
SYNTACTIC AND SEMANTIC CONNECTIONS

BETWEEN LOGIC PROGRAMMING AND

ARGUMENTATION SYSTEMS

SAMY SÁ

Universidade Federal do Ceará, Brazil
samy@ufc.br

WOLFGANG DVOŘÁK

TU Wien, Institute of Logic and Computation, Austria
dvorak@dbai.tuwien.ac.at

MARTIN CAMINADA

Cardiff University, United Kingdom
CaminadaM@cardiff.ac.uk

Abstract
Logic programming was one of the first formalisms to incorporate

non-monotonic reasoning and, as such, is the origin of many semantics
for this type of reasoning. Many of the core argumentation systems,
including Abstract Argumentation, Assumption-Based Argumentation
and Abstract Dialectical Frameworks even find their historical roots in
the logic programming literature, borrowing terminology, procedures,
notation and semantics from this niche. In this chapter, we provide an
overview of the connections between logic programming and a series
of argumentation systems, focusing on the semantic perspective to find
their relative expressive power. The systems we examine in detail in-
clude the ones we already mentioned, as well as Argumentation Frame-
works with Sets of Attacking Arguments. In each case, we consider
translations and find whether they preserve the semantics of their re-
spective source and target formalism, under some of the most common
semantics. For some of the cases where equivalence does not hold, we
consider how to restore it. Apart from that, we also offer an overview
of how some of these argumentation systems can be implemented using
Answer-Set Programming and their specialized solvers.

SÁ, DVOŘÁK, CAMINADA

1 Introduction

In the current book chapter, we will examine the connections between logic
programming and a series of formalisms for non-monotonic reasoning which
we gather under the umbrella of argumentation systems. As one would expect,
the first connections are historical: the investigations leading to the proposal of
Abstract Argumentation Frameworks (AFs) [Dung, 1995b], often taken as the
seminal work in computational argumentation theory, happened amidst the de-
velopment of semantics for logic programming with negation as failure [Dung,
1991; Kakas et al., 1994; Dung, 1995a]. Just alike, several core argumentation
systems find their roots in the literature of logic programming, including the
approaches of Defeasible Logic Programming (DeLP) [Simari and Loui, 1992;
García and Simari, 2004; García and Simari, 2018], Assumption-Based Ar-
gumentation (ABA) [Bondarenko et al., 1997; Dung et al., 2009; Čyras et
al., 2018] and Abstract Dialectical Frameworks (ADFs) [Brewka and Woltran,
2010; Brewka et al., 2013]. Immediately, it was argued that some of these sys-
tems could model the semantic entailment relations from logic programming
using translations.

One well-known example can be found in [Dung, 1995b], where the au-
thor showed how to translate a normal logic program (NLP) into an AF.
Based on this translation, Dung proved that the stable models (resp. the well-
founded model) of an NLP correspond to the stable extensions (resp. the
grounded extension) of its corresponding AF. These results led to several
studies concerning connections between them [Dung, 1995b; Nieves et al.,
2008; Caminada and Gabbay, 2009; Egly et al., 2010; Toni and Sergot, 2011;
Caminada et al., 2015b; Sá and Alcântara, 2021a; Caminada et al., 2022] .
Notably, in [Caminada and Gabbay, 2009], they proved that the three-valued
stable models of a NLP correspond to the complete extensions of its corre-
sponding AF. Later, [Caminada et al., 2015b] investigated whether the same
results would hold for the particular cases of the three-valued models and com-
plete extensions semantics, showing there are some exceptions to the expected
correspondences.

Just like in these works, here we will primarily be concerned with seman-
tics, investigating whether each argumentation system we examine is able (or
not) to model the entailment of logic programming (and vice-versa). On that
matter, we will provide a detailed overview of the connections between logic
programming with AFs, ABA, ADFs and Argumentation Frameworks with

2

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Sets of Attacking Arguments (SETAFs) [Nielsen and Parsons, 2006; Bikakis
et al., 2021]. Other notable systems will be mentioned in connection to logic
programs only briefly, as required of each case.

Besides motivation and semantics, some connections naturally arise in the
implementation of argumentation systems using logic programming solvers.
More specifically, given the non-monotonic nature and the fact that typical
reasoning tasks in argumentation are NP/coNP-hard, answer-set programming
[Gelfond and Lifschitz, 1991] is an immediate choice for the implementa-
tion of argumentation systems. This connection has been explored and devel-
oped in multiple works, such as [Nieves et al., 2008; Wakaki and Nitta, 2008;
Egly et al., 2008; Egly et al., 2010; Dvořák et al., 2011; Dvořák et al., 2015;
Ellmauthaler and Strass, 2014; Dvořák and Wallner, 2020; Sakama and Rien-
stra, 2017; Cyras and Toni, 2016; Lehtonen et al., 2017; Lehtonen et al.,
2021b].

The current chapter is structured as follows. First, in Section 2, we intro-
duce the necessary concepts and notation we require to discuss logic programs.
Then, in Section 3, we examine how Abstract Argumentation can be used to
model the entailment of Logic Programming and vice versa. The next couple
of sections follow the same approach to compare logic programming to other
notable argumentation systems: in Section 4, we examine how Assumption-
Based Argumentation can be used to model the entailment of Logic Program-
ming (and vice-versa) and in Section 5 we do the same for Abstract Dialectical
Frameworks and for Frameworks with Sets of Attacking Arguments. In Sec-
tion 6, we discuss possibilities for the implementation of argumentation sys-
tems based on Answer-Set Programming (ASP) solvers. We round off with a
discussion in Section 7, where we mention a few other systems worth notice
and their connection to logic programming.

2 Logic Programs: Syntax and Semantics

We start with formally introducing the notion of a logic program. For our
current purposes, we restrict ourselves to normal logic programs, which are
logic programs without strong negation where the head of each rule consists
of a single atom.

Definition 1. A logic programming rule (or simply a rule, for short) is an

3

SÁ, DVOŘÁK, CAMINADA

expression

x← y1, . . . , yn, not z1, . . . , not zm (n ≥ 0, m ≥ 0)

where x, each yi (1 ≤ i ≤ n) and each zj (1 ≤ j ≤ m) is an atom, and not
represents negation as failure (NAF). A logic program (or simply a program)
P consists of a finite set of rules.

Intuitively, a rule r such as x ← y1, . . . , yn, not z1, . . . , not zm ex-
presses there is a proof for x if each of y1, . . . , yn can be proven while each of
z1, . . . , zn cannot. Moving forward, we may refer to x as the head or conse-
quent of the rule (writing head(r) = x) and to y1, . . . , yn, not z1, . . . , not zm

as its body (writing body(r) = {y1, . . . , yn, not z1, . . . , not zm}). Moreover,
we say that body+(r) = {y1, . . . , yn} is the strong part of the body and that
body−(r) = {not z1, . . . , not zm} is the weak part of the body. Each ex-
pression not w, where w is an atom, is called a NAF literal. Then, a rule is
NAF-free iff it does not contain NAF literals (i.e., iff m = 0). Similarly, a
program is NAF-free iff all of its rules are NAF-free. Finally, the Herbrand
Base of a logic program P (written as HBP) is the set of all atoms in P .

In the following, we recall the definitions of logic programming semantics
found in [Przymusinski, 1990; Caminada et al., 2015b; Caminada and Schulz,
2017], but in slightly different fashion for the sake of uniformity. We will
comment on what is different as we advance through the concepts.

Definition 2. A 3-valued interpretation of a logic program P with respect to a
set of atoms Atms ⊇ HBP is a triple I = (T, F, U) 1 such that T , F and U
are pairwise disjoint and T ∪ F ∪ U = Atms.

Intuitively, a 3-valued interpretation (or simply an interpretation) of P
w.r.t. Atms ⊇ HBP evaluates the atoms in Atms according to the truth values
true, false and undecided. Then, given an interpretation I = (T, F, U), the
atoms in T are said to be true, the atoms in F are said to be false and those in
U are said to be undecided. Further, each interpretation I can be characterized
as a function I : Atms → {true, false, undecided}.

Given an interpretation, a program may be transformed into a correspond-
ing NAF-free program through the notion of reduct:

1Traditionally, program interpretations are presented as a pair (T, F), where the result of
U = HBP \ (T ∪ F) is left implicit. Making U explicit helps with uniformity in our text.

4

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Definition 3. The reduct of a logic program P w.r.t. an interpretation I =
(T, F, U), written as P I , is obtained by replacing in all rules of P the occur-
rences of each NAF literal not x by t if x ∈ F , by f if x ∈ T , and by u
otherwise.

In the context of a program reduct, t, f and u are auxiliary terms inter-
preted as positive literals (atoms) not in HBP . As such, the reduct of any pro-
gram P is necessarily a NAF-free program. Semantically, each interpretation
I = (T, F, U) of P w.r.t. HBP is extended into a corresponding interpre-
tation Ǐ = (Ť , F̌ , Ǔ) of P w.r.t. HBP ∪ {t, f , u} such that Ť = T ∪ {t},
F̌ = F ∪ {f}, and Ǔ = U ∪ {u}.

Concerning NAF-free programs, the notion of 3-valued model easily fol-
lows:

Definition 4. Given a NAF-free program P , an interpretation I = (T, F, U)
of P w.r.t. Atms ⊇ HBP is a 3-valued model (or simply a model) of P if, for
each rule x← y1, . . . , yn in P , it holds that

I(x) ≥ min({Ǐ(yi) | i ∈ {1, . . . , n}})

following the truth order true > undecided > false.

Intuitively, in a model of P , the head of each rule is at least as true as the
least true literal in its body.

When P is a NAF-free logic program (possibly containing t, f or u), the
existence of a unique minimal 3-valued model Φ(P) = (T, F, U) with mini-
mal T and maximal F (w.r.t. ⊆) among all 3-valued models of P is ensured
[Przymusinski, 1990]. Then, since any program reduct P I is NAF-free, it nec-
essarily has a unique minimal 3-valued model Φ(P I). This leads to the core
semantics we will discuss for logic programs in this work:

Definition 5. ([Przymusinski, 1990]) Let Mod be a model of P . We say that

Mod is a 3-valued stable model of P iff Φ(P Mod) = Mod.

We now recall various logic programming semantics which are based on
3-valued interpretations. The presentation below was originally provided in
[Caminada et al., 2015b; Caminada et al., 2022], where correspondences to
other equivalent concepts for the same semantics were discussed. It is heavily

5

SÁ, DVOŘÁK, CAMINADA

based on Przymusinski’s three-valued stable semantics [Przymusinski, 1990]
and tailored to ease the comparison to argumentation semantics2.

