
An Algorithm for Computing Semi-Stable

Semantics ?

Martin Caminada

Utrecht University / University of Luxembourg

Abstract. The semi-stable semantics for formal argumentation has been
introduced as a way of approximating stable semantics in situations
where no stable extensions exist. Semi-stable semantics can be located
between stable semantics and preferred semantics in the sense that every
stable extension is a semi-stable extension and every semi-stable exten-
sion is a preferred extension. Moreover, in situations where at least one
stable extension exists, the semi-stable extensions are equal to the stable
extensions. In this paper we provide an outline of an algorithm for com-
puting the semi-stable extensions, given an argumentation framework.
We show that with a few modifications, the algorithm can also be used
for computing stable and preferred semantics.

1 Introduction

Formal argumentation, as a technique for defeasible entailment, has gained
popularity since it combines a relatively easy to understand and human-
style approach to reasoning with the mathematical rigidness that is re-
quired for software implementation [1]. It is also an interesting observa-
tion that many formalisms for nonmonotonic reasoning can be expressed
as instances of formal argumentation [2].
Formal argumentation, in its most abstract form, is done using a set of
abstract arguments and a defeat relation between these arguments. Since
an argument A may be defeated by another argument B which may in
its turn be defeated by a third argument C, the status of A (whether it
can be accepted or not) partly depends on the status of C. Thus, what
is needed is an overall criterion for determining which of the arguments
can be considered to be ultimately justified. Several of such criteria have
been proposed, the most well-known of these are grounded, preferred
and stable semantics [2]. A relatively new proposal is semi-stable seman-
tics [3]. Semi-stable semantics can be placed between stable semantics
and preferred semantics, as every stable extension is also a semi-stable
extension and every semi-stable extension is also a preferred extension.
Moreover, semi-stable semantics can be seen as a way of approximating
stable semantics in situations where no stable extensions exist.
In this paper we present an algorithm for computing all semi-stable ex-
tensions of an argumentation framework. In order to keep the discussion
brief, full formal proofs are provided in a seperate technical report [4].

? This work was sponsored by the Netherlands Organization for Scientific Research
(NWO). We also thank Newres al Haider for helping to develop the initial idea.

2 Argument-Based Semantics

In this section, we provide a brief introduction on argument based se-
mantics and the position of semi-stable semantics.

Definition 1. An argumentation framework is a pair (Ar , def) where
Ar is a finite set of arguments and def ⊆ Ar × Ar.

We say that an argument A defeats an argument B iff (A,B) ∈ def .
An argumentation framework can be represented as a directed graph in
which the arguments are represented as nodes and the defeat relation
is represented as arrows. In several examples throughout this paper, we
will use this graph representation.
The shorthand notation A+ and A− stands for, respectively, the set
of arguments defeated by A and the set of arguments that defeat A.
Likewise, if Args is a set of arguments, then we write Args+ for the set
of arguments that is defeated by at least one argument in Args , and
Args− for the set of arguments that defeat at least one argument in
Args . In the definition below, F (Args) stands for the set of arguments
that are acceptable in the sense of [2].

Definition 2 (defense / conflict-free). Let A ∈ Ar and Args ⊆ Ar.
We define A+ as {B | A def B} and Args+ as {B | A def B with A ∈ Args}.
We define A− as {B | B def A} and Args− as {B | B def A with A ∈ Args}.
Args is conflict-free iff Args ∩Args+ = ∅. Args defends an argument A

iff A− ⊆ Args+. We define the function F : 2Ar → 2Ar as F (Args) =
{A | A is defended by Args}.

In the definition below, definitions of grounded, preferred and stable
semantics are described in terms of complete semantics, which has the
advantage of making the proofs in the remainder of this paper more
straightforward. These descriptions are not literally the same as the ones
provided by Dung [2], but as was first stated in [5], these are in fact
equivalent to Dung’s original versions of grounded, preferred and stable
semantics.

