There also exists a third condition under which player S wins the game. This

is when player M is unable to answer one of the questions of S. This can be the

case when there exists no attacker against an argument uttered by player S.

Hence, player S asks why a particular argument is labelled out but player M is

unable to come up with any attacker to be labelled in. In that case, player M

has lost the game, for not being able to answer the critical questions of player S.

If player M cannot make a move any more, player S wins the discussion game.
(7)

Similarly, one might examine what happens when it is player S who cannot

make a move any more. This essentially means that player S has run out of

questions. All possible relevant questions have already been asked; all relevant

issues have already been raised. Moreover, player M has managed to answer all

questions in a satisfactory way. Therefore, player M has survived the process

of critical questioning, hence winning the discussion.

If player S cannot make a move any more, player M wins the discussion game.
(8)

A

B

C

Figure 3. An argumentation framework with floating attack

As a last illustration of how the discussion game functions, consider the

argumentation framework of Figure 3. Argument C is not in any admissible

set. It is illustrative to see what happens if player M tries to defend C.
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Example 3
M: in(C)

“I have an admissible labelling in which C is labelled in.”

S: out(A)
“But then in your labelling C’s attacker A must be labelled

out. Based on which grounds?”

M: in(B)

“A is labelled out because B is labelled in.”

S: out(B)

“But from the fact that you hold C to be in, it follows that

C’s attacker B must be labelled out. This contradicts with

your earlier claim that B is labelled in.”

The above example illustrates the need for player S to be able to respond

not only to the immediately preceding move, but to any past move of player

M; in the example, out(B) is a response to in(C). This is because, as we have

mentioned before, for an argument to be labelled in, all its attackers have to

be out, so player S may need to respond to a move of player M with more than

one countermove.

When putting observations (1) to (8) together, we obtain the following de-

scription of the discussion game

Definition 13 Let (Ar , att) be an argumentation framework. A preferred dis-
cussion is a sequence of moves [∆1,∆2, . . . ,∆n] (n ≥ 0) such that:

• each move ∆i (1 ≤ i ≤ n) where i is odd is called an M-move and is of
the form in(A), where A ∈ Ar

• each move ∆i (1 ≤ i ≤ n) where i is even is called an S-move and is of
the form out(A), where A ∈ Ar

• for each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move
∆j = in(B) (j < i) such that A attacks B

• for each M-move ∆i = in(A) (3 ≤ i ≤ n) it holds that ∆i−1 is of the
form out(B), where A attacks B

• there exist no two S-moves ∆i and ∆j with i ̸= j and ∆i = ∆j

A preferred discussion [∆1,∆2, . . . ,∆n] is said to be finished iff (1) there exists
no ∆n+1 such that [∆1,∆2, . . . ,∆n,∆n+1] is a preferred discussion, or there
exists an M-move and an S-move containing the same argument, and (2) no
subsequence [∆1, . . . ,∆m] (m < n) is finished. A finished preferred discussion
is won by player S if there exist an M-move and an S-move containing the same
argument. Otherwise, it is won by the player making the last move (∆n).

The soundness and completeness of the game described above is stated in

the following theorem.
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Theorem 3 ([Caminada and Wu, 2009; Caminada et al., 2014])
Let (Ar , att) be an argumentation framework and A ∈ Ar.

1. If there exists a preferred discussion for A that is won by player M, then
there exists a preferred extension that contains A.

2. If there exists a preferred extension that contains A then player M has a
winning strategy9 for the preferred discussion game.

The correctness of Theorem 3 can be seen as follows. As for point 1, it has

to be observed that what the game essentially does is to build an admissible

labelling of which the in-labelled arguments coincide with the M-moves and

the out-labelled arguments coincide with the S-moves (all the other arguments

are labelled undec). The resulting labelling is well-defined in the sense that no

argument is labelled both in and out (otherwise there would be an argument

that is subject to both an M-move and an S-move, in which case player S

would have won the discussion). Moreover, the fact that player M wins the

discussion also means that he made the last move, which implies that (i) each

out-labelled argument has an in-labelled attacker. Also, the fact that player

S cannot move anymore implies that (ii) each in-labelled argument has all its

attackers labelled out. From (i) and (ii) it follows that the labelling yielded by

the game is indeed an admissible one, satisfying the conditions of Definition 8.

In this admissible labelling, argument A is labelled in (since A was the subject

of the first M-move). This implies that A is element of an admissible set, and

therefore also element of a preferred extension.

As for point 2, it should be mentioned that the fact that A is in a preferred

extension by definition implies that A is in an admissible set (Args), which then

implies that A is labelled in by an admissible labelling Lab = Ext2Lab(Args).
This makes it possible for player M to win the game simply by staying within

the borders of admissible labelling Lab. That is, as long as player M only plays

arguments that are labelled in by Lab, each move of player S has to be an

argument that is labelled out by Lab, which then implies that player M can

always react with an argument that is labelled in by Lab, etc. If player M

follows such a strategy, there will never be an M-move and an S-move for the

same argument (this is because Lab is a well-defined labelling, meaning that

no argument is labelled both in and out). Moreover, the fact that player S

cannot repeat himself means that the game has to finish in a finite number of

moves. As player M can always react on a move of player S, this means that

the last move has to be an M-move. Hence, player M wins the game.

From points 1 and 2 together, it follows that if there is at least one preferred

discussion that is won by player M, then M has a winning strategy for the

preferred discussion game. This is not the case in alternative discussion games

9
Winning strategy in the sense of [Caminada et al., 2014, Definition 5.6]. Informally this

means that player M has a way of winning the discussion, regardless of what moves player S

decides to play.
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for preferred semantics, like the one described by Modgil and Caminada [2009].

In their approach, a single discussion game does not prove membership (for

this, the presence of a winning strategy is really necessary). From informal

perspective, this is rather odd, as in everyday life the aim of a (persuasion)

discussion is to convince the other party in a single discussion. This means

that at the end of the discussion, the other party has to have heard sufficient

evidence to accept the main claim. This is the case in the above described

preferred discussion game, but not in the alternative discussion game of Modgil

and Caminada [2009].