Definition 6. ([Caminada et al., 2015b; Caminada et al., 2022]) Let P be a
logic program and Mod = (T, F, U) be a 3-valued interpretation of P w.r.t.
HBP . We say that Mod is:

1. the well-founded model of P iff Mod is the 3-valued stable model
where T is ⊆-minimal among all 3-valued stable models of P

2. a regular model of P iff Mod is a 3-valued stable model
where T is ⊆-maximal among all 3-valued stable models of P

3. a 2-valued stable model of P iff Mod is a 3-valued stable model
where T ∪ F = HBP

4. an L-stable model of P iff Mod is a 3-valued stable model
where U is ⊆-minimal among all 3-valued stable models of P

5. a pre-ideal model of P iff Mod is a 3-valued stable model
where T ⊆ Treg for each regular model Modreg = (Treg, Freg, Ureg) of
P

6. the ideal model of P iff Mod is the pre-ideal model
where T is ⊆-maximal among all pre-ideal models of P

7. a pre-eager model of P iff Mod is a 3-valued stable model
where T ⊆ Tls for each L-stable model Modls = (Tls, Fls, Uls) of P

8. the eager model of P iff Mod is the pre-eager model
where T is ⊆-maximal among all pre-eager models of P

Each logic program has one or more 3-valued stable models, a unique well-
founded model, one or more regular models, zero or more 2-valued stable
models, one or more L-stable models, one or more pre-ideal models, a unique
ideal model, one or more pre-eager models and a unique eager model.

2A similar characterization of these semantics (except well-founded) as special cases of the
three-valued stable semantics (there called P-stable models) can be found in [Saccà and Zaniolo,
1997]

6

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

3 On the Connection between AbstractArgumentation
and Logic Programming

In the current section, we will show how abstract argumentation and logic pro-
gramming are related. Each system has its own syntax and a particular variety
of semantics, which relate to the evaluation of a particular set of sentences. For
the logic programs we are interested in, the sentences are propositional atoms,
whereas in argumentation frameworks, the sentences are called arguments. To
proceed, we must consider back and forth translations: one will show how
an argumentation framework can be encoded as a logic program (which we
will call AA2LP), the other will show how a logic program can be encoded
by an argumentation framework (which we will call LP2AA). In each case,
we will show whether some semantics for the destiny system captures some
semantics from the origin system. The discussion we conduct in this section
summarizes results obtained in [Dung, 1995b; Caminada and Gabbay, 2009;
Caminada et al., 2015b; Sá and Alcântara, 2021a; Caminada et al., 2022].

3.1 Abstract Argumentation: Syntax and Semantics

Intuitively, an argumentation framework portrays a set of arguments and the
conflicts among them. The conflicts are modelled as a binary relation over
the arguments, leading to the instantiation of an argument graph. For current
purposes, we restrict ourselves to finite argumentation frameworks.

Definition 7. ([Dung, 1995b]) An argumentation framework is a pair AF =
(Ar , att) where Ar is a finite set of arguments and att ⊆ Ar ×Ar .

Argumentation semantics are commonly presented in the form of argu-
ment extensions [Dung, 1995b] or argument labellings, which, as explained in
[Caminada, 2006; Caminada and Gabbay, 2009; Baroni et al., 2018], coincide
with their respective extension-based variants. The core semantics for argu-
mentation frameworks is commonly considered to be the complete semantics,
especially because a variety of other argumentation semantics can be obtained
as particular cases of that semantics.

Definition 8. Let AF = (Ar , att) be an argumentation framework. An argu-
ment labelling is a function ArgLab : Ar → {in, out, undec}.

7

SÁ, DVOŘÁK, CAMINADA

Given an argument labelling ArgLab, we write val(ArgLab) to refer to
the set of arguments labelled as val ∈ {in, out, undec} in ArgLab. For
convenience, we may as well refer to ArgLab as the 3-tuple (in(ArgLab),
out(ArgLab), undec(ArgLab)). We invite the reader to notice how argument
labellings are inherently similar to the interpretations found in logic program-
ming (see Definition 2).

Definition 9. Let AF = (Ar , att) be an argumentation framework. An ar-
gument labelling ArgLab is called a complete argument labelling iff for each
A ∈ Ar it holds that:

• if ArgLab(A) = in then for every B ∈ Ar that attacks A it holds that
ArgLab(B) = out

• if ArgLab(A) = out then there exists some B ∈ Ar that attacks A such
that ArgLab(B) = in

• if ArgLab(A) = undec then (i) not every B ∈ Ar that attacks A has
ArgLab(B) = out and (ii) no B ∈ Ar that attacks A has ArgLab(B) =
in

It was shown in [Caminada and Gabbay, 2009] that the complete seman-
tics for abstract argumentation corresponds to the 3-valued stable model se-
mantics of logic programming. The result is obtained through suitable trans-
lations from abstract argumentation frameworks to logic programs (and back)
and mapping the complete labellings of the framework to the 3-valued stable
models of the corresponding program (and vice-versa). From there, the same
translations can be used to obtain a series of additional results [Caminada et
al., 2015b; Caminada et al., 2022] regarding the correspondence of different
argumentation and logic programming semantics.

Before we introduce the translations and properly show how those results
are obtained, we must define the other semantics we require for argumentation
frameworks. On that matter, we invite the reader to observe the similarities
between Definition 6 and Definition 10.

Definition 10. Let ArgLab be an argument labelling of argumentation frame-
work AF = (Ar , att). ArgLab is called:

• the grounded argument labelling iff ArgLab is a complete argument la-
belling where in(ArgLab) is ⊆-minimal among all complete argument
labellings of AF

8

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

• a preferred argument labelling iff ArgLab is a complete argument la-
belling where in(ArgLab) is ⊆-maximal among all complete argument
labellings of AF

• a stable argument labelling iff ArgLab is a complete argument labelling
where undec(ArgLab) = ∅

• a semi-stable argument labelling iff ArgLab is a complete argument la-
belling where undec(ArgLab) is ⊆-minimal among all complete argu-
ment labellings of AF

• a pre-ideal argument labelling3 iff ArgLab is a complete argument la-
belling where in(ArgLab) ⊆ in(ArgLabpr) for each preferred argu-
ment labelling ArgLabpr of AF

• the ideal argument labelling iff ArgLab is a pre-ideal argument labelling
and in(ArgLab) is⊆-maximal among all pre-ideal argument labellings
of AF

• a pre-eager argument labelling iff ArgLab is a complete argument la-
belling where in(ArgLab) ⊆ in(ArgLabsem) for each semi-stable ar-
gument labelling ArgLabsem of AF

• the eager argument labelling iff ArgLab is a pre-eager argument la-
belling where in(ArgLab) is⊆-maximal among all pre-eager argument
labellings of AF

Each argumentation framework has one or more complete labellings, a
unique grounded labelling, one or more preferred labellings, zero or more
stable labellings, one or more semi-stable labellings4, one or more pre-ideal
labellings, a unique ideal labelling, one or more pre-eager labellings and a
unique eager labelling.

3A similar concept is also present in [Dung et al., 2007] where the ideal extension is defined
in terms of ideal sets. We opted for a slightly narrower concept based on the complete semantics
(instead of the admissible semantics) following [Caminada et al., 2022]. This is merely a matter
of choice, since the ideal extension of an argumentation framework is necessarily complete
[Dung et al., 2007].

4This is because we only consider finite argumentation frameworks. An infinite argumen-
tation framework can have zero or more semi-stable labellings [Caminada and Verheij, 2010;
Weydert, 2011; Baumann and Spanring, 2015; Baumann, 2018].

9

SÁ, DVOŘÁK, CAMINADA

3.2 From Abstract Argumentation to Logic Programming

Now we will turn our attention to how argumentation semantics can be mod-
elled by logic programming semantics via a suitable translation.

Intuitively, given an argumentation framework, an argument can be ac-
cepted only if all of its attackers are rejected (i.e., not accepted). That compre-
hension leads to a straightforward translation from argumentation frameworks
to logic programs which can be found in [Wu et al., 2009; Caminada et al.,
2015b]:

Definition 11. ([Wu et al., 2009]) Let AF = (Ar , att) be an argumentation
framework, the logic program associated to AF is

AA2LP(AF) = PAF = {A← not B1, . . . , not Bm | A ∈ Ar and

{Bi | (Bi, A) ∈ att} = {B1, . . . , Bm}}.

Given AF , the program PAF lists one rule for each argument a in AF
expressing there is a proof for a (semantically, that it is true) if each of its
attackers cannot be proven (semantically, if they are false).A special case is an
argument (say A) without any attackers, which translates to a rule “A←” with
an empty body. Because there is only one rule for each argument, the exclusive
set of conditions allows the rules to be read as “if and only if”.

Example 1. Consider the argumentation framework AF = ({A1, A2, A3, A4,
A5, A6, A7, A8, A9}, {(A1, A1), (A1, A4), (A1, A6), (A2, A3), (A2, A4), (A2,
A7), (A3, A2), (A3, A5), (A3, A8), (A4, A1), (A4, A4), (A4, A6), (A5, A5),
(A5, A9)}), depicted below:

A2 A3A4A1 A5

A7A6 A8 A9

Its associated logic program PAF is5:
5Please notice that we use the names of the arguments as atoms in the associated logic

10

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

r1 : A1 ← not A1, not A4 r2 : A2 ← not A3
r3 : A3 ← not A2 r4 : A4 ← not A1, not A2, not A4
r5 : A5 ← not A3, not A5 r6 : A6 ← not A1, not A4
r7 : A7 ← not A2 r8 : A8 ← not A3
r9 : A9 ← not A5

Notice how the rules in PAF immediately describe the conditions for each
argument in AF to be accepted based on the attack relation. For instance, the
rule r2 : A2 ← not A3 expresses that A2 should be proven (i.e. accepted) if
and only if A3 is not. Indeed A3 is the only attacker of A2 in AF . Furthermore,
if AF had an argument B with no attackers, a corresponding rule "rB : B ←"
with empty body would occur in PAF .

Programs such as PAF pertain to the class of AF-Programs ([Caminada et
al., 2015b]), which includes all logic programs corresponding to the descrip-
tion of an argumentation framework.6

Definition 12. (AF-Program [Caminada et al., 2015b]) A logic program P is
an AF-Program if for each c ∈ HBP there is at most one rule with conclu-
sion c.

Albeit simple, the translation function AA2LP was shown to preserve the
semantics of any input argumentation frameworks [Caminada et al., 2015b;
Caminada et al., 2022] for all the complete semantics and its particular cases
listed in Definition 10. In fact, AA2LP preserves the complete labelling seman-
tics from the input argumentation framework without change7:

program. Doing so brings no prejudice to our original definitions on logic programs. Instead of
using the names of arguments, we could use atoms such as a1, a2, ..., a4 or a, b, c, d in order to
build an alike program. In that setting, each atom would be represent one of the arguments.