Definition 3 (acceptability semantics). A conflict-free set Args of
arguments is called

- an admissible set iff Args ⊆ F (Args).
- a complete extension iff Args = F (Args).
- a grounded extension iff Args is the minimal complete extension.
- a preferred extension iff Args is a maximal complete extension.
- a stable extension iff Args is a complete extension

that defeats every argument in Ar\Args.
- a semi-stable extension iff Args is a complete extension

where Args ∪Args+ is maximal (w.r.t. set-inclusion)

In [3] it is proved that every stable extension is also a semi-stable exten-
sion, and the every semi-stable extension is also a preferred extension.
Moreover, it is observed that if the argumentation framework has at least
one stable extension, then the set of semi-stable extensions is equal to
the set of stable extensions. That is, when at least one stable extension
exists, then stable semantics and semi-stable semantics coincide.

3 A Brief Introduction to Argument Labellings

The concepts of admissibility, as well as those of complete, grounded,
preferred, stable or semi-stable semantics were originally stated in terms
of sets of arguments. It is equally well possible, however, to express these
concepts using argument labellings. This approach was originally pro-
posed by Pollock [6] and has recently been extended by Caminada [5].
The idea of a labelling is to associate with each argument exactly one
label, which can either be in, out or undec. The label in indicates that
the argument is explicitly accepted, the label out indicates that the argu-
ment is explicitly rejected, and the label undec indicates that the status
of the argument is undecided, meaning that one abstains from an explicit
judgement whether the argument is in or out.

Definition 4. A labelling is a function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and
undec(L) for {A | L(A) = undec}. Sometimes, we write a labelling L
as a triple (Args1,Args2,Args3) where Args1 = in(L), Args2 = out(L)
and Args3 = undec(L). We distinguish three special kinds of labellings.
The all-in labelling is a labelling that labels every argument in. The all-
out labelling is a labelling that labels every argument out. The all-undec
labelling is a labelling that labels every argument undec.

Definition 5. Let L be a labelling and A be an argument. We say that:

1. A is illegally in iff A is labelled in

but not all its defeaters are labelled out

2. A is illegally out iff A is labelled out

but does not have a defeater labelled in

3. A is illegally undec iff A is labelled undec but either all its defeaters
are labelled out or it has a defeater that is labelled in.

We say that a labelling has no illegal arguments iff there is no argument
that is illegally in, illegally out or illegally undec. We say that an argu-
ment is legally in iff it is labelled in and is not illegally in. We say that
an argument is legally out iff it is labelled out and is not illegally out.
We say that an argument is legally undec iff it is labelled undec and is
not illegally undec.

Definition 6. An admissible labelling is a labelling without arguments
that are illegally in and without arguments that are illegally out.

Definition 7. A complete labelling is a labelling without arguments that
are illegally in, without arguments that are illegally out and without ar-
guments that are illegally undec.

Definition 8. Let L be a complete labelling. We say that L is a

– grounded labelling iff in(L) is minimal (w.r.t. set inclusion).
– preferred labelling iff in(L) is maximal (w.r.t. set inclusion).
– stable labelling iff undec(L) = ∅.
– semi-stable labelling iff undec(L) is minimal (w.r.t. set inclusion).

DC

A

B E

A B
C

D

Fig. 1. Two argumentation frameworks.

As an illustration of how the various types of labellings can be applied,
consider the two examples in Figure 1. For the example at the left hand
side of Figure 1, there exists just one complete labelling: ({B, D}, {C},
{A}), which is then automatically also grounded, preferred and semi-
stable. The example at the left hand side does not have any stable la-
bellings. For the example at the right hand side of Figure 1, there exist
three complete labellings: (∅, ∅, {A, B, C, D, E}), ({A}, {B}, {C, D, E})
and ({B, D}, {A, C, E}, ∅). The first labelling is the grounded labelling.
The second and third labellings are both preferred labellings. The third
labelling is also a stable and semi-stable labelling.
As for the admissible labellings, it should be mentioned that each com-
plete labelling is also an admissible labelling. However, sometimes there
exist admissible labellings that are not complete. Two examples of such
labellings for the example at the left hand side of Figure 1 are ({B}, ∅,
{A, C, D}) and ({B}, {C}, {A, D}).
It is interesting to notice that an admissible labelling actually corre-
sponds with the notion of an admissible set.

Theorem 1. Let (Ar , def) be an argumentation framework and Args ⊆
Ar. Args is an admissible set iff there exists an admissible labelling L
with in(L) = Args.