As we have observed, an admissible labelling can serve as a “roadmap” for

winning the preferred discussion game.10 However, an argument can be labelled

in by more than one admissible labelling, which raises the question of which

admissible labelling to choose as a basis to play the game. It can be verified

that given an admissible labelling Lab (with Lab(A) = in and out(Lab) being
minimal w.r.t. set inclusion) the number of moves required in the game for

main argument A is 2 · |out(Lab)|+ 1 (see [Caminada et al., 2014] for details).
Hence, in order to be able to finish the game in as few moves as possible

(which could be desirable from the perspective of human-computer interaction

if the aim of the game is to convince a human user) one should try to find an

admissible labelling Lab where |out(Lab)| is minimal. This is a computationally

hard problem, as even verifying whether a particular admissible labelling has

this property is coNP complete [Caminada et al., 2014].

The essential nature of the preferred discussion game is that of critically

questioning a particular position, and to see whether the proponent of this

position (player M) can avoid being led to a contradiction (by player S). As

such, the preferred discussion game bears a close resemblance to the concept

of Socratic discussion, as well as to its modern variants like critical interviews

or cross-examinations in court.11 The general idea is to have somebody take

a position and then iteratively confront him (through questioning) with what

appears to be the consequences of this position, in the hope of ultimately

leading him to a contradiction. We refer to the work of Caminada et al. [2014]

for a details.

4 Ideal Semantics

An ideal set of arguments, as was originally defined by Dung et al. [2007], is

an admissible set that is a subset of each preferred extension. It can be proved

that the maximal ideal set (commonly known as the ideal extension) is unique
and is a complete extension as well.

An alternative but equivalent way of characterising the ideal extension is as

the maximal admissible set that is not attacked by any admissible set (like is

done in Theorem 1) or as the maximal complete extension that is not attacked

10
For details, we refer to the work of Caminada et al. [2014].

11
In fact, in the work of Caminada et al. [2014] player S stands for Socrates and player M

stands for Menexenus, which is one of Socrates’s historic discussion partners.
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by any complete extension (like is done in Definition 6). It can be proved that

for each admissible sets Args1 and Args2 it holds that Args1 attacks Args2 iff

Args2 attacks Args1. This gives rise to the labelling-based descriptions of ideal

semantics of Theorem 2 and Definition 12.12

For current purposes, our characterisation of the ideal extension is as the

maximal admissible set that is not attacked by any admissible set. To deter-

mine membership of the ideal extension, one then needs to find an admissible

set (although not necessarily the maximal one) that contains the argument in

question and is not attacked by any admissible set. This makes it possible

to express ideal semantics using the preferred discussion game. Basically, the

discussion whether an argument is in an ideal extension consists of two phases.

In the first phase, one runs the preferred discussion game, as is described in the

previous section. This is to determine whether the argument is in an admissi-

ble set. Then, in the second phase of the discussion, one needs to determine

whether this set is attacked by another admissible set. This is done by again

running the preferred discussion game for each of the arguments that were re-

jected (labelled out) during the first phase of the discussion, this time trying

to defend (label in) the argument.

As an example, consider again the argumentation framework of Figure 2.

Now consider the question of whether argument D is in an ideal set. The first

phase of the discussion would be like Example 1 (page 495). Then, in the

second phase of the discussion, one has to try to find an argument that was

labelled out during the first phase13 (say A) and can be defended in a new

preferred discussion game. Such a game would be as follows.

M: in(A)
“I have a reasonable position (admissible labelling) in which
A is accepted (labelled in).”

S: out(B)

“Then in your position, argument B must be rejected (la-
belled out). Based on which grounds?”

M: in(A)
“B is rejected (labelled out) because A is accepted (labelled
in).”

Hence, we have an admissible set {A} that attacks the admissible set {B,D}
found during the first phase, so the admissible set {B,D} of the first phase is

not an ideal set.14

The overall procedure for ideal semantics puts an extra burden on the pro-

ponent of the argument. Not only does he have to win the preferred discussion

game in the first phase, but he has to win it in such a way15 that the resulting

12
Recall that each complete extension (labelling) is also an admissible set (labelling).

13
Recall that the preferred game is such that the out-labelled arguments are the attackers

of the in-labelled arguments (which is not necessarily the case for admissible labellings in

general).
14

In fact, for the argumentation framework of Figure 2, the only ideal set is the empty set.
15

Since an argument can be element of more than one admissible set, there can be different
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position (labelling) cannot be argued against in the second phase.

5 Stable Semantics

In the current section, we describe a discussion game for credulous stable se-

mantics based on the work of Caminada and Wu [2009]. Before doing so, it

may be illustrative to see why the preferred discussion game does not work for

stable semantics. Consider again the argumentation framework of Figure 2.

Even though A is in an admissible set and in a preferred extension ({A}), A
is not in a stable extension. To see why A is in an admissible set, consider the

following discussion:

M: in(A) “I have an admissible labelling where A is labelled in.”

S: out(B) “Then in your labelling, argument B must be labelled out. Based

on which grounds?”

M: in(A) “B is labelled out because A is labelled in.”

The point is, however, that once it has been decided that A is labelled in and

B is labelled out, it is not possible anymore to label the remaining arguments

such that final result will be a stable labelling. This can be seen as follows.

Suppose C is labelled in. Then E must be labelled out, so D should be la-

belled in, which means that C would be labelled out. Contradiction. Similarly,

suppose that C is labelled out. Then E must be labelled in, so D should be

labelled out, so C should be labelled in. Again, contradiction.

In general, there are many ways to characterize a stable extension [Caminada

and Gabbay, 2009]. For our purposes, the most useful characterization is that

of an admissible set which attacks every argument that is not in it (Theorem

1). When one translates this to labellings, one obtains an admissible labelling

where each argument is labelled either in or out (that is, no argument is

labelled undec, Theorem 2).