6Please notice that although each logic program that is the result of translating an argumen-
tation framework is an AF-Program, it is not the case that every AF-Program can be the result
of translating an argumentation framework. A counter example would be an AF-Program with
a strong literal in the body of one of its rules.

7The original results require a translation between argumentation labellings and program
models, but only because they defined program interpretations as a pair (T, F) (leaving implicit
the set of undecided atoms) instead of a tuple (T, F, U). Given an argumentation labelling
(in, out, undec), their translation involved only omitting undec to provide (in, out) as the
resulting interpretation.

11

SÁ, DVOŘÁK, CAMINADA

Theorem 1. ([Caminada and Gabbay, 2009]) Let AF = (Ar , att) be an argu-
mentation framework and ArgLab = (in, out, undec) be a complete labelling
of AF . Then ArgLab is a 3-valued stable model of PAF .

This result rules in favor of logic programming subsuming abstract argu-
mentation, since it portrays the coincidence of semantics, not merely a way
to map labellings to models. A range of results similar to that of Theorem 1,
immediately follows.

Corollary 2. Let AF = (Ar , att) be an argumentation framework, ArgLab =
(in, out, undec) be a complete argument labelling of AF and AA2LP(AF) =
PAF. Then:

• If ArgLab is grounded, then ArgLab is the well-founded model of PAF.

• If ArgLab is preferred, then ArgLab is a regular model of PAF.

• If ArgLab is stable, then ArgLab is a 2-valued stable model of PAF.

• If ArgLab is semi-stable, then ArgLab is a L-stable model of PAF.

• If ArgLab is pre-ideal, then ArgLab is a pre-ideal model of PAF.

• If ArgLab is ideal, then ArgLab is the ideal model of PAF.

• If ArgLab is pre-eager, then ArgLab is a pre-eager model of PAF.

• If ArgLab is eager, then ArgLab is the eager model of PAF.

3.3 From Logic Programming to Abstract Argumentation

Moving from normal logic programming to abstract argumentation requires
more steps and intricate machinery.

We start with describing how the rules of a Logic Program can be used
to construct arguments. For this, we revisit the approach of [Caminada et
al., 2015b] with a slight change to include default arguments, which were
introduced in [Sá and Alcântara, 2021a].

Definition 13. Let P be a logic program, we define the arguments and default
arguments induced by P as follows:

12

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

• If c is an atom in HBP and there is at least one r ∈ P for which
head(r) = c, then not c is a default argument (say Dc) with

– Conc(Dc) = not c,

– Rules(Dc) = ∅
– Vul(Dc) = {c}, and

– Sub(Dc) = {Dc}.

• If c ← not b1, . . . , not bm is a rule in P , then it is also an argument
(say A) with

– Conc(A) = c,

– Rules(A) = {c← not b1, . . . , not bm},
– Vul(A) = {b1, . . . , bm}, and

– Sub(A) = {A}.

• If c ← a1, . . . , an, not b1, . . . , not bm is a rule in P and for each
ai (1 ≤ i ≤ n) there exists an argument Ai with Conc(Ai) = ai

and such that c ← a1, . . . , an, not b1, . . . , not bm is not contained
in Rules(Ai), then c ← (A1), . . . , (An), not b1, . . . , not bm is an ar-
gument (say A) with

– Conc(A) = c,

– Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {c← a1, . . . , an,
not b1, . . . , not bm}

– Vul(A) = Vul(A1) ∪ . . .∪ Vul(An) ∪ {b1, . . . , bm}, and

– Sub(A) = {A} ∪ Sub(A1) ∪ . . . ∪ Sub(An).

In essence, an argument can be seen as a tree-like structure of rules (the
only difference with a real tree is that a rule can occur at more than one place
in the argument) corresponding to a possible proof for some atom in the lan-
guage of the program. Following that idea, default arguments concern possible
proofs that can be drawn from the program using no rules. Default arguments
model the fact that NAF-literals are true by default in every semantics of a
logic program, hence their name.

13

SÁ, DVOŘÁK, CAMINADA

From the above, if A is an argument, Conc(A) is referred to as the conclu-
sion of A, Rules(A) is referred to as the rules of A, Vul(A) is referred to as
the vulnerabilities of A and Sub(A) is referred to as the subarguments of A.

The next step in constructing the argumentation framework is to determine
the attack relation: an argument attacks another iff its conclusion is among the
vulnerabilities of the attacked argument. With that we mind, we can propose:

Definition 14. Let P be a logic program. The argumentation framework as-
sociated with P is

LP2AA(P) = AFP = (ArP , attP)

where ArP is the set of arguments from P (Definition 13) and

attP = {(A, B) | Conc(A) ∈ Vul(B)}

.

Concerning AFP , please notice that:

• Each argument that is not a default argument attacks one and only one
default argument.

• Each default argument attacks zero arguments8.

Therefore, in AFP , one can differentiate whether two arguments have the
same conclusion or not [Sá and Alcântara, 2021a]: it suffices to check if they
attack the same default argument, which in turn are the only arguments in
AFP that do not attack any arguments. This is an advantage over the original
definition of [Caminada et al., 2015b].

We can can now apply argumentation semantics to the resulting argumen-
tation framework and, based on the resulting argument labelling(s), obtain
their associated conclusion labelling(s) using the approach of [Caminada et
al., 2015b; Caminada et al., 2022].

Definition 15. ([Caminada et al., 2015b; Caminada et al., 2022]) Let P be a
logic program. A conclusion labelling of P is a function ConcLab : HBP →
{in, out, undec}. Let ArgLab be an argument labelling of AFP . We say that

8This is because the conclusion of a default argument is a NAF-literal, which are never
among the vulnerabilities of arguments.

14

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

ConcLab is the associated conclusion labelling of ArgLab iff ConcLab is a
conclusion labelling such that for each c ∈ HBP it holds that

ConcLab(c) = max({ArgLab(A) | Conc(A) = c} ∪ {out})

where in > undec > out.
We say that a conclusion labelling is complete iff it is the associated con-

clusion labelling of a complete argument labelling.
Further, we define the function ArgLab2ConcLab such that for any com-

plete argument labelling ArgLab, we have that ArgLab2ConcLab(ArgLab) is
the conclusion labelling associated with ArgLab. Finally, we define the func-
tions ConcLab2ArgLab as the inverse of ArgLab2ConcLab9.

Fundamentally, conclusion labellings and program interpretations are the
same, the only difference being the naming convention for the truth values in
use10. It has been shown in [Wu et al., 2009; Caminada et al., 2015b] that
complete conclusion labellings coincide with 3-valued stable models11.

Theorem 3. ([Wu et al., 2009; Caminada et al., 2015b]) Let P be a logic
program and AFP = (ArP , attP) be its associated argumentation framework.
It holds that:

1. if Mod is a 3-valued stable model of P then Mod is a complete conclusion
labelling of P

2. if ConcLab is a complete conclusion labelling of P then ConcLab is a
3-valued stable model of P

Once again, we obtain a coincidence result, but one should notice that
conclusion labellings are not considered argumentation semantics, since they

9It has been shown in [Caminada et al., 2015b] that when restricted to complete argument
labellings and complete conclusion labellings, ArgLab2ConcLab and ConcLab2ArgLab are
both bijective and each others inverse.

10In previous works, such as in [Wu et al., 2009; Caminada et al., 2015b], the authors
considered special functions ConcLab2Mod and Mod2ConcLab to convert between conclusion
labellings and logic programming models, but they are not required here due to our choice of
notation for program interpretations.

11The results reported were obtained using the translation from [Wu et al., 2009; Caminada
et al., 2015b]. The only difference is that we add default arguments to the set of arguments
obtained from a program in Definition 13. It was shown in [Sá and Alcântara, 2021a] that the
introduction of the extra arguments preserves all the results from previous works.

15

SÁ, DVOŘÁK, CAMINADA

do not evaluate arguments. For this reason, we have a higher interest in the
corresponding result regarding complete argument labellings:

Theorem 4. ([Wu et al., 2009; Caminada et al., 2015b]) Let P be a logic
program and AFP = (ArP , attP) be its associated argumentation frame-
work. Then ArgLab is a complete argument labelling of AFP if and only if
ArgLab2ConcLab(ArgLab) is a 3-valued stable model of P .

Differently from the previous result, this one does not involve an immedi-
ate coincidence, only a way to map corresponding models and labellings. This
difference is quite significant12: given a program P ,

• if one retrieves the complete conclusion labellings of AFP having mini-
mal/maximal in/out/undec, they will coincide with the 3-valued stable
models having minimal/maximal true/false/undec (due to Theorem 3);

• but if one retrieves the complete argument labellings of AFP having
minimal/maximal in/out/undec, they may or may not correspond to the
3-valued stable models having minimal/maximal true/false/undec [Cam-
inada et al., 2015b].

The following example13 illustrates a scenario where minimizing undecid-
ness at the argument level is not the same as minimizing undecidedness at the
conclusion level.

Example 2. Consider the following logic program P :

r1 : c← not c
r2 : a← not b
r3 : b← not a
r4 : c← not c, not a
r5 : g ← not g, not b

One can then build the arguments from P :

12These results are discussed at length in [Caminada et al., 2015b] and complemented in
[Caminada et al., 2022].

13The program example and its corresponding AF are adapted from [Caminada et al., 2015b;
Caminada et al., 2022] to include default arguments. One of the original arguments was also
removed for compactness.

16

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

• A1 = r1, with Conc(A1) = c and Vul(A1) = {c}

• A2 = r2, with Conc(A2) = a and Vul(A2) = {b}

• A3 = r3, with Conc(A3) = b and Vul(A3) = {a}

• A4 = r4, with Conc(A4) = c and Vul(A4) = {c, a}

• A5 = r5, with Conc(A5) = g and Vul(A5) = {g, b}

• A6 = not c, with Conc(A6) = not c and Vul(A6) = {c}

• A7 = not a, with Conc(A7) = not a and Vul(A7) = {a}

• A8 = not b, with Conc(A8) = not b and Vul(A8) = {b}

• A9 = not g, with Conc(A9) = not g and Vul(A9) = {g}

The associated argumentation framework AFP of P is shown in Figure 1.

A2 A3A4A1 A5

A7A6 A8 A9

Figure 1: The argumentation framework AFP associated with P .