The validity of Theorem 1 can be seen as follows. If Args is an admissible
set, then a labelling L with in(L) = Args , out(L) = Args+ and undec(L)
= Ar − in(L) − out(L) is an admissible labelling. Similarly, if L is an
admissible labelling then in(L) is conflict-free (otherwise at least one of
the arguments in in(L) would be illegally in). It can then be verified that
in(L) defends itself, due to the fact that L does not contain arguments
that are illegally in or illegally out. We refer to [4] for a full proof.
The notion of a complete labelling then corresponds to Dung’s notion of
a complete extension.

Theorem 2. Let (Ar , def) be an argumentation framework and Args ⊆
Ar. Args is a complete extension iff there exists a complete labelling L
with in(L) = Args.

The validity of Theorem 2 can be seen as follows. If Args is a complete
extension then a labelling with in(L) = Args , out(L) = Args+ and
undec(L) = Ar − in(L) − out(L) is a complete labelling. Similarly, if
L is a complete labelling then in(L) is at least an admissible set (this

follows from Theorem 1). It can then be verified that in(L) defends
exactly itself, due to the fact that L does not contain any arguments
that are illegally in, illegally out or illegaly undec. Hence, in(L) is a
complete extension. Again, we refer to [4] for a full proof.
The notions of a grounded, preferred, stable and semi-stable labelling
correspond to he notions of a grounded, preferred, stable and semi-stable
extension, respectively.

Theorem 3. A set Args of arguments is (1) a grounded extension iff
there exists a grounded labelling L with in(L) = Args, (2) a preferred
extension iff there exists a preferred labelling L with in(L) = Args, (3)
a stable extension iff there exists a stable labelling L with in(L) = Args,
and (4) a semi-stable extension iff there exists a semi-stable labelling L
with in(L) = Args

Before continuing with the backgrounds of the proposed algorithm, we
first state a few useful properties of complete and admissible labellings.

Lemma 1. Let L1 and L2 be two complete labellings of (Ar , def). It
holds that in(L1) ⊆ in(L2) iff out(L1) ⊆ out(L2).

Lemma 2. Let L1 be an admissible labelling. There exists a preferred
labelling L2 with in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2).

Lemma 3. Let L be a preferred labelling and L′ be an admissible la-
belling. It holds that:
1. if in(L) ⊆ in(L′) then in(L) = in(L′)
2. if out(L) ⊆ out(L′) then out(L) = out(L′)

4 Formal Background of the Algorithm

Now that the preliminary concepts have been explained, it is time to
treat the main question of how to compute, given an argumentation
framework, all the semi-stable labellings. The idea is to do this by gen-
erating a set Labellings of admissible labellings that includes at least all
preferred labellings. Since every semi-stable labelling is also a preferred
labelling [3, 5], this means that Labellings also contains all semi-stable
labellings. We then have to select those labellings in Labellings with
minimal undec to obtain the final answer.
How does one generate an admissible labelling? A possible approach is to
start with the all-in labelling (the labelling in which every argument is la-
belled in). This labelling trivially satisfies the absence of arguments that
are illegally out. However, for an admissible labelling also the absence of
arguments that are illegally in is required, and the all-in labelling may
contain many arguments that are illegally in. This means we need a
way of changing the label of an argument that is illegally in, preferrably
without creating any arguments that are illegally out. This is done us-
ing a sequence of transition steps. A transition step basically takes an
argument that is illegally in and relabels it to out. It then checks if, as a
result of this, one or more arguments have become illegally out. If this is
the case, then these arguments are relabelled to undec. More precisely,
a transition step can be described as follows.

Definition 9. Let L be a labelling and A an argument that is illegally
in in L. A transition step on A in L consists of the following:

1. the label of A is changed from in to out

2. for every B ∈ {A} ∪ A+, if B is illegally out, then change the label
of B from out to undec.

Theorem 4. Each transition step preserves the absence of arguments
that are illegally out.

The validity of Theorem 4 follows directly from point 2 of Definition 9.

A transition sequence starts with an initial labelling L0, on which a
sequence of successive transition steps is applied.

Definition 10. A transition sequence is a list [L0, A1,L1, A2,L2, . . . ,

An,Ln] (n ≥ 0) where each Ai (1 ≤ i ≤ n) is an argument that is illegally
in in labelling Li−1 and every Li is the result of doing a transition step
of Ai on Li−1. A transition sequence is called terminated iff Ln does not
contain any argument that is illegally in.