It appears that a discussion game for stable semantics requires an additional

type of move: question. To illustrate the role of this new move, imagine

a politician being interviewed for TV. At first the discussion may be about

financial matters (say, whether the banking system should be nationalized).

Then, the discussion may be about the consequences of the politician’s opinion

(“If you accept to nationalize the banks, then you must reject the possibility

to improve healthcare, because there will not be enough money left to do so.”).

However, at some moment, the interviewer could choose to totally change topic

(“By the way, what are your opinions about abortion?”). It is this change of

topic that is enabled by the question move.16

For the discussion game for stable semantics, we use the question move to

ways to win the preferred discussion game.
16

One of the reasons the question move is needed is because stable semantics does not

satisfy the property of directionality [Baroni and Giacomin, 2007]. This means that for

determining the status of an argument, not just the “ancestors” (the attackers, the attackers

of these attackers, etc) are relevant but also the “offspring” (the attacked, the attacked of the

attacked, etc) as well as arguments from unconnected parts of the graph. See also Chapter

16 (“The principle-based approach to abstract argumentation semantics”) of this volume.
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involve those arguments that have never been uttered before so that we are able

to label all the arguments in Ar . By questioning an argument (question(A)),
player S (the opponent) asks player M (the proponent) to give an explicit

opinion on whether A should be labelled in or out. If player M thinks that A
should be labelled in then he should respond with in(A). If, on the other hand,

player M thinks that A should be labelled out then he should respond with

in(B) where B is a attacker of A. The discussion game for stable semantics

can thus be described as follows:

• Player M (the proponent) and player S (the opponent) take turns. Player

M starts.

• Each move of player S is either of the form out(A), where A is a attacker

of some (not necessarily the directly preceding) move of player M, or of

the form question(A), where A is an argument that has not been uttered

in the discussion before (by either player M or player S).

• The first move of player M is of the form in(A), where A is the main

argument of the discussion. The following moves of player M are also of

the form in(A) although A no longer needs to be the main claim. If the

directly preceding move of player S is of the form out(B) then A is a

attacker of B. If the directly preceding move of player S is of the form

question(B) then A is either equal to B or a attacker of B.

• Player S is not allowed to repeat any of his out moves.

• Player M is allowed to repeat his own in moves.

Player S wins if there is an argument A that has been subject to both an in

move (by player M) and an out move (by player S). Otherwise, the discussion

continues until one of the players cannot move anymore, in which case the

discussion is won by the player making the last move.

To illustrate the use of the discussion game, consider the argumentation

framework depicted in Figure 4.

A B C D

Figure 4. Another argumentation framework

Suppose player M would like to start a discussion about A.
M: in(A) “I have a stable labelling in which A is labelled in.”

S: out(B) “Then in your labelling, A’s attacker B must be labelled out. Based

on which grounds?”

M: in(A) “B is labelled out because A is labelled in.”
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S: question(C) “What about C?”
M: in(C) “C is labelled in.”

S: out(D) “Then C’s attacker D must be labelled out. Based on which

grounds?”

M: in(C) “D is labelled out because C is labelled in.”

Player M wins the discussion, since player S cannot move anymore.

The above example also shows that the outcome of a discussion may depend

on player M’s response to a question move. For instance, if player M would have

replied to question(C) with in(D), then he would have lost the discussion,

since player S would then move out(D).

As an example of a discussion that cannot be won by player M, consider the

discussion for argument B. This discussion has to be lost by player M since the

argumentation framework of Figure 4 has only one stable extension: {A,C},
which does not include B.

M: in(B) “I have a stable labelling in which B is labelled in.”

S: out(A) “Then in your labelling, B’s attacker A must be labelled out. Based

on which grounds?”

M: in(B) “A is labelled out because B is labelled in.”

S: question(C) “What about C?”
M: in(D) “C is labelled out because its attacker D is labelled in.”

S: out(D) “Then D’s attacker D (itself) must be labelled out. Contradiction.”

Player M would still have lost the discussion if he had responded to question(C)
with in(C) instead of with in(D). This is because then player S would have

reacted with out(B) and would therefore still have won the discussion.

Formally, the stable discussion game can be described as follows.

Definition 14 Let (Ar , att) be an argumentation framework. A stable discus-

sion is a sequence of moves [∆1,∆2, . . . ,∆n] (n ≥ 0) such that:

• each ∆i (1 ≤ i ≤ n) where i is odd (which is called an M-move) is of the
form in(A), where A ∈ Ar.

• each ∆i (1 ≤ i ≤ n) where i is even (which is called an S-move) is of the
form out(A) where A ∈ Ar, or of the form question(A) where A ∈ Ar.

• For each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move
∆j = in(B) (j < i) where A attacks B.

• For each M-move ∆i = in(A) (3 ≤ i ≤ n) it either holds that (1) ∆i−1 =

out(B) where A attacks B, or (2) ∆i−1 = question(B) where either
A = B or A attacks B.

• For each S-move ∆i = out(A) (1 ≤ i ≤ n) there does not exist an S-move
∆j = out(A) with j < i.

• For each S-move ∆i = question(A) (1 ≤ i ≤ n) there does not exist any
move ∆j (j < i) of the form in(A), out(A) or question(A).
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• For each M-move ∆i = in(A) (1 ≤ i ≤ n) there does not exist an S-move
∆j = out(A) with j < i.

A stable discussion [∆1,∆2, . . . ,∆n] is said to be finished iff (1) there exists no
∆n+1 such that [∆1,∆2, . . . ,∆n,Mn+1] is a stable discussion, or there exists
an M-move in(A) and an S-move out(A) for the same argument A, and (2)
no subsequence [∆1, . . . ,∆m] (m < n) is finished. A finished stable discussion
is won by player S if there exists an M-move in(A) and an S-move out(A) for
the same argument A. Otherwise it is won by the payer making the last move
∆n.

It turns out that an argument is in at least one stable extension iff the

proponent can win the stable discussion game for it.

Theorem 4 Let (Ar , att) be an argumentation framework and A ∈ Ar.