The complete argument labellings of AFP are

• ArgLab1 = (∅, ∅, {A1, A2, A3, A4, A5, A6, A7, A8, A9})

• ArgLab2 = ({A2, A8}, {A3, A4, A7}, {A1, A5, A6, A9})

• ArgLab3 = ({A3, A7, A9}, {A2, A5, A8}, {A1, A4, A6})

The associated complete conclusion labellings are

• ConcLab1 = (∅, ∅, {a, b, c, g}),

17

SÁ, DVOŘÁK, CAMINADA

• ConcLab2 = ({a}, {b}, {c, g}), and

• ConcLab3 = ({b}, {a, g}, {c}).

ArgLab2 and ArgLab3 are semi-stable argument labellings, that is, com-
plete argument labellings where undec is ⊆-minimal. Hence, the associated
conclusion labellings ConcLab2 and ConcLab3 are semi-stable conclusion la-
bellings. However, because undec(ConcLab2) ⊃ undec(ConcLab3), we find
that ConcLab2 is not an L-stable model of P . So here we have an example of
a logic program where the semi-stable and L-stable conclusion labellings do
not correspond.

Further, because ArgLab2 and ArgLab3 are both semi-stable argument
labellings, ArgLab1 is the only pre-eager argument labelling and the eager
argument labelling of AFP . On the other hand, since only ConcLab3 is an
L-stable model of P , both ConcLab1 and ConcLab3 are pre-eager models and
ConcLab3 is the eager model of P . Therefore, the pre-eager and the eager
argument semantics may fail to capture the pre-eager and eager semantics for
logic programs.

Overall, the results found in [Caminada et al., 2015b; Caminada et al.,
2022] can be summarized as follows:

Theorem 5. ([Caminada et al., 2015b; Caminada et al., 2022]) Let P be a
logic program, AFP be its associated argumentation framework and ArgLab
be a complete argument labelling of AFP . Then:

1. ArgLab is grounded if and only if ArgLab2ConcLab(ArgLab) is well-
founded

2. ArgLab is preferred if and only if ArgLab2ConcLab(ArgLab) is regular

3. ArgLab is stable if and only if ArgLab2ConcLab(ArgLab) is stable

4. ArgLab is pre-ideal if and only if ArgLab2ConcLab(ArgLab) is pre-
ideal

5. ArgLab is ideal if and only if ArgLab2ConcLab(ArgLab) is ideal

6. If ArgLab is semi-stable, ArgLab2ConcLab(ArgLab) may not be L-
stable (and vice-versa).

18

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

7. If ArgLab is pre-eager, ArgLab2ConcLab(ArgLab) may not be pre-
eager (and vice-versa).

8. If ArgLab is eager, ArgLab2ConcLab(ArgLab) may not be eager (and
vice-versa).

The results gathered so far allow us to observe the fundamental difference
between logic programming and (instantiated) argumentation. Logic program-
ming, in essence, does the maximization and the minimization on the conclu-
sion level. That is, it (conceptually) takes all complete argument labellings,
converts these to conclusion labellings, and then selects the maximal/minimal
among these. Instantiated argumentation, on the other hand, does the maxi-
mization and minimization on the argument level. That is, it (conceptually)
takes all complete argument labellings, selects the maximal/minimal among
these, and then converts these to conclusion labellings. So whereas logic
programming does the maximization/minimization after converting argument
labellings to conclusion labellings, instantiated argumentation does the max-
imization/minimization before converting argument labellings to conclusion
labellings.14

3.4 The Conundrum of Minimizing Undecided Arguments vs Un-
decided Conclusions

The non-correspondence result concerning the semi-stable argument semantics
and L-stable logic programming semantics (from [Caminada et al., 2015b])
motivated further investigation in attempts to understand their differences and
whether it is possible to devise an argumentation semantics that captures the
L-stable semantics. Among these efforts, Sá and Alcântara observed that the
difference is always related to some arguments whose attackees coincide: in
their redundancy, one or more of those arguments would become irrelevant
to the evaluation of those arguments they mutually attack [Sá and Alcântara,

14It has to be mentioned that formalisms such as ASPIC+ [Modgil and Prakken, 2013;
Modgil and Prakken, 2014; Modgil and Prakken, 2018], ABA [Bondarenko et al., 1997;
Toni, 2014; Čyras et al., 2018] and logic-based argumentation [Gorogiannis and Hunter, 2011;
Besnard and Hunter, 2014] have been stated in terms of extensions instead of in terms of la-
bellings. However, as extensions and labellings coincide [Caminada, 2006; Caminada and Gab-
bay, 2009; Baroni et al., 2018] they could be viewed in terms of labellings as well.

19

SÁ, DVOŘÁK, CAMINADA

2021a]. They also identified that sink15 arguments played a major role in pin-
pointing the culprit arguments. As we consider the instantiation of default
arguments in Definition 13, they correspond precisely to the sinks in the ar-
gumentation framework associated with a given program. Further, Definition
13 ensures there is precisely one default argument for each atom that can be
proven in a program, intuitively allowing the definition of new argumentation
semantics that maximize/minimize the labels of default arguments. This led to
the proposal of the L-stable argumentation semantics.

Definition 16. Let ArgLab be an argument labelling of AF . Given

SINKSAF = {A ∈ Ar | ∀B ∈ Ar , (A, B) /∈ att},

we say that ArgLab is an L-stable argument labelling iff ArgLab is a complete
argument labelling where undec(ArgLab) ∩ SINKSAF is ⊆-minimal among
the complete argument labellings of AF . 16

The L-stable argument labellings share similar properties to those of the
semi-stable argument labellings [Sá and Alcântara, 2021a]:

• Every AF has at least one L-stable labelling.

• If AF has at least one stable labelling, then ArgLab is an L-stable argu-
ment labelling of AF if and only if ArgLab is a semi-stable argument
labelling of AF if and only if ArgLab is a stable argument labelling of
AF .

Example 3. Looking back at Example 2, we had that both

ArgLab2 = ({A2, A8}, {A3, A4, A7}, {A1, A5, A6, A9}) and

ArgLab3 = ({A3, A7, A9}, {A2, A5, A8}, {A1, A4, A6})

are semi-stable argument labellings, but only ArgLab2ConcLab(ArgLab3) is
an L-stable model of P . Given that SINKSAFP

= {A6, A7, A8, A9}, we have
that only ArgLab3 is an L-stable argument labelling. Hence, the L-stable ar-
gument labellings of AFP correspond to the L-stable models of P for this
example.

15In graph theory terminology, a sink is a node from which no edges originate.
16The definition we provide differs from the original one in [Sá and Alcântara, 2021a],

but they proved that the property we use in our definition is exclusively satisfied by L-stable
argument labellings.

20

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

It was proved in [Sá and Alcântara, 2021a] that the L-stable argument se-
mantics indeed captures the L-stable program semantics.

Theorem 6. ([Sá and Alcântara, 2021a]) Let P be a logic program, AFP be
its associated argumentation framework and ArgLab be a complete argument
labelling of AFP . Then ArgLab is an L-stable argument labelling of AFP if
and only if ArgLab2ConcLab(ArgLab) is an L-stable model of P .

Furthermore, we can devise new semantics based on the L-stable labellings
in a similar spirit to the pre-eager and eager semantics:

Definition 17. Let ArgLab be an argument labelling of AF . ArgLab is called:

• a L-pre-eager argument labelling iff ArgLab is a complete argument la-
belling where in(ArgLab) ⊆ in(ArgLablst) for each L-stable argument
labelling ArgLablst of AF

• the L-eager argument labelling iff ArgLab is a pre-eager argument la-
belling where in(ArgLab) is maximal (w.r.t. ⊆) among all pre-eager
argument labellings of AF

Now, given that the L-stable argument semantics captures the L-stable pro-
gram semantics, we obtain as a corollary of Theorem 6 that

Corollary 7. Let P be a logic program, AFP be its associated argumentation
framework and ArgLab be a complete argument labelling of AFP . Then

1. ArgLab is an L-pre-eager argument labelling of AFP if and only if
ArgLab2ConcLab(ArgLab) is a pre-eager model of P .

2. ArgLab is the L-eager argument labelling of AFP if and only if
ArgLab2ConcLab(ArgLab) is the eager model of P .

These results ensure the existence of argument semantics able to model
every logic programming semantics for which [Caminada et al., 2015b; Cam-
inada et al., 2022] could not find correspondence results. However, they bring
new questions: what logic programming semantics could model the L-stable,
L-pre-eager and L-eager argument semantics?

From the discussion of translation AA2LP in Section 3.2, we can ensure
that such logic programming semantics can definitely be obtained, however

21

SÁ, DVOŘÁK, CAMINADA

it is possible they have not been defined in the logic programming literature
and will seem counter-intuitive. The reason is that we have one-to-one cor-
respondence between arguments in a given argumentation framework AF and
program rules in AA2LP(AF). This means that only a subset of the program
rules corresponds to default arguments, therefore minimizing undecided de-
fault arguments in AF corresponds to minimizing undecided conclusions for
only a subset of the atoms (or rules) in the program.

Defining such semantics anew could prove to be a complicated task, since
the concept of sink nodes (or sink atoms) is not as obvious in the context of
logic programs. Fortunately, given an argumentation framework AF and its
corresponding program AA2LP(AF), it is rather simple to retrieve what atoms
in AA2LP(AF) correspond to the sinks in AF: since all arguments that are not
sinks by definition attack one or more arguments, the sinks correspond to those
atoms in AA2LP(AF) for which their respective NAF-literals do not occur in
the rules of AA2LP(AF).17 18

Definition 18. Given AF , let P = AA2LP(AF) and Mod = (T, F, U) be a
3-valued interpretation of P w.r.t. HBP . Further, given

SINKSP = {c ∈ HBP | ∀r ∈ P, not c /∈ body(r)},

we say that Mod is

• an L∗-stable model of P iff Mod is a 3-valued stable model
where U ∩ SINKSP is minimal (w.r.t. ⊆) among all 3-valued stable
models of P .

• an L-pre-eager model of P iff Mod is a 3-valued stable model
where T ⊆ Tl∗ for each L∗-stable model Modl∗ = (Tl∗ , Fl∗ , Ul∗) of P

• the L-eager model of P iff Mod is the pre-eager model
where T is ⊆-maximal among all pre-eager models of P

17As an abuse of notation, we allow ourselves to reuse the function name SINKS both to
retrieve from an AF its sink arguments and to retrieve from a program its atoms corresponding
to sink arguments of a corresponding AF. The subscript text should be enough to indicate what
is the case.

18As an example, notice how not A6, not A7, not A8 and not A9 do not occur in the
rules of PAF in Example 1.