As an illustration of how a transition sequence can be constructed, con-
sider the example at the left hand side of Figure 2. Assume the initial
situation is the all-in labeling L0 = ({A, B,C}, ∅, ∅). In this labelling
both B and C are illegally in since each of them has a defeater that is
in, so they are both candidates for a transition step. If we select B for a
transition step, then the result is a labelling L1 = ({A, C}, {B}, ∅). This
labelling does not contain any arguments that are illegally in, so the tran-
sition sequence [L0, B,L1] is terminated. If, at the other hand, we select
C for a transition step then the result is a labelling L′

1 = ({A, B}, {C}, ∅).
This labelling still has an argument that is illegally in (B), so we per-
form another transition step that relabels B from in to out. However,
as a result of doing that, C becomes illegally out since it has no longer a
defeater that is in, so C is relabelled from out to undec. The transition
step as a whole then yields L′

2 = ({A}, {B}, {C}). This means that there
exists a second terminated transition sequence [L0, C,L′

1, B,L′

2].

Now consider the example at the right hand side of Figure 2. Again,
assume that the initial labelling is the all-in labelling, so L0 = ({A, B, C},
∅, ∅). Here, all three arguments are in, so each of them can be selected for
a transition step. Assume, without loss of generality, that A is selected
for a transition step. This then yields a labelling L1 = ({B, C}, {A}, ∅).
In this labelling, only C is illegally in and can be selected for a transition
step. During this transition step, after C is relabelled from in to out,
A becomes illegally out and is therefore relabelled to undec. Thus, the
transition step as a whole yields L2 = ({B}, {C}, {A}). In this labelling
B is illegally in since it has a defeater (A) that is undec. Therefore,
a transition step on B is performed during which B is relabelled from
in to out. Directly after doing that, however, not only C is illegally
out but also B itself is illegally out, so both of them are relabelled
from out to undec. Thus, the transition step as a whole yields L3 =
{∅, ∅, {A, B, C}). This means that there exists a terminated transition
sequence [L0, A,L1, C,L2, B,L3]. It can be verified that in the example

A

B

C

A CB

Fig. 2. Two argumentation frameworks.

at the right hand side of Figure 2 every terminated transition sequence
that starts with the all-in labelling finishes with L3.
Since for any finite argumentation framework, only a finite number of
successive transition steps can be performed, this means that (again for
finite argumentation frameworks) each terminated transition sequence
is finite. Furthermore, for any terminated transition sequence, the final
labelling is an admissible labelling. This is because each transition step
preserves the absence of arguments that are illegally out (Theorem 4) and
after termination, we also do not have any arguments that are illegally
in.

Theorem 5. Let [L0, A1,L1, A2,L2, . . . , An,Ln] (n ≥ 0) be a termi-
nated transition sequence where L0 is the all-in labelling. It holds that
Ln is an admissible labelling.

An interesting observation is that during the course of a transition se-
quence, the set of in-labelled arguments monotonically decreases and the
set of undec-labelled arguments monotonically increases.

Proposition 1. Let [L0, A1,L1, . . . , An,Ln] be a transition sequence.
For any 1 ≤ i ≤ n it holds that in(Li) ⊆ in(Li−1) and undec(Li) ⊇
undec(Li−1).

Proposition 1 is relevant with respect to the algorithm for generating the
semi-stable labellings. Suppose that a previously generated terminated
transition sequence yielded an admissible labelling L and we are currently
expanding a transition sequence [L0, A1,L1, . . . , Ai,Li]. If undec(Li))

undec(L) then we already know that the current transition sequence
cannot yield a semi-stable labelling, since expanding it to a terminated
transition sequence [L0, A1,L1, . . . , An,Ln] results in a labelling Ln with
undec(Ln)) undec(L) (this follows from Proposition 1 and the fact
that undec(Li)) undec(L)). We then might as well stop expanding the
current transition sequence and instead try another possibility.
We define Labellings as the set of all final labellings from terminated
transition sequences that start from the all-in labelling.
As we have now obtained that the result of any terminated transition
sequence starting from the all-in labelling is an admissible labelling, it di-
rectly follows that each element of Labellings is an admissible labelling.
The next step, then, is to examine whether each semi-stable labelling will
be an element of Labellings. If this is the case, then we can simply de-
termine the semi-stable labellings as those elements of Labellings where