1. If there exists a stable discussion for A that is won by player M, then A
is in a stable extension.

2. If A is in a stable extension, then player M has a winning strategy for the
stable discussion game.

As for point 1, it can be observed that what the discussion game essentially

does is to build a stable labelling Lab with in(Lab) = {A | there exists an

M-move in(A)} and out(Lab) = {A | there exists an S-move out(A)} ∪ {A |
there exists an S-move question(A) that was responded to with in(B) where

B attacks A}. It can be verified that Lab is an admissible labelling without any

argument being labelled undec. Hence, Lab is a stable labelling in the sense

of Theorem 2. As A is labelled in by Lab (since A is the subject of the first

M-move) it holds that A is in Lab2Ext(Lab). Hence, A is in a stable extension.

As for point 2, it should be mentioned that player M can win the game simply

by staying within the borders of the stable labelling Lab = Ext2Lab(Args)
(with Args being the stable extension that contains A, the argument that the

discussion will start with). That is, as long as player M only plays arguments

that are labelled in by Lab, each out move of player S will be labelled out by

Lab, which then implies that player M can always react with an argument that

is labelled in by Lab, etc. Moreover, when player S does a question(A) move,

either A itself or an attacker of A is labelled in by Lab, which again means

that player M can always respond with an argument that is labelled in by Lab.
As the argumentation framework is finite and player S cannot repeat himself,

it follows that the game will finish in a finite number of moves. As player M

can always react to the moves of player S, this means that the last move has

to be an M-move. Hence, player M wins the game.17

Definition 14 describes the discussion game for credulous stable semantics

(that is, it can used to determine whether an argument is in at least one stable

17
A more elaborate proof can be found in [Caminada and Wu, 2009].
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extension). It is, however, relatively straightforward to re-apply this game in

the context of sceptical stable semantics (that is, to determine whether an

argument is in every stable extension). The idea is that an argument A is in

each stable extension iff no attacker of A is in any stable extension. So in order

to determine whether A is in every stable extension, one could try to play the

stable discussion game for each attacker of A. If for none of these attackers the
discussion game can be won, argument A is in each stable extension.

6 Grounded Semantics

So far, we have mainly focussed on the preferred discussion game and its slightly

modified variants for ideal and stable semantics. In the current section we will

focus on a fundamentally different type of discussion game, in the context of

grounded semantics.

One of the main differences between the preferred discussion game and the

grounded discussion game to be introduced in the current section is a con-

ceptual one. To properly understand this difference, it is useful to take the

perspective of complete labellings. We recall that a complete labelling (Defi-

nition 11) is a labelling where one has reasons for each argument one accepts

(because all its attackers are rejected), reasons for each argument one rejects

(because it has an attacker that is accepted), and reasons for each argument one

abstains from having an explicit opinion about (because there are insufficient

grounds to accept it and insufficient grounds to reject it). As such, a complete

labelling can be seen as a reasonable position on how to evaluate the conflict-

ing information represented in the argumentation framework. The preferred

discussion game determines whether an argument is accepted (labelled in) by

at least one such reasonable position.18 The grounded discussion game, to be

introduced in the current section, determines whether an argument is accepted

(labelled in) by every such reasonable position.19 That is, from the perspective

of complete labellings, the preferred discussion game is about whether an argu-

ment can be accepted, whereas the grounded discussion game is about whether

an argument has to be accepted.

The difference between determining whether an argument can be accepted

and whether an argument has to be accepted is reflected in the nature of

the associated discussion game. If the discussion is merely about whether

an argument can be accepted (that is, about whether there exists a reason-

able position in which the argument is accepted) then arguing against this

means pointing out that any position in which the argument is accepted is

somehow not reasonable. That is, the opponent tries to lead the proponent

of such a position towards a contradiction.20 Hence, the admissible discus-

18
This is because an argument is labelled in by some admissible labelling iff it is labelled

in by some complete labelling.
19

This is because an argument is labelled in by the grounded labelling iff it is labelled in

by every complete labelling.
20

like saying, “if you think that argument X is labelled in, then it follows that X’s attacker

Y should be labelled out, but previously you claimed that Y should be labelled in.”
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sion game has at least some properties of Socratic discussion [Caminada, 2008;

Caminada et al., 2014]. If, on the other hand, the discussion is about whether

an argument has to be accepted (that is, about whether the argument is ac-

cepted in each reasonable position) then the discussion gets a totally different

nature. If an argument is accepted in each reasonable position, then in particu-

lar one’s discussion partner, by being reasonable, should accept the argument.

So the discussion becomes one of trying to convince the discussion partner

that he has to accept a particular argument. That is, the discussion partner

should be shown that by being reasonable, he cannot avoid having to accept

the argument in question. As such, the nature of the discussion becomes that

of persuasion dialogue [Walton and Krabbe, 1995].

Now that the conceptual difference between the preferred discussion game

and the grounded discussion game has been explained, we will take a closer look

at the technical differences. Although the preferred discussion game is used

to determine membership of a preferred extension, it does so by determining

membership of an admissible set (labelling).21 This has the advantage of not

having to construct the entire preferred extension (labelling), as constructing

an admissible set (labelling) will be sufficient. Similarly, although the grounded

discussion game is used to determine membership of the grounded extension,

it does so by determining membership of a strongly admissible set (labelling)
[Baroni and Giacomin, 2007; Caminada, 2014].22 This has the advantage of not

having to construct the entire grounded extension (labelling) as constructing a

strongly admissible set (labelling) will be sufficient.

The grounded discussion game [Caminada, 2015a; Caminada, 2015b] that we

will described in the current section has two players (proponent and opponent)

and is based on four different moves, each of which has an argument as a

parameter.

HTB(A) (“A has to be the case”)

With this move, the proponent claims that A has to be labelled in by

every complete labelling, and hence also has to be labelled in by the

grounded labelling.

CB(B) (“B can be the case, or at least cannot be ruled out”)

With this move, the opponent claims that B does not have to be labelled

out by every complete labelling. That is, the opponent claims there

exists a complete labelling where B is labelled in or undec, and that B
is therefore not labelled out by the grounded labelling.