22

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Now, since the 3-valued stable models of AA2LP(AF) are precisely the
complete argument labellings of AF (Theorem 1), we obtain the following
results, which complement Corollary 2:

Corollary 8. Let AF = (Ar , att) be an argumentation framework, ArgLab =
(in, out, undec) be a complete argument labelling of AF , and AA2LP(AF) =
PAF. Then:

• If ArgLab is L-stable, then ArgLab is an L∗-stable model of PAF.

• If ArgLab is L-pre-eager, then ArgLab is a L-pre-eager model of PAF.

• If ArgLab is L-eager, then ArgLab is the L-eager model of PAF.

At this point, once again, we must seek different argumentation semantics
capable of expressing the new program semantics. This game may stabilize
around a few semantics based on minimal undecided literals and arguments,
but it might just as well go on indefinitely. We should also mind how the trans-
lation functions have a fundamental role in the results obtained.19 One can
say that AA2LP is a definitive translation, given the coincidental results it pro-
vides starting from argumentation semantics, but since LP2AA can only provide
correspondence results, it leaves open the possibility that it may somehow be
improved for the sake of capturing logic programming semantics.

4 On the Connection between Assumption-Based Ar-
gumentation and Logic Programming

Assumption-Based Argumentation (ABA) [Bondarenko et al., 1997; Dung et
al., 2009] is a rule-based argumentation formalism where some special sen-
tences called assumptions, which are true by default (that is, unless their con-
trary can be proved) and have a central role in semantics. Just like in abstract

19For instance, a different translation including singleton arguments for undefined atoms in
a program (those that are not in the heads of any rules) was proposed in [Cramer and Saldanha,
2020]. Their translation also includes default arguments for negative literals (just like ours),
causing the undefined atoms to be labelled as undec by the grounded AF semantics, whereas
in our approach, they will be labelled out. As an effect, they find that the grounded AF seman-
tics captures the weak completion semantics [Hölldobler and Kencana Ramli, 2009] for logic
programs.

23

SÁ, DVOŘÁK, CAMINADA

argumentation, theories in ABA are proposed as frameworks whose semantics
are primarily retrieved in terms of extensions and labellings, but, at the same
time, ABA frameworks share similar syntax to logic programs, allowing their
semantics to be understood in terms of interpretations and models [Sá and Al-
cântara, 2019; Sá and Alcântara, 2021b]. The similarities may be illustrated
with matching examples even before we formally introduce ABA frameworks.

Example 4. Take into consideration the logic program P 20 as follows:

P : a← not b c← not c
b← not a d← b, c

Following [Bondarenko et al., 1997], P would be translated into the ABA
framework ABA(P) = F21 below.

F : a← β c← γ α = a β = b
b← α d← b, c γ = c δ = d

Notice how the rules in F (depicted in the first two columns) mirror the
rules of P , while the operator captures the semantics of not . The language
of F is a bit different from the language of P , but not by much. It consists of
eight sentences, namely a, b, c, d, α, β, γ, δ, where α, β, γ, δ respectively model
not a, not b, not c, not d as native elements in F’s language. The sentences
α, β, γ, δ are called assumptions and each one has a unique contrary in our
example: a is the contrary of α (which corresponds to not a), b is the contrary
of β (which corresponds to not b), and so on.

Moving on, if one follows [Caminada and Schulz, 2017] to translateF into
a logic program, one would obtain P as a result. However, this would also be
the program obtained if the input is F ′ below, which corresponds to F except
that δ is not in its language.

F ′ : a← β c← γ α = a β = b
b← α d← b, c γ = c

While the difference between F ,F ′ may seem small, the semantics of these
frameworks are significantly different just becauseF has one assumption more
than F ′. And yet, the approach of [Caminada and Schulz, 2017] translates
both F and F ′ to P .

20This program is extracted from [Caminada and Schulz, 2017].
21At this time, to avoid the necessity of formal concepts, only the core syntactic elements of

F are shown.

24

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

The ABA frameworks above illustrate the main challenge when translating
from ABA to logic programming: the semantics of logic programs evaluate
all22 sentences in the language of the program (the atoms) while the main-
stream semantics of ABA evaluate only some sentences in the language of
each framework (the assumptions). Understanding this is the only difference
explains how ABA can easily capture inference and semantics from logic pro-
gramming and highlights the only obstacle for logic programming to capture
inference and semantics from ABA. Fortunately, the difference will only be ob-
served over semantics minimizing undecided sentences over ABA frameworks
where the assumptions are not one-to-one related to non-assumption sentences
as their contraries [Caminada and Schulz, 2017] and even then it can be fixed
by an operation called semantic projection [Sá and Alcântara, 2021b].

4.1 Assumption-Based Argumentation: Syntax and Semantics

We briefly restate the core concepts of ABA frameworks [Bondarenko et al.,
1997; Dung et al., 2007; Dung et al., 2009] before we can proceed to discuss
the translations and technical results regarding connections between Logic
Programming and ABA.

Definition 19. ([Dung et al., 2009]) An ABA framework is a tuple ⟨L,R,A, ⟩
where:

• ⟨L,R⟩ is a deductive system where L is a logical language and R is a
set of inference rules on that language

• A ⊆ L is a (non-empty) set, whose elements are referred to as assump-
tions

• is a total mapping fromA into L\A,23 where α is called the contrary
of α.

22If one accounts of NAF-literals as sentences in the language of a program, the semantics
would evaluate necessarily half the sentences, but traditionally the language of the program is
defined in terms of its Herbrand Base. In either case, ABA frameworks are flexible regarding
how many sentences in the language of a framework are assumptions.

23In the ABA literature it is common that the contrary relation allows an assumption to
be the contrary of another assumption or even for an assumption to have multiple contraries. In
each case, ABA frameworks can be rewritten into an equivalent ABA framework where each
assumption has a single contrary that is not an assumption [Caminada and Schulz, 2017].

25

SÁ, DVOŘÁK, CAMINADA

For current purposes, we restrict ourselves to ABA frameworks that are flat
[Bondarenko et al., 1997], meaning that no assumption appears in the head of
an inference rule. Furthermore, we follow [Dung et al., 2009] in that each
assumption has a unique contrary. This choice makes it easier to define some
of the concepts we need.

Definition 20. ([Dung et al., 2009]) Given a deductive system ⟨L,R⟩, and a
set of assumptions A ⊆ L, an argument for c ∈ L (the conclusion or claim)
supported by S ⊆ A is a tree with nodes labelled by formulas in L or by the
special symbol ⊤ such that:

• the root is labelled c

• for every node N

– if N is a leaf then N is labelled either by an assumption or by ⊤
– if N is not a leaf and b is the label of N , then there exists an

inference rule b ← b1, . . . , bm (m ≥ 0) and either m = 0 and
the child of N is labelled by ⊤, or m > 0 and N has m children,
labelled by b1, . . . , bm respectively

• S is the set of all assumptions labelling the leaves.

We say that a set of assumptions Asms ⊆ A enables the construction of
an argument A if A is supported by a subset of Asms. A set of assumptions
Asms1 is said to attack an assumption α iff Asms1 enables the construction
of an argument for α. A set of assumptions Asms1 is said to attack a set of
assumptions Asms2 iff Asms1 attacks some assumption α ∈ Asms2.

The next step is to describe the various ABA semantics, which can be
conveyed in the forms of assumption extensions [Bondarenko et al., 1997],
assumption labellings [Schultz and Toni, 2014; Schulz and Toni, 2017] or in-
terpretations and models [Sá and Alcântara, 2019; Sá and Alcântara, 2021b]
with corresponding translations between them. For the sake of uniformity in
our presentation, we opt to prioritize the discussion of ABA semantics in the
form of assumption labellings.

Definition 21. ([Schultz and Toni, 2014; Schulz and Toni, 2017]) An assump-
tion labelling of F is a total function L : A → {in, out, undec}.

26

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

The same conventions we applied before to interpretations and argument
labellings apply to assumption labellings, since we can perceive all of those
concepts as the same function applied over different domains.

Definition 22. ([Schultz and Toni, 2014; Schulz and Toni, 2017]) An assump-
tion labelling L = (in(L), out(L), undec(L)) of F is complete iff for each
α ∈ A it holds that:

• if α ∈ in(L), then each S ⊆ A attacking α has some β ∈ S such that
β ∈ out(L);

• if α ∈ out(L), then there exists some S ⊆ A attacking α such that
S ⊆ in(L);

• if α ∈ undec(L), then (i) each S ⊆ A attacking α is such that S \
in(L) ̸= ∅ and (ii) there is at least one S ⊆ A attacking α such that
S ∩ out(L) = ∅.

Notice how Definition 22 closely resembles the definition of complete ar-
gument labellings (Definition 9).

Example 5. The ABAF F (Example 4) has three complete assumption la-
bellings: L1 = ({ }, { }, {α, β, γ, δ}), L2 = ({β, δ}, {α}, {γ}), and L3 =
({α}, {β}, {γ, δ}). Just alike, F ′ (Example 4) has three complete assump-
tion labellings: L′

1 = ({ }, { }, {α, β, γ}), L′
2 = ({β}, {α}, {γ}), and L′

3 =
({α}, {β}, {γ}).

The other labelling-based ABA semantics are defined as usual, as particu-
lar cases of the complete semantics:

Definition 23. Let L be an assumption labelling of ABA framework F =
⟨L,R,A, ⟩. L is called24:

• the grounded assumption labelling iff L is a complete assumption la-
belling where in(L) is ⊆-minimal among all complete assumption la-
bellings of F

24The semi-stable and the eager semantics for ABA were originally defined in [Caminada et
al., 2015a] as extensions. We adapted the presentation of these semantics to favour uniformity
with our previous definitions.

27

SÁ, DVOŘÁK, CAMINADA

• a preferred assumption labelling iffL is a complete assumption labelling
where in(L) is⊆-maximal among all complete assumption labellings of
F

• a stable assumption labelling iff L is a complete assumption labelling
where undec(L) = ∅

• a semi-stable assumption labelling iff L is a complete assumption la-
belling where undec(L) is ⊆-minimal among all complete assumption
labellings of F

• a pre-ideal assumption labelling iff L is a complete assumption labelling
where in(L) ⊆ in(Lpr) for each preferred assumption labelling of F

• the ideal assumption labelling iff L is the complete assumption labelling
where in(L) is ⊆-maximal among all pre-ideal assumption labellings
of F

• a pre-eager assumption labelling iffL is a complete assumption labelling
where in(L) ⊆ in(Lsem) for each semi-stable assumption labelling of
F

• the eager assumption labelling iff L is the complete assumption labelling
where in(L) is ⊆-maximal among all pre-eager assumption labellings
of F

Example 6. Among the complete assumption labellings of F (see Example
4 and Example 5), one can observe that: L1 is the grounded assumption la-
belling; L2,L3 are preferred assumption labellings; there are no stable as-
sumption labellings; L2 is the only semi-stable assumption labelling; L1 is the
only pre-ideal assumption labelling and therefore it is also ideal; L1,L2 are
pre-eager and so L2 is the eager assumption labelling.