undec is minimal. It turns out that this is indeed the case. This can
roughly be seen as follows. Let L be a preferred labelling. We now con-
struct a transition sequence that yields L. This is done in two phases.
The first phase is to perform a sequence of transition steps, starting
from the all-in labelling, on each argument that is labelled out in L.
This yields a labelling L′ with out(L′) = out(L), undec(L′) = ∅ and
in(L′) ⊇ in(L). Then, during the second phase, we continue to perform
transition steps, starting from L′, until we have reached termination; that
is, until there are no arguments that are illegally in anymore, yielding a
labelling L′′. It can be verifed that this does not change he arguments
that are out in L′. Also, it cannot change the arguments that are in in L,
since these are legally in in L′. That is, we have that out(L′′) = out(L)
and in(L′′) ⊇ in(L). From the fact that L is a preferred labelling, it
follows that (Lemma 3) in(L′′) cannot be a strict superset of in(L).
Therefore, we have that in(L′′) = in(L). From the fact that in(L) and
out(L′′) = out(L) it follows that undec(L′′) = undec(L), which implies
that L′′ = L. This leads to the following theorem.

Theorem 6. Let L be a preferred labelling. There exists a transition
sequence [L0, A1,L1, . . . , An,Ln] with L0 the all-in labelling and Ln = L.

From the fact that each semi-stable labelling is also a preferred labelling,
it then follows that for each semi-stable labelling, there exists a transition
sequence that yields it.

5 Optimizing the Algorithm

As was shown in Section 4, for the example at the left hand side of
Figure 2 there are two terminated transition sequences starting from
the all-in labelling: one that yields ({A, C}, {B}, ∅) and one that yields
({A}, {B}, {C}). This is because starting from the all-in labelling, we
have two choices of arguments to do a transition step on: B or C, since
both of them are illegally in in L0 (the all-in labelling). If we choose
B we will finally end up with a complete labelling, but if we choose
C then we will ultimately end up with a labelling that is admissible
but not complete (and therefore also not preferred or semi-stable). An
interesting question, therefore, is whether there is a way of avoiding such
non-complete results by carefully choosing the right arguments to do the
transition steps on. While in general this question is difficult to answer,
we do propose a simple guideline that is helpful in many cases: choose
an argument that is superillegally in to do a transition step on, if such
an argument is available.

Definition 11. Let L be a labelling of (Ar , def). An argument A is su-
perillegally in in L iff A is labelled in by L and is defeated by an argu-
ment that is legally in in L or undec in L.

It directly follows that if an argument is superillegally in in L, then it
is also illegally in in L. The converse, however, may not be the case. As
an example, consider again the example at the left hand side of Figure

2. With the all-in labelling, A is legally in, B and C are illegally in,
and only B is superillegally in. Thus, it makes sense to select B to do a
transition step on.
The reason why arguments that are superillegally in are such good can-
didates to perform a transition step on is that an argument that is su-
perillegally in will stay illegally in (although it may not necessarily stay
super illegally in) throughout the transition sequence, until a transition
step is done on it. Thus, we might as well perform a transition step
on the superillegal argument as soon as possible, since this prevents us
from doing things we later regret (like performing a transition step on
argument C).

Theorem 7. Let L0 be a labelling where argument A is superillegally in

and [L0, A1,L1, . . . , An,Ln] be a transaction sequence where no transac-
tion step is performed on A (that is: A 6∈ {A1, . . . , An}). It holds that A

is illegally in in Ln.

From Theorem 7 it follows that it may be a good strategy to select an ar-
gument that is superillegally in to do a transition step on, whenever such
an argument is available. An interesting question is how such a strategy
would affect the results that were obtained earlier regarding correctness
(each transition sequence terminates with an admissible labelling) and
completeness (for each preferred labelling, there exists a transition se-
quence that produces this labelling).
As for correctness, the situation does not change. The result of a termi-
nated transition sequence is always an admissible labelling, regardless of
which strategy was used to select the arguments to do transition steps
on. In [4] it is explained that the new strategy also does not affect the
completeness of the algorithm. That is, if we consequently choose an (ar-
bitrary) superillegal argument to do a transition step on whenever such
an argument is available, then we are still able to produce all preferred
labellings, and therefore also all semi-stable labellings.