CONCEDE (A) (“I agree that A has to be the case”)

With this move, the opponent indicates that he now agrees with the

21
Recall that an admissible set (labelling) can always be extended to a preferred extension

(labelling), as a preferred extension (labelling) is a maximal admissible set (labelling).
22

Recall that a strongly admissible set (labelling) can always be extended to the grounded

extension (labelling), as the grounded extension (labelling) is the maximal strongly admissible

set (labelling) (see Theorem 2 and the work of Baroni and Giacomin [2007] and Caminada

[2014].
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proponent (who previously did an HTB(A) move) that A has to be the

case (labelled in by every complete labelling, including the grounded).

RETRACT (B) (“I give up that B can be the case”)

With this move, the opponent indicates that he no longer believes that

B can be in or undec. That is, the opponent acknowledges that B has

to be labelled out by every complete labelling, including the grounded.

One of the key ideas of the discussion game is that the proponent has burden

of proof. He has to establish the acceptance of the main argument and make

sure the discussion does not go around in circles. The opponent merely has to

cast sufficient doubts.

The game starts with the proponent uttering an HTB statement. After each

HTB statement (either the first one or a subsequent one) the opponent utters

a sequence of one or more CB , CONCEDE and RETRACT statements, after

which the proponent again utters an HTB statement, etc. In the argumentation

framework of Figure 1 the discussion could go as follows.

(1) P: HTB(C) (4) O: CONCEDE (A)
(2) O: CB(B) (5) O: RETRACT (B)

(3) P: HTB(A) (6) O: CONCEDE (C)

In the above discussion, C is called the main argument (the argument the dis-

cussion starts with). The discussion above ends with the main argument being

conceded by the opponent, so we say that the proponent wins the discussion.

As an example of a discussion that is lost by the proponent, it can be illus-

trative to examine what happens if the proponent claims that B has to be the

case.

(1) P: HTB(B) (2) O: CB(A)

After the second move, the discussion is terminated, as the proponent cannot

make any further move, since A does not have any attackers. This brings us to

the precise preconditions of the discussion moves.

HTB(A) Either this is the first move, or the previous move was CB(B), where

A attacks B, and no CONCEDE or RETRACT move is applicable.

CB(A) A is an attacker of the last HTB(B) statement that is not yet conceded,

the directly preceding move was not a CB statement, argument A has not

yet been retracted, and no CONCEDE or RETRACT move is applicable.

CONCEDE (A) There has been an HTB(A) statement in the past, of which

every attacker has been retracted, and CONCEDE (A) has not yet been
moved.

RETRACT (A) There has been a CB(A) statement in the past, of which there

exists an attacker that has been conceded, and RETRACT (A) has not

yet been moved.
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Apart from the preconditions mentioned above, all four statements also have

the additional precondition that no HTB -CB repeats have occurred. That is,

there should be no argument for which HTB has been uttered more than once,

CB has been uttered more than once, or both HTB and CB have been uttered.

In the first and second case, the discussion is going around in circles, which

the proponent has to prevent as he has burden of proof. In the third case, the

proponent has been contradicting himself, as his statements are not conflict-

free. In each of these three cases, the discussion comes to an end with no move

being applicable anymore. The above conditions are made formal as follows.

Definition 15 Let AF = (Ar , att) be an argumentation framework. A grounded

discussion is a sequence of discussion moves constructed by applying the follow-
ing principles.

BASIS (HTB) If A ∈ Ar then [HTB(A)] is a grounded discussion.

STEP (HTB) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion without HTB-
CB repeats,23 and no CONCEDE or RETRACT move is applicable,24

and Mn = CB(A) and B is an attacker of A then [M1, . . . ,Mn,HTB(B)]

is also a grounded discussion.

STEP (CB) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion without HTB-
CB repeats, and no CONCEDE or RETRACT move is applicable, and
Mn is not a CB move, and there is a move Mi = HTB(A) (i ∈ {1 . . . n})
such that the discussion does not contain CONCEDE (A), and for each
moveMj = HTB(A′) (j > i) the discussion contains a move CONCEDE (A′),
and B is an attacker of A such that the discussion does not contain a move
RETRACT (B), then [M1, . . . ,Mn,CB(B)] is a grounded discussion.

STEP (CONCEDE) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion without
HTB-CB repeats, and CONCEDE (B) is applicable then [M1, . . . ,Mn,
CONCEDE (B)] is a grounded discussion.

STEP (RETRACT) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion without
HTB-CB repeats, and RETRACT (B) is applicable then [M1, . . . ,Mn,
RETRACT (B)] is a grounded discussion.

It can be observed that the preconditions of the moves are such that a proponent

move (HTB) can never be applicable at the same moment as an opponent move

23
We say that there is a HTB-CB repeat iff ∃i, j ∈ {1 . . . n}∃A ∈ Ar : (Mi = HTB(A) ∨

Mi = CB(A)) ∧ (Mj = HTB(A) ∨Mj = CB(A)) ∧ i ̸= j.
24

A move CONCEDE(B) is applicable iff the discussion contains a move HTB(A) and for

every attacker A of B the discussion contains a move RETRACT (B), and the discussion

does not already contain a move CONCEDE(B). A move RETRACT (B) is applicable

iff the discussion contains a move CB(B) and there is an attacker A of B such that the

discussion contains a move CONCEDE(A), and the discussion does not already contain a

move RETRACT (B).
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(CB , CONCEDE or RETRACT ). That is, proponent and opponent essentially

take turns in which each proponent turn consists of a single HTB statement,

and every opponent turn consists of a sequence of CONCEDE , RETRACT
and CB moves.

Definition 16 A grounded discussion [M1, . . . ,Mn] is called terminated iff
there exists no move Mn+1 such that [M1, . . . ,Mn,Mn+1] is a grounded discus-
sion. A terminated grounded discussion (with A being the main argument) is
won by the proponent iff the discussion contains CONCEDE (A), otherwise it
is won by the opponent.