4.2 From Logic Programming to Assumption-Based Argumenta-
tion

First, we will consider how logic programming semantics can be captured by
ABA using a suitable translation. Intuitively, assumptions are sentences in
the language of an ABA framework that are true unless their contrary can be

28

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

proved. This describes precisely the behaviour of NAF-literals in the setting
of logic programs. This intuition explains the translation proposed by [Bon-
darenko et al., 1997], which we introduce below.

Definition 24. ([Bondarenko et al., 1997]) Let P be a program. The ABA
framework associated to P is

LP2ABA(P) = FP = ⟨LP ,RP ,AP , ⟩

where25:

• LP = HBP ∪ {not a | a ∈ HBP };

• RP = P ;

• AP = {not a | a ∈ HBP };

• not a = a for each not a ∈ A.

We draw special attention to the fact that the NAF-literals of P become
assumptions while the contrary relation implements the NAF operator not .
Also, the set of rules RP coincides with P , hence the framework keeps all
rules from the original program unchanged.

Example 7. Take the LP P from Example 4, then LP2ABA(P) = FP =
⟨LP ,RP ,AP , ⟩ with LP = {a, b, c, d, not a, not b, not c, not d}, RP =
P ,AP = {not a, not b, not c, not d} and such that not a = a, not b = b,
not c = c and not d = d. We adopt the same visual queue used in the intro-
duction of this section for easier reference:

FP : a← not b c← not c not a = a not b = b
b← not a d← b, c not c = c not d = d

Notice how F from Example 4 is the same as FP , only the assumptions
were renamed as α, β, γ, δ.

ABA frameworks such as FP are called assumption spanning in [Cami-
nada and Schulz, 2017].

25Remember we treat programs as sets of rules and that HBP is the set of all atoms appear-
ing in P .

29

SÁ, DVOŘÁK, CAMINADA

Definition 25. ([Caminada and Schulz, 2017]) Let F = ⟨L,R,A, ⟩ be an
ABA framework. We say that F is assumption-spanning iff for each x ∈ L \A
there exists some χ ∈ A such that χ = x.

The translation function LP2ABA was shown to model the semantics of any
input logic programs for the 3-valued stable semantics and all its particular
cases listed in Definition 6 [Bondarenko et al., 1997; Caminada and Schulz,
2017] using an auxiliary translation between assumption labellings and pro-
gram interpretations:

Definition 26. Let L = (in, out, undec) be an assumption labelling of FP .
The program interpretation of P corresponding to L is L2I(L) = (T, F, U)
with T = {α | α ∈ out(L)}, F = {α | α ∈ in(L)}, and U = HBP \(T∪F).

We are now ready to list the relevant results from [Bondarenko et al., 1997;
Caminada and Schulz, 2017]:

Theorem 9. Let P be a logic program. Then L is a complete assumption
labelling of FP if and only if L2I(L) is a 3-valued stable model of P .

While this result is not coincidental, the function L2I becomes bijective
when used to map assumption labellings of FP to corresponding program in-
terpretations of P .26 In this setting, L2I−1 is also a function, therefore the
result in Theorem 9 is equivalent to a coincidence result. The same reasoning
holds for the results below.

Theorem 10. Let P be a logic program and L be a complete assumption
labelling of FP . Then:27

• If L is grounded, then L2I(L) is the well-founded model of P .

• If L is preferred, then L2I(L) is a regular model of P .

• If L is stable, then L2I(L) is a stable model of P .

• If L is semi-stable, then L2I(L) is a L-stable model of P .

26This is ensured by the fact that the contrary relation P obtained in FP is necessarily
bijective.

27The results concerning semi-stable, pre-ideal, pre-eager and eager ABA semantics are
new, but their proofs may be dismissed because they follow directly from Theorem 9.

30

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

• If L is pre-ideal, then L2I(L) is a pre-ideal model of P .

• If L is ideal, then L2I(L) is the ideal model of P .

• If L is pre-eager, then L2I(L) is a pre-eager model of P .

• If L is eager, then L2I(L) is the eager model of P .

The results gathered ensure that flat ABA frameworks capture normal logic
programs and their semantics, leaving it open whether logic programming also
captures ABA frameworks and their semantics. We will delve into this ques-
tion next.

4.3 From Assumption-Based Argumentation to Logic Program-
ming

Moving from assumption-based argumentation to logic programming is trick-
ier because logic programs have only one set of sentences (the atoms) and
a matching number of corresponding NAF-literals, but assumptions and non-
assumptions may appear in any proportion in an ABA framework. If we ignore
this obstacle for a moment and only consider the semantics of assumptions,
there are two straightforward ways to represent assumptions from an ABA
framework in a corresponding logic program:

1. they can be mapped to the NAF-literals of the resulting program [Cami-
nada and Schulz, 2017] or

2. they can be mapped to special atoms defined28 by the negation of their
contraries [Sá and Alcântara, 2021b].

The first option results from reversing the translation LP2ABA of [Bon-
darenko et al., 1997]. This approach works perfectly for the class of assump-
tion-spanning ABA frameworks [Caminada and Schulz, 2017], even so that all
the results of Theorem 9 and of Theorem 10 are mirrored for them. This much
ensures that

28If a program has only one rule for a given atom c such as r : c ← body(r), that rule is
understood as the definition of c in P and it may be read as “c if and only iff body(r)”.

31

SÁ, DVOŘÁK, CAMINADA

Theorem 11. Normal logic programs are equivalent29 to assumption-spanning
ABA frameworks.

When it comes to ABA frameworks in general, this approach is enough to
ensure that logic programming captures most of ABA semantics, but it finds
exceptions in the ABA semantics that minimize undecided assumptions (such
as semi-stable, pre-eager and eager). The discrepancy arises because this trans-
lation is only injective for assumption-spanning ABA frameworks, not in gen-
eral.

The second option [Sá and Alcântara, 2021b] matches the language of the
input ABA framework (all sentences) to the language of the output logic pro-
gram (all atoms). By doing so, the models of the corresponding program will
evaluate all sentences from the input ABA framework, both assumptions and
non-assumptions. This intuition led to the proposal of a model theory with in-
terpretation and model semantics for ABA in [Sá and Alcântara, 2019]. Then,
in order to retrieve assumption labellings, it is necessary to restrict the lan-
guage of the models in the output program to the set of assumptions from the
input ABA framework [Sá and Alcântara, 2021b]. This is achieved using an
operation called projection in the logic programming literature. The results of
[Sá and Alcântara, 2021b] ensure that

Theorem 12. ([Sá and Alcântara, 2021b]) Flat ABA frameworks are equiva-
lent to normal logic programs with projection.

In the following, we will introduce the available translations and the results
ensured by each one.

4.3.1 Mapping Assumptions to NAF-literals

We proceed to describe the approach and results obtained by [Caminada and
Schulz, 2017].

Given an ABA framework F = ⟨L,R,A, ⟩ any translation from ABA to
Logic Programming should be primarily based on R. As such, the idea is to
translate each rule in R to an associated Logic Programming rule. Further, in
F , if α is an assumption whose contrary is the sentence a, we will find that α
can be labelled in as long as all arguments for a have at least one assumption in

29Here, by saying two argumentation systems are equivalent, we mean that the sets of prob-
lems that can be expressed and solved in both systems coincide.

32

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

their support that is out. Intuitively, this means that α can be proved based on
a labelling as long as a cannot. Therefore, not must be used to implement the
contrary relation . In this first translation, each occurrence of α is replaced
with “not a” or, using the contrary relation, “not α”.

Definition 27. ([Caminada and Schulz, 2017]) Let F = ⟨L,R,A, ⟩ be an
ABA framework, the program corresponding to F is

ABA2LPCS17(F) = PF = {a← b1, . . . , bn, not γ1, . . . , not γm |
a← b1, . . . , bn, γ1, . . . , γm ∈ R}.

Example 8. Remember F ,F ′ and P from Example 4. Both ABA frameworks
present a ← β as one of its inference rules. In each case, this rule will be
translated to a ← not b, given that β = b. As we previously mentioned, we
will find that ABA2LPCS17(F) = ABA2LPCS17(F ′) = P .

As before, we must retrieve assumption labellings from the models of the
resulting program, which is done by a specialized function:

Definition 28. ([Caminada and Schulz, 2017]) Let I = (T, F, U) be a model
of PF , the assumption labelling of F corresponding to I is

I2L(I) = ({α ∈ A | α ∈ F}, {α ∈ A | α ∈ T}, {α ∈ A | α ∈ U}).

Notice how A is required for the computation of the function I2L. In the
next section we will build over the relevance of this parameter to motivate a
different translation from ABA to LP. For now, we opt to leave this parameter
implicit here (as in [Caminada and Schulz, 2017]), since it can be retrieved
from F .

Theorem 13. [Caminada and Schulz, 2017] Let F be an ABA framework.
Then I is a 3-valued stable model of PF if and only if I2L(I) is a complete
assumption labelling of F .

Differently from before, the function I2L cannot be inverted in this setting.

Example 9. Take F ′ from Example 4, we find that ABA2LPCS17(F ′) = P . Now
we have that I = ({a}, {b, d}, {c}) is a 3-valued stable model of P and that
I2L(I) = ({β}, {α}, {γ}) is a complete assumption labelling ofF ′. However,
L2I(I2L(I)) = ({a}, {b}, {c, d}), which is not the same as I . The difference
follows from the fact that there is no δ ∈ A′ such that δ = d, so L2I leaves d
undecided.

33

SÁ, DVOŘÁK, CAMINADA

Therefore, the result in Theorem 13 ensures a one-to-one correspondence,
but it is not as strong as a coincidence result. This situation is quite similar to
the one we found in Section 3.3, when trying to model logic programming se-
mantics using abstract argumentation frameworks. In fact, the correspondence
and exception results we will find in this scenario mimic those we found then.

On that matter, we find a similar discrepancy when trying to minimize un-
decided atoms in program models versus undecided assumptions in matching
assumption labellings.