6 The Actual Algorithm

Since the algoritm starts with the labelling in which every argument is
labelled in, we assume the presence of the constant all in, which stands
for the all-in labelling. There is one global variable (pot semi-stables)
which stands the potential semi-stable labellings, that is, the admissible
labellings with minimal undec that have been found until now. If, during
the search algorithm, one finds that the current labelling is worse (that is:
it has a proper superset of undec labelled arguments) than an admissible
labelling found earlier, then it is time to stop evaluating the current
transition sequence, since its final result will not be semi-stable anyway.
If there is no argument that is illegally in then we are at the end of a ter-
minated transition sequence and have obtained an admissible labelling.
From the previous check, we already know that this admissible labelling
is not any worse than what we already have found (it does not have a
proper superset of undec labelled arguments compared to a previously

computed admissible labelling), so we add it to the set of potential semi-
stable labellings (pot semi-stables). We then have to check if we found
something that is actually better than what we found earlier. If so, we
need to delete some of the old results (remove it from pot semi-stables).
If we have not reached the end of a terminated transition sequence, then
there is at least one argument that is still illegally in. We then distin-
guish two cases. If there is at least one argument that is superillegally in

then go for the argument that is superillegally in. There is no need to be
selective; any argument that is superillegally in will do for a transition
step. If, however, there is no argument that is superillegally in then we
have to try each argument that is “normally” illegally in.

01. pot semi-stables = ∅; find semi-stables(all-in);

02. print pot semi-stables; end;

03.

04. procedure find semi-stables(L)
05. # if we have something worse than found earlier,

06. # then prune the search tree and backtrack

07. if ∃L′ ∈ pot semi-stables: undec(L′) (undec(L) then return;

08. # now see if the transition sequence has terminated

09. if L does not have an argument that is illegally in then

10. for each L′ ∈ pot semi-stables

11. # if old result is worse than new labelling: remove

12. if undec(L) (undec(L′) then

13. pot semi-stables := pot semi-stables - L′;

14. endif;

15. endfor;

16. # add our newly found labelling as a candidate; we already

17. # know that it is not worse than what we already have

18. pot semi-stables := pot semi-stables ∪ L;
19. return; # we are done with this one; try next possibility

20. else

21. if L has an argument that is superillegally in then

22. A := some argument that is superillegally in in L;
23. find semi-stables(transition step(A, L));
24. else

25. for each argument A that is illegally in in L
26. find semi-stables(transition step(A, L));
27. endfor;

28. endif;

29. endif;

30. endproc;

7 Discussion

It is interesting to observe that the algorithm stated in Section 6 can
also be used to calculate, respectively, stable semantics and preferred
semantics, by applying a few changes.
For stable semantics, the modification is quite straightforward. Basically,
the idea (Definition 8) is only to yield labellings without undec-labelled

arguments. For this, we have to stop expanding a transition sequence as
soon as an undec-labelled argument is produced. Therefore, we have to
replace line 7 by if undec(L) 6= ∅ then return.
Furthermore, we do not have to compare the sets of undec-labelled argu-
ments of the previous results with the current result, so the lines 10 until
15 can be removed. Then, after renaming the variable pot semi-stables

to stables and renaming the procedure find semi-stables to find stables,
the modifications are finished and the result is an algorithm that calcu-
lates all stable extensions of an argumentation framework.
For preferred semantics, the modification is slightly different. The idea
is that we still have to check for a condition that allows us to cut off
the current transition sequence once we know that it will not yield a
useful result. For semi-stable semantics, it can be observed that the set
of undec-labelled arguments keeps increasing as the transition sequence
progresses (Proposition 1). For preferred semantics, it can be observed
that the set of in-labelled arguments keeps decreasing as the transition
sequence progresses (Proposition 1). In both cases, there may come a
point where the current transition sequence becomes worse than a result
found earlier, which means we might as well stop expanding it and instead
backtrack to another possibility.
The modification for preferred semantics is done as follows. First, the
variable pot semi-stables to renamed as pot preferreds and the pro-
cedure find semi-stables is renamed as find preferreds. Line 7 is
replaced by: if ∃L′ ∈ pot preferreds: in(L′)) in(L) then return;