To illustrate why the discussion has to be terminated after the occurrence of

an HTB -CB repeat, consider the following discussion in the argumentation

framework of Figure 1.

(1) P: HTB(G) (3) P: HTB(G)
(2) O: CB(H)

At the third move, an HTB -CB repeat occurs and the discussion is terminated

(opponent wins). Hence, termination after an HTB -CB repeat is necessary to

prevent the discussion from going on perpetually.

Theorem 5 Every discussion will terminate after a finite number of steps.

From the fact that a discussion terminates after an HTB -CB repeat, the fol-

lowing result follows.

Lemma 1 No discussion can contain a CONCEDE and RETRACT move for
the same argument.

The soundness and completeness of the game described above is stated in

the following theorem.

Theorem 6 ([Caminada, 2015a]) Let (Ar , att) be an argumentation frame-
work and let A ∈ Ar.

1. If there exists a grounded discussion for A that is won by player P, then
A is labelled in by the grounded labelling.

2. If A is labelled in by the grounded labelling, then player P has a winning
strategy for A in the grounded discussion game.

The correctness of Theorem 6 can be seen as follows. As for point 1, it

can be observed that what the discussion game actually does is to construct

a strongly admissible labelling of which the in-labelled arguments coincide

with the CONCEDE moves, and the out-labelled arguments coincide with the

RETRACT moves. In fact, it can be proved by induction that at each state

of the discussion, the labelling where each CONCEDE move is labelled in and
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each retract move is labelled out is strongly admissible [Caminada, 2015b].

The fact that the discussion is won by player P implies that the main argument

(A) has been conceded. So at the end of the discussion, we have a strongly

admissible labelling where argument A is labelled in. Hence, by Theorem 2, A
is labelled in by the grounded labelling.

As for point 2, it should be mentioned that a strongly admissible labelling

(for instance the grounded labelling) with its associated min-max numbering

can serve as a roadmap for winning the discussion. The proponent will be

able to win if, whenever he has to do an HTB move, he prefers to use an in

argument with the lowest min-max number that attacks the directly preceding

CB move. We refer to this as a lowest number strategy.25

It turns out that when applying such a strategy, the game stays within the

boundaries of the strongly admissible labelling (that is, within its in and out

labelled part). As long as each HTB move of the proponent is related to an in-

labelled argument, it follows that all the attackers are labelled out (Definition

8, first bullet) so each CB move the opponent utters in response will be related

to an out-labelled argument. This out-labelled argument will then have at

least one in-labelled attacker (Definition 8, second bullet) as a candidate for

the proponent’s subsequent HTB move.

The next thing to be observed is that when the proponent applies a lowest

number strategy, the game will not terminate due to any HTB -CB repeats.

This is due to the facts that (1) after a move HTB(A) is played (for some

argument A) all subsequent CB and HTB moves will be related to arguments

with lower min-max numbers than A until a move CONCEDE (A) is played,

and (2) after a move CB(A) is played (for some argument A), all subsequent
HTB and CB moves will be related to arguments with lower min-max numbers

than A, until a move RETRACT (A) is played. We refer to [Caminada, 2015b]

for details.

7 Tree-Based Discussion Games

The discussion games that were described in the previous sections are not

the only ones that have been stated for preferred, stable, ideal and grounded

semantics. In fact, various alternative dialectical proof procedures can be found

in the literature, many of them are based on the concept of dialectical trees
[Dung et al., 2007; Modgil and Caminada, 2009; Thang et al., 2009]. In the

current section, we aim to provide an impression of these tree-based discussion

games, and explain some of their disadvantages compared to the discussion

games described in the previous sections. Rather than giving an overview of

all tree-based discussion games that have been stated in the literature, we will

focus our attention on one of them: the Standard Grounded Game [Prakken

and Sartor, 1997; Caminada, 2004; Modgil and Caminada, 2009].

25
We write “a lowest number strategy” instead of “the lowest number strategy” as a lowest

number strategy might not be unique due to different lowest numbered in-labelled arguments

being applicable at a specific point. In that case it is sufficient to pick an arbitrary one.
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The Standard Grounded Game (SGG) [Prakken and Sartor, 1997; Cam-

inada, 2004; Modgil and Caminada, 2009] is one of the earliest dialectical

proof procedures for grounded semantics. Each game26 consists of a sequence

[A1, . . . , An] (n ≥ 1) of arguments, moved by the proponent and opponent tak-

ing turns, with the proponent starting. That is, a move Ai (i ∈ {1 . . . n}) is a
proponent move iff i is odd, and an opponent move iff i is even. Each move,

except the first one, is an attacker of the previous move. In order to ensure ter-

mination even in the presence of cycles, the proponent is not allowed to repeat

any of his moves. A game is terminated iff no next move is possible; the player

making the last move wins. Formally, the Standard Grounded Game can be

defined as follows.

Definition 17 A discussion in the Standard Grounded Game is a finite se-
quence [A1, . . . , An] (n ≥ 1) of arguments (sometimes called moves), of which
the odd moves are called P-moves (Proponent moves) and the even moves are
called O-moves (Opponent moves), such that:

1. every O-move is an attacker of the preceding P-move (that is, every Ai

where i is even and 2 ≤ i ≤ n attacks Ai−1)

2. every P-move except the first one is an attacker of the preceding O-move
(that is, every Ai where i is odd and 3 ≤ i ≤ n attacks Ai−1)

3. P-moves are not repeated (that is, for every odd i, j ∈ {1, . . . , n} it holds
that if i ̸= j then Ai ̸= Aj)

A discussion is called terminated iff there is no An+1 such that [A1, . . . , An,
An+1] is a discussion. A terminated discussion is said to be won by the player
making the last move.

As an example, in the argumentation framework of Figure 1 [C,B,A] is
terminated and won by the proponent (as A has no attackers, the opponent

cannot move anymore) whereas [G,H] is terminated and won by the opponent

(as the only attacker of H is G, which the proponent is not allowed to repeat).