Example 10. Once again, retrieve F ,F ′ from Example 4 and remember that
ABA2LPCS17(F) = ABA2LPCS17(F ′) = P . Continuing from Example 5 and
Example 6, we have that F has a single semi-stable assumption labelling
L2 = ({β, δ}, {α}, {γ}), whereas F ′ has two: L′

2 = ({β}, {α}, {γ}) and
L′

3 = ({α}, {β}, {γ}). As expected, since LP2ABA(P) = F , the seman-
tics of P mirrors that of F: P has a single L-stable model, namely I2 =
({a}, {b, d}, {c}). On the other hand, the L-stable models of ABA2LP(F ′) = P
do not correspond one-to-one to the semi-stable assumption labellings of F ′.
Further, P has two pre-eager models, namely I1 = ({ }, { }, {a, b, c, d}) and
I2, so I2 is the eager model of P , whereas the only pre-eager (and therefore
eager) assumption labelling of F ′ is L′

1 = ({ }, { }, {α, β, γ}). This means
that the pre-eager and eager semantics of P do not correspond to the pre-eager
and eager assumption labellings of F ′.

Overall, the results found in [Caminada and Schulz, 2017] can be summa-
rized (and extended30) as follows:

Theorem 14. Let F be an ABA framework, ABA2LPCS17(F) = PF be its as-
sociated logic program and I be a 3-valued stable model of PF . Then:

1. I is well-founded if and only if I2L(I) is grounded

2. I is regular if and only if I2L(I) is preferred

3. I is stable if and only if I2L(I) is stable

4. I is pre-ideal if and only if I2L(I) is pre-ideal

30The pre-ideal, pre-eager and eager ABA semantics are not mentioned in [Caminada and
Schulz, 2017]. The result for pre-ideal follows as corollary of their proof about preferred se-
mantics. The results for pre-eager and eager are justified in Example 10.

34

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

5. I is ideal if and only if I2L(I) is ideal

6. I is L-stable, I2L(I) may not be semi-stable (and vice-versa)

7. I is pre-eager, I2L(I) may not be pre-eager (and vice-versa)

8. I is eager, I2L(I) may not be eager (and vice-versa)

We highlight that for assumption-spanning ABA frameworks, I2L becomes
bijective and the missing correspondence results are restored.

Theorem 15. Let F be an ABA framework, ABA2LPCS17(F) = PF be its
associated logic program and I be a 3-valued stable model of PF . If F is
assumption-spanning, then:

1. I is L-stable if and only if I2L(I) is semi-stable

2. I is pre-eager if and only if I2L(I) is pre-eager

3. I is eager if and only if I2L(I) is eager

The results gathered ensure the conclusion in Theorem 11.

4.3.2 ABA as Logic Programming with Projection

The translation of [Caminada and Schulz, 2017] has a couple of drawbacks:
(i) it is not injective over ABA frameworks in general and (ii) if the input ABA
framework has more non-assumptions than assumptions, the output program
may have more NAF-literals than the number of assumptions in the input. Fur-
ther, the function I2L requires knowledge of what the set of assumptions A
is in the input ABA framework. Ideally, if we want logic programs to model
ABA frameworks, the step where one retrieves assumption labellings from
models of its corresponding program should not depend on knowledge of the
input. This led [Sá and Alcântara, 2021b] to propose a different translation,
mapping assumptions to positive literals instead of NAF-literals, thus avoiding
those issues.

Given F = ⟨L,R,A, ⟩, the translation of [Sá and Alcântara, 2021b]
produces a program P where:

1. HBP = L, which means that the assumptions of F now correspond to a
subset of HBP . This allows assumptions to be modelled in P regardless
of the proportion between A and L.

35

SÁ, DVOŘÁK, CAMINADA

2. P ⊃ R, so the inference rules from F are kept unaltered in the resulting
program. Since not is alien to the native syntax of ABA, we can ensure
that not does not appear in R. A complimentary set of program rules
using not is added to implement the contrary relation , ensuring that
the translation is injective over ABA frameworks in general and that
the set of assumptions from F can be retrieved syntactically from the
complimentary rules.

Definition 29. ([Sá and Alcântara, 2021b]) Let F = ⟨L,R,A, ⟩ be an ABA
framework, the program corresponding to F is

ABA2LPSA21(F) = P ′
F = R∪ {α← not α | α ∈ A}.

Example 11. Recover F ,F ′ from Example 4. We have that ABA2LPSA21(F) =
P ′

F = R ∪ {α ← not a, β ← not b, γ ← not c, δ ← not d} and
ABA2LPSA21(F ′) = P ′

F ′ = P ′
F \ {δ ← not d}.

Given an F and its corresponding P ′
F , A can be retrieved from P ′

F : each
α ∈ A appears as the head of a single rule rα in P ′

F for which body−(rα) ̸= ∅,
a condition only met by rules in P ′

F \ R.
The results based on ABA2LPSA21 include mappings regarding assumption

labellings as well as model semantics for ABA frameworks, which were intro-
duced in [Sá and Alcântara, 2019]. The general idea of their work consists of
treating ABA frameworks just like logic programs, which includes the com-
putation of semantics through a division operator and steps similar to what
we introduced in Section 2. As such, interpretations and models evaluate all
sentences in L, not only the assumptions.

For the sake of uniformity and because ABA model semantics are not
mainstream, we will only discuss in depth the results involving assumption
labellings. Concerning ABA model semantics, to discuss it briefly, [Sá and
Alcântara, 2021b] proved that the 3-valued stable models of ABA2LPSA21(F)
coincide with the complete models of F , ensuring that:

Theorem 16. Flat-ABA frameworks under model semantics are equivalent to
ABA-programs31.

31The fragment of ABA-programs describes all the programs that can be obtained as output
of ABA2LPSA21. See [Sá and Alcântara, 2021b] for their definition and properties.

36

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

The discussion of model semantics for ABA in [Sá and Alcântara, 2019]
included comparative results to the assumption labellings of [Schulz and Toni,
2017]. The mapping from ABA models to corresponding ABA assumption
labellings is performed by an operation they called tuple projection (or simply
projection), which can be applied to interpretations, models and all labellings
alike.

Definition 30. Let S be a set and T = (S1, S2, . . . , Sk) be a tuple of sets. The
projection of S on T is

σS(T) = (S1 ∩ S, S2 ∩ S, . . . , Sk ∩ S).

Definition 31. ([Sá and Alcântara, 2021b]) Let I = (T, F, U) be a model
of P ′

F , the assumption labelling of F = ⟨L,R,A, ⟩ corresponding to I is
obtained by projecting A on I ,32 i.e., I2LSA21(I) = σA(I).

We are now ready to list the main results from [Sá and Alcântara, 2021b]:

Theorem 17. ([Sá and Alcântara, 2021b]) Let F be an ABA framework. Then
I is a 3-valued stable model of PF if and only if I2LSA21(I) = σA(I) is a
complete assumption labelling of F .

Example 12. Recover F ,F ′ from Example 4, for which ABA2LPSA21(F) =
P ′

F = R ∪ {α ← not a, β ← not b, γ ← not c, δ ← not d} and
ABA2LPSA21(F) = P ′

F ′ = P ′
F \ {δ ← not d} (Example 11).

• The 3-valued stable models of P ′
F are I1 = ({ }, { }, {a, b, c, d, α, β, γ,

δ}), I2 = ({a, β, δ}, {b, d, α}, {c, γ}) and I3 = ({b, α}, {a, β}, {c, d,
γ, δ}). Now we can obtain I2LSA21(I1) = σA(I1) = ({ }, { }, {α, β, γ,
δ}), I2LSA21(I2) = σA(I2) = ({β, δ}, {α}, {γ}), and I2LSA21(I3) =
σA(I3) = ({α}, {β}, {γ, δ}), which correspond precisely to the com-
plete assumption labellings of F , as seen in Example 5.

• The 3-valued stable models of P ′
F ′ are I ′

1 =({},{}, {a, b, c, d, α, β, γ}),
I ′

2 = ({a, β}, {b, d, α}, {c, γ}) and I ′
3 = ({b, α}, {a, β}, {c, d, γ}).

Now, we can obtain I2LSA21(I ′
1) = σA(I ′

1) = ({ }, { }, {α, β, γ}),
I2LSA21(I ′

2) = σA(I ′
2) = ({β}, {α}, {γ}), I2LSA21(I ′

3) = σA(I ′
3) =

({α}, {β}, {γ}), which correspond precisely to the complete assump-
tion labellings of F ′, as seen in Example 5.

32Remember that A can be retrieved directly from P ′
F as A = {head(r) ∈ P ′

F |
body−(r) ̸= ∅}.

37

SÁ, DVOŘÁK, CAMINADA

When restricted to complete assumption labellings and 3-valued stable
models of corresponding pair of F and P ′

F , I2LSA21 becomes bijective and
admits an inverse I2L−1

SA21. For this reason, similarly to what we observed in
the discussion of Theorem 9 in Section 4.2, the result in Theorem 17 is equiv-
alent to a coincidence result. The same reasoning holds for the results below.

Theorem 18. Let F be an ABA framework, ABA2LPSA21(F) = P ′
F be its as-

sociated logic program and I be a 3-valued stable model of P ′
F . Then:

1. I is well-founded if and only if I2L(I) is grounded

2. I is regular if and only if I2L(I) is preferred

3. I is stable if and only if I2L(I) is stable

4. I is pre-ideal if and only if I2L(I) is pre-ideal

5. I is ideal if and only if I2L(I) is ideal

6. I is L-stable if and only if I2L(I) is semi-stable

7. I is pre-eager if and only if I2L(I) is pre-eager

8. I is eager if and only if I2L(I) is eager

The results gathered ensure that flat ABA framework and their semantics
are captured by ABA-programs with the projection of assumptions. Combined
with Theorem 16 ([Sá and Alcântara, 2021b]) and the results in Section 4.2,
we obtain Theorem 11.

5 Equivalence for enhanced frameworks

In this section, we will briefly discuss some notable argumentation systems of
which the connection to logic programming have been studied, namely Ab-
stract Dialectical Frameworks (ADF) [Brewka and Woltran, 2010; Brewka et
al., 2018] and Argumentation Frameworks with Sets of Attacking Arguments
(SETAF) [Nielsen and Parsons, 2006; Bikakis et al., 2021]. We consider these
extensions of Dung’s AFs to be representative of the diverse enhanced frame-
works proposed in the literature and have chosen them because of their rela-
tions to each other and to Logic Programming have been well studied. Other

38

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

systems, for which not as much research has been conducted, will be discussed
in the next section.

Differently from what we did in the previous sections, we will not fully
introduce the definitions for systems we discuss here. Instead, we will focus
only on their syntax to introduce appropriate translations and list the results
concerning the preservation of semantics in each case.