Line 12 is replaced by: if in(L)) in(L′) then

The result, then, is an algorithm that calculates, given an argumentation
framework, all preferred extensions.
In [5], it was first examined how argument labellings are related to the
traditional Dung-style argument semantics.It was found that a complete
labelling has a maximal set of in-labelled arguments iff it has a maximal
set of out-labelled arguments. In both cases, the labelling corresponds
with a preferred extension. Furthermore, it was found that a complete
labelling has a minimal set of in-labelled arguments iff it has a minimal
set of out-labeled arguments iff it has a maximal set of undec-labelled
arguments. In all three cases, the labelling corresponds with the grounded
extension. The only option left to be examined consists of the labellings
where the set of undec-labelled arguments is minimal. It turned out that
these did not correspond with any well-known semantics, and this is how
semi-stable semantics was discovered [3, 5]. Thus, one can perhaps think
of semi-stable semantics as a missing link in the traditional hierarchy of
argumentation semantics.
Nevertheless, semi-stable semantics is more than just a purely theoretical
notion. Stable semantics, despite its property of the potential absence of
stable extensions, is still being used for the purpose of constraint satisfac-
tion in fields like answer set programming [7]. The idea is that a problem
is specified in a declarative way and that the set of potential solutions
then corresponds with the stable models of the thus described problem.
In cases where no solutions exists, there should therefore also not exist
any stable models. Thus, the absence of stable models (or extensions)
is not always an undesirable property. This does assume, however, that

the original problem was encoded in a way that is perfectly correct. If,
for instance, an answer set program contains an error, then the result
may well be a total absence of stable models, which is a situation that
can be notoriously hard to debug. With semi-stable semantics, however,
one obtains one or more models that can serve as a starting point to
examine where things went wrong. For instance, consider the example at
the left hand side of Figure 1. It has no stable extensions and its (only)
semi-stable extension is ({B, D}, {C}, {A}). The fact that A is labelled
undec can be seen as an indication of what is “wrong” in this argumen-
tation framework from the perspective of stable semantics. Similarly, if
there exists an odd loop that causes the absence of stable models, then
this odd loop is flagged undec by a semi-stable model. Thus, semi-stable
semantics can give a good indication of where to start debugging if no
stable model exists. Semi-stable semantics does a better job here than,
for instance, preferred semantics. This is because there can be non-stable
preferred models (like ({A}, {B}, {C, D, E})) even in cases where stable
models (like ({B, D}, {A, C, E}, ∅) do exist. With semi-stable semantics,
one obtains non-stable semi-stable models only if there is a real problem
that prevents the existence of stable models.
One particularly interesting application of semi-stable semantics would
be answer set programming and other forms of logic programming that
use the stable model semantics. At the time of writing, the author is
exploring the possibilities of applying semi-stable semantics to logic pro-
gramming and answer set programming. We believe this would be a
useful approach for analyzing programs for which no stable models exist.

References

1. Vreeswijk, G.: An algorithm to compute minimally grounded and
admissible defence sets in argument systems. In Dunne, P., Bench-
Capon, T., eds.: Computational Models of Argument; Proceedings of
COMMA 2006, IOS (2006) 109–120

2. Dung, P.M.: On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence 77 (1995) 321–357

3. Caminada, M.: Semi-stable semantics. In Dunne, P., Bench-
Capon, T., eds.: Computational Models of Argument; Proceedings
of COMMA 2006, IOS Press (2006) 121–130

4. Caminada, M.: An algorithm for computing semi-stable semantics.
Technical Report Technical Report UU-CS-2007-010, Utrecht Univer-
sity (2007) http://www.cs.uu.nl/˜martinc/algorithm techreport.pdf.

5. Caminada, M.: On the issue of reinstatement in argumentation. In
Fischer, M., van der Hoek, W., Konev, B., Lisitsa, A., eds.: Log-
ics in Artificial Intelligence; 10th European Conference, JELIA 2006,
Springer (2006) 111–123 LNAI 4160.

6. Pollock, J.L.: Cognitive Carpentry. A Blueprint for How to Build a
Person. MIT Press, Cambridge, MA (1995)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and
disjunctive databases. New Generation Computing 9(3/4) (1991)
365–385