It is sometimes possible for the proponent to win a game even if the main

argument is not in the grounded extension. An example would be [F,B,A].
This illustrates that in order to show that an argument is in the grounded

extension, a single game won by the proponent is not sufficient. Instead, what

is needed is a winning strategy. This is essentially a tree in which each node is

associated with an argument such that (1) each path from the root to a leaf

constitutes a terminated discussion won by the proponent, (2) the children of

each proponent node (a node corresponding with a proponent move) coincide

with all attackers of the associated argument, and (3) each opponent node (a

node corresponding with an opponent move) has precisely one child, whose

argument attacks the argument of the opponent node.

26
What we call an SGG game is called a “line of dispute” in [Modgil and Caminada, 2009].
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Formally, argument tree is a tree of which each node (n) is labelled with an

argument (Arg(n)). The level of a node is the number of nodes in the path to

the root. This leads to the following formal definition of a winning strategy in

the context of the Standard Grounded Game.

Definition 18 A winning strategy of the Standard Grounded Game for ar-
gument A is an argument tree, where the root is labelled with A, such that

1. for each path from the root (nroot) to a leaf node (nleaf ) it holds that the
arguments on this path form a terminated discussion won by P

2. for each node at odd level nP it holds that {Arg(nchild) | nchild is a child
of nP } = {B | B attacks Arg(nP )} and the number of children of nP is
equal to the number of attackers of Arg(nP )

3. each node of even level nO has precisely one child nchild , and Arg(nchild)
attacks Arg(nO)

It has been proved that an argument is in the grounded extension iff the

proponent has a winning strategy for it in the SGG [Prakken and Sartor, 1997;

Caminada, 2004]. Moreover, it has also been shown that an SGG winning

strategy defines a strongly admissible labelling, when each argument of a pro-

ponent node is labelled in, each argument of an opponent node is labelled out

and all remaining arguments are labelled undec [Caminada, 2014].

As an example, in the argumentation framework of Figure 1 the winning

strategy for argument E would be the tree consisting of the two branches E −
B−A and E−D−C−B−A, thus proving its membership of the grounded exten-

sion by yielding the strongly admissible labelling ({A,C,E}, {B,D}, {F,G,H}).
As can be observed from this example, a winning strategy of the SGG can

contain some redundancy when it comes to multiple occurrences of the same

arguments in different branches. In the current example, the redundancy is

relatively mild (consisting of just the two arguments A and B) but other cases

exist where the SGG requires a number of moves in the winning strategy that

is exponential w.r.t. the size of the strongly admissible labelling the winning

strategy is defining. As an example, consider the argumentation framework of

Figure 5 (top left). The winning strategy of the SGG is in the same figure

(top right). Now consider what would happen if one would start to extend the

argumentation framework by duplicating the middle part. That is, suppose we

have arguments B1, . . . , Bn and C1, . . . , Cn (with n being an odd number), as

well as arguments A and D. Suppose that for every i ∈ {1, . . . , n − 1} Bi+1

attacks Bi, and Ci+1 attacks Ci, and that for each even i ∈ {2, . . . n− 1} Bi+1

attacks Ci, and Ci+1 attacks Bi, and that B1 and C1 attack A, and that D
attacks Bn and Cn. In that case, the branches in the SGG winning strategy

would split at every O-move. So for n = 3 (as is the case in Figure 5) the

number of branches is four, for n = 5 it is eight, etc. In general, the number of
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(1) P: HTB(A) (5) P: HTB(D) (9) O: RETRACT(C3) (13) P: HTB(C2)
(2) O: CB(B1) (6) O: CONCEDE(D) (10) O: CONCEDE(B2) (14) O: CONCEDE(C2)
(3) P: HTB(B2) (7) O: RETRACT(B3) (11) O: RETRACT(B1) (15) O: RETRACT(C1)
(4) O: CB(B3) (8) O: CB(C3) (12) O: CB(C1) (16) O: CONCEDE(A)

Figure 5. The Standard Grounded Game (SGG) versus the Grounded Discus-

sion Game (GDG).

branches in the SGG winning strategy is 2(n+1)/2, with the number of nodes in

the SGG winning strategy being 1 + 2Σ
(n+1)/2
i=1 2i. Hence, the number of steps

needed in a winning strategy of the SGG can be exponential in relation to

the size (number of in and out labelled arguments) of the strongly admissible

labelling that the SGG winning strategy is constructing.27

As for the Grounded Discussion Game (GDG) as described in Section 6, the

situation is different. As was mentioned in Section 6, what the GDG essentially

does is to construct a strongly admissible labelling of which the in labelled

arguments coincide with the CONCEDE moves and the out labelled arguments

coincide with the RETRACT moves. It can be observed that no argument

occurs in both a CONCEDE and RETRACT move (otherwise the argument

would also have occurred in both an HTB and CB move, and the discussion

would have terminated before reaching the CONCEDE and RETRACT moves)

and that for each argument there exists at most one CONCEDE move and at

most one RETRACT move. As we assume the game is won by the proponent,

who is playing a lowest number strategy, there will be no HTB -CB repeats.

This implies that for each CONCEDE move, there exists precisely one HTB
move, and for each RETRACT move, there exists precisely one CB move.

This means that the total number of moves (in a game won by the proponent,

who is applying a lowest number strategy) is two times the number of in

labelled arguments (which accounts for the HTB and CONCEDE moves) plus

two times the number of out labelled arguments (which accounts for the CB
and RETRACT moves). Hence, the number of moves in the game is linear in

relation to the size (number of in and out labelled arguments) of the strongly

admissible labelling the GDG is constructing.28

Hence, whereas for the Grounded Discussion Game, constructing a strongly

admissible labelling (which is needed to show membership of the grounded

extension) requires a linear number of moves, for the Standard Grounded Game

this requires a potentially exponential number of moves. This makes the GDG

27
We thank Miko laj Podlaszewski for this example.

28
See [Caminada, 2015a] for details.



Argumentation Semantics as Formal Discussion 515

a better choice for purposes of human-computer interaction, assuming that the

human user’s time is precious.

It should be mentioned that the possibility of an exponential blowup in the

number of moves is not restricted to the SGG, but is a feature of tree-based

discussion games in general. For instance, the above sketched example also

leads to an exponential number of moves in the preferred semantics game of

Modgil and Caminada [2009] and in the ideal semantics game of Dung et al.
[2007]. The key feature of these approaches is that they require a winning

strategy to show membership of a (grounded, preferred or ideal) extension. It

is this winning strategy that is responsible for the exponential blowup. In the

discussion games described in sections 3, 5 and 6, however, no winning strategy

is required, as just a single game won by the proponent is sufficient to prove

membership of a (preferred, stable or grounded) extension.29

8 Discussion

What the above described discussion games for preferred semantics (Section

3), stable semantics (Section 5) and grounded semantics (Section 6) have in

common is that (1) a single game won by the proponent is sufficient to prove

membership of a (preferred, stable or grounded) extension, and (2) if an ar-

gument is member of a (preferred, stable or grounded) extension then the

proponent has a winning strategy for it. This is evidenced by theorems 3, 4

and 6. In tree-based discussion games, like those of Dung et al. [2007], Modgil

and Caminada [2009] and Thang et al. [2009] point (1) is altered such that

a single game won by the proponent is not sufficient to prove membership of

an extension; for this a winning strategy is needed. Having to provide such

a winning strategy in a dialectical way can be troublesome for two reasons.

First of all, the tree of the winning strategy would need to be “linearized” as

discussions take place not in branching time but in linear time. But even if

linearization takes place, one still has to deal with the fact that the original

(tree-based) winning strategy could have a size that is exponentially related to

the (strongly) admissible labelling it is based on. The discussion games pre-

sented in sections 3, 5 and 6 have the advantage that they are not tree-based

and hence do not have these problems.

One can ask the question whether it is always possible (for any argumen-

tation semantics) to define a discussion game that satisfies the points (1) and

(2) mentioned above. For instance, the procedure sketched in Section 4 (ideal

semantics) does not satisfy point (1). This is because in the second phase of the

discussion, when trying to find an admissible set that attacks the admissible

set obtained in the first phase of the discussion, not finding such a set could

be due to the proponent making the “wrong” choices during the second phase,

rather than due to the actual absence of such a set. It would be a challenge

29
It can be proved that the preferred discussion game (Section 3) is linear in the number

of moves required. See [Caminada et al., 2014] for details. Using similar techniques one can

also prove that the stable discussion game (Section 5) requires only a linear number of moves.
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to change the discussion procedure for ideal semantics such that both points

(1) and (2) are satisfied. An even greater challenge would be to formulate dis-

cussion games (still satisfying points (1) and (2)) for semi-stable, stage or even

CF2 semantics.

As the tree-based discussion games of Dung et al. [2007], Modgil and Cami-

nada [2009] and Thang et al. [2009] violate point (1) but satisfies point (2), one
can ask the question of whether there also exists a discussion game that satis-

fies point (1) but violates point (2). The answer is affirmative, as is evidenced

by the work of Caminada and Podlaszewski [2012a; 2012b]. Here, the ability

to win the discussion game might depend on cooperation of the opponent. So

even though an argument being in the grounded extension implies the existence

of a discussion for it that is won by the proponent, it does not imply that the

proponent also has a winning strategy.30 For the purpose of human-computer

interaction, this property is undesirable, as the computer should be able to win

the discussion (for an argument that is actually in the grounded extension) re-

gardless of how the human user choses to utter the possible counterarguments.

The discussion games presented in the current chapter have been stated

in the context of abstract argumentation theory. This raises the question of

whether these discussion games are also suitable in the context of instantiated
argumentation, like aspic+ [Modgil and Prakken, 2014]31, aba [Toni, 2014]32

or logic-based argumentation [Gorogiannis and Hunter, 2011]33. Technically,

this should not be a problem, as each of these formalisms provides an instantia-

tion of Dung’s abstract argumentation theory. That is, each of these formalisms

specifies what arguments can be constructed and how these attack each other,

starting from a particular knowledge base. Although applying the discussion

games in the context of instantiated argumentation is technically straightfor-

ward, there is a catch. The question is whether the notion of attack of the

instantiated argumentation formalism is defined in such a way that it allows

for moves that can be considered as intuitive during the course of the discus-

sion. For instance, in aspic+ it can be the case that a discussion partner utters

an argument with conclusion c, which cannot be replied to with an argument

for conclusion ¬c (even though such an argument is well-formed and perhaps

even justified) because the definition of attack is such that it does not attack

the argument with conclusion c. This is like having your discussion partner ut-

tering an argument for a claim (c) which you know is not the case, but you’re

not allowed to reply with an argument that directly rebuts this claim. We

refer to Chapter 15 (“Rationality postulates: applying argumentation theory

for non-monotonic reasoning”) of this volume for details.

As mentioned in the introduction, one of the possible applications of the

30
We refer to [Caminada, 2015a] for a specific example.

31
See also Chapter 6 (“Abstract rule-based argumentation”) of this volume.

32
See also Chapter 7 (“assumption-based argumentation: disputes, explanations, prefer-

ences”) of this volume.
33

See also Chapter 9 (“A review of argumentation based on deductive arguments”) of this

volume.
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discussion games is for the purpose of human-computer interaction. The con-

text here is that of a shared knowledge base34 (say, of medical research and

clinical evidence) that allows for the construction of arguments (say, regarding

to how to treat a particular patient). As the knowledge base can be complex

and huge, it is not always directly obvious what the justified arguments are.

Although a software implementation of (instantiated) argumentation theory

can help to provide an answer, the correctness of this answer might need to

be explained to a human user. Our hypothesis is that human-computer dis-

cussion can contribute to acceptance of argument-based entailment. In order

to test this hypothesis, one would need to perform experiments in which the

user’s confidence in the argument-based entailment is tested, before and after

performing the discussion game. Experiments like these is what we would like

to perform in the near future.
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