5.1 Abstract Dialectical Frameworks

Abstract Dialectical Frameworks (ADFs) [Brewka and Woltran, 2010; Brewka
et al., 2013] were proposed to treat arguments (called statements there) as ab-
stract and atomic entities. The connections between ADFs and logic program-
ming start from the original definitions in [Brewka and Woltran, 2010], where
the authors adopted the standard terminology and even the notion of reduction
from logic programming (Definition 3) to obtain model semantics for ADFs.
Their connection to logic programming was studied in depth by [Strass, 2013]
and [Alcântara et al., 2019].

Similarly to Dung’s AFs, an ADF can be perceived as a directed graph
of which the nodes represent statements which can get accepted or not. But
differently from Dung’s AFs, where the edges represent conflicts between ar-
guments, here the links represent the more general notion of dependencies:
the status (accepted/not accepted) of a node s depends only on the status of its
parents (par(s)), i.e., the nodes with a direct link to s. For simplicity, we will
restrict ourselves to finite ADFs:

Definition 32. ([Brewka and Woltran, 2010]) An abstract dialectical frame-
work is a tuple D = (S, L, C) where

• S is a finite set of statements (positions, nodes);

• L ⊆ S×S is a set of links, and ∀s ∈ S, par(s) = {t ∈ S | (t, s) ∈ L};

• C = {Cs | s ∈ S} is a set of total functions Cs : 2par(s) → {t, f}, one
for each statement s. Cs is called the acceptance condition of s.

The function Cs is intended to determine the acceptance status of a state-
ment s, which only depends on the status of its parent nodes par(s). Intu-
itively, s will be accepted if there exists R ⊆ par(s) for which Cs(R) = t,

39

SÁ, DVOŘÁK, CAMINADA

which means that every statement in R is accepted while each statement in
par(s)−R is not accepted.

The semantics of ADFs are primarily given by interpretations and models
over the set of sentences. The definitions introduced by [Brewka and Woltran,
2010; Brewka et al., 2013] to obtain the complete models of an ADF [Brewka
et al., 2013] closely resemble the ones we presented in Section 2 to obtain the
3-valued stable models of a program. As such, the complete models of an ADF
D are obtained as the least fixed points of a reduction operator ΓD [Brewka et
al., 2013] which was adapted from logic programming to work with ADFs and
was shown to always have a least model [Brewka and Woltran, 2010]. We opt
not to introduce this operator here for the sake of brevity and simplicity in our
presentation of ADFs.

Definition 33. Let D = (S, L, Cφ) be an ADF and v be a 3-valued interpre-
tation over S.33 Then v is a complete model of D iff v = ΓD(v).

As usual, some of the mainstream semantics for an ADF are obtained as
special cases of the complete semantics. Most of the semantics below were
originally proposed in [Brewka et al., 2013], except for the L-stable ADF se-
mantics, which was proposed by [Alcântara et al., 2019]. The text of this
definition is adapted to our needs, to make its presentation uniform with our
previous definitions of semantics.

Definition 34. Let D = (S, L, C) be an ADF, and v a model of D. Then

• v is the grounded model of D iff v is the complete model of D for which
t(v) = {s ∈ S | v(s) = t} is ⊆-minimal among complete models of D.

• v is a preferred model of D iff v is a complete model of D for which
t(v) = {s ∈ S | v(s) = t} is⊆-maximal among complete models of D.

• v is a stable model of D iff v is a 2-valued complete model of D.

• v is a L-stable model of D iff v is a complete model of D for which
u(v)={s ∈ S | v(s) = u} is ⊆-minimal among complete models of D.

33Similarly to interpretations of logic programs, given an ADF D = (S, L, C), a 3-valued
interpretation (or simply interpretation) over S is a mapping v : S → {t, f , u} that assigns one
of the truth values true (t), false (f) or unknown (u), to each statement in S.

40

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

These ADF semantics have been shown to capture corresponding logic
programming semantics (resp. 3-valued stable models, well-founded, regular,
stable and L-stable) in Attacking Abstract Dialectical Frameworks (ADF+s)
[Alcântara et al., 2019], a fragment of ADFs in which the unique relation in-
volving statements is the attack relation.34

Definition 35. An Attacking Abstract Dialectical Framework (ADF+), is an
ADF (S, L, C) such that every (r, s) ∈ L is an attacking link [Brewka and
Woltran, 2010], i.e., there is no R ⊆ par(s) for which Cs(R) = f and
Cs(R ∪ {r}) = t. This means that for every s ∈ S and every M ⊆ par(s), if
Cs(M) = t, then for every M ′ ⊆M , we have Cs(M ′) = t.

[Alcântara et al., 2019] introduced a translation LP2ADF+ inspired by the
work of [Caminada et al., 2015b], on the basis of which they proved coinciden-
tal correspondence results between normal logic programs and ADF+ for all
ADF semantics in Definition 34. Here, we will resort to Definition 13, which
is used (indirectly) as part of the translation of [Alcântara et al., 2019].35

Definition 36. Let P be a program, for each a ∈ HBP , let

SupP (a) = {Vul(a) | A is an argument with Conc(A) = a}.

Then, the ADF+ associated to P is

LP2ADF+(P) = DP = (HBP , LP , CP)

where:

• LP = {(b, a) | b ∈ B for some B ∈ SupP (a)};

• For each a ∈ HBP , Ca =
{

B′ ⊆ par(a) \B
∣∣∣ B ∈ SupP (a)

}
.

34The class of ADF+, sometimes also referred to as support-free ADFs [Dvořák et al.,
2023b], is also a subclass of Bipolar Abstract Dialectical Frameworks [Brewka and Woltran,
2010].

35Definition 25 of [Alcântara et al., 2019] speaks of substatements, which correspond to
proofs in P and also to the arguments of our Definition 13. The support of a substatement A
in their work is defined exactly as Vul(A) from Definition 13. Finally, the notion of support is
extended to each atom a as the set of supports from substatements with Conc(A) = a, which is
the criterion we use here.

41

SÁ, DVOŘÁK, CAMINADA

The intuition for Ca in the definition above is that if an interpretation of DP

accepts all b ∈ B = Vul(A) for each argument A from P where Conc(A) = a,
then in order to be a model of DP , it must not accept a. Hence, the acceptance
condition Ca for each a ∈ HBP requires that for each set of vulnerabilities
Vul(A) ∈ SupP (A), at least one b ∈ par(a) is not accepted .

Based on the translation LP2ADF+, [Alcântara et al., 2019] proved that the
3-valued stable model semantics for normal logic programs is equivalent to the
complete model semantics of ADF for the class of ADF+.

Theorem 19. ([Alcântara et al., 2019]) Let P be a program and DP be its cor-
responding ADF+. Then v is a 3-valued stable model of P iff v is a complete
model of DP .

Until the study of [Alcântara and Sá, 2019; Alcântara et al., 2019], it was
unclear if any ADF semantics could capture the 3-valued semantics for normal
logic programs. Theorem 20 ensures that the translation from logic programs
to ADF in Definition 36 guarantees the equivalence between any semantics
based on 3-valued stable models (at the logic program side) with any semantics
based on complete models (at the ADF side). We highlight that, according to
Theorem 19, the models of P and LP2ADF+(P) coincide, so the following
results are immediate:

Corollary 20. Let P be a program and DP = (A, L, C) be its corresponding
ADF+. We have

• v is a well-founded model of P iff v is a grounded model of DP .

• v is a regular model of P iff v is a preferred model of DP .

• v is a stable model of P iff v is a stable model of DP .

• v is an L-stable model of P iff v is an L-stable model of DP .

Results such as the above can be extended to appropriate definitions of
pre-ideal, ideal, pre-eager and eager semantics for ADF. Further, because
LP2ADF+ is injective and the models of P and DP coincide for all programs
P , LP2ADF+ must be bijective and, therefore, it admits inversion. These results
lead to the conclusion that

42

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Theorem 21. Normal logic programs are equivalent to attacking abstract di-
alectical frameworks.

Given that ADF+ is a fragment of ADFs in general, this means that the
more general family of ADFs semantically subsume normal logic programs.
On the other hand, previously, [Strass, 2013] showed a direct translation from
ADFs to normal logic programs for which the program ADF+2LP(D), corre-
sponding to an ADF D, would model the semantics of Definition 33 and Defi-
nition 34 (except for L-stable, which had not been defined) following the same
correspondences we listed in Theorem 19 and Corollary 20. This means that
normal logic programs semantically subsume ADFs (in general). Combining
the results, we can gather that the two systems, NLPs and ADFs (in general),
are inherently equivalent.

5.2 ArgumentationFrameworks withSetsofAttackingArguments

A framework with sets of attacking arguments (SETAF) [Nielsen and Parsons,
2006; Bikakis et al., 2021] is an extension of Dung’s AFs (in the context of
finite AFs) to allow joint attacks on arguments. Intuitively, the need for joint
attacks arises from situations where an argument may not be enough to defeat
another on its own, but two or more arguments, together, might suffice.

Definition 37. ([Nielsen and Parsons, 2006]) A Framework with Sets of At-
tacking Arguments (SETAF for short) is a pair A = (Ar , att), in which Ar is
a finite set of arguments and att ⊆ (2Ar − {∅})×Ar .

The attack relation att is such that if (B, a) ∈ att, there is no B′ ⊂ B such
that (B′, a) ∈ att, i.e., B is a minimal set (w.r.t. ⊆) attacking a. We write
att(a) = {B ⊆ Ar | (B, a) ∈ att} to retrieve the attackers of a.

In AFs, only individual arguments can attack arguments. In SETAFs, the
novelty is that sets of two or more arguments can also attack arguments. This
means that SETAFs (Ar , att) with |B| = 1 for each (B, a) ∈ att amount to
(standard Dung) AFs.

The semantics for SETAFs are generalisations of the corresponding se-
mantics for AFs [Nielsen and Parsons, 2006] and can be defined equivalently
in terms of extensions or labellings [Flouris and Bikakis, 2019; Caminada et
al., 2024]. For our convenience, we will adhere to the presentation of labelling-
based semantics as proposed in [Flouris and Bikakis, 2019].

43

SÁ, DVOŘÁK, CAMINADA

Definition 38. Let A = (Ar , att) be a SETAF. A labelling is a function
L : Ar → {in, out, undec}. A labelling is complete iff for each a ∈ Ar ,

• If L(a) = in, then for each B ∈ att(a), there is b ∈ B s.t. L(b) = out

• If L(a) = out, then there is a B ∈ att(a) s.t. L(b) = in for all b ∈ B

• If L(a) = undec, then there is a B ∈ att(a) s.t. L(b) ̸= out for each
b ∈ B, and for each B ∈ att(a), it holds L(b) ̸= in for some b ∈ B.

As usual, we may use as shorthand in(L) = {a ∈ Ar | L(a) = in},
out(L) = {a ∈ Ar | L(a) = out}, undec(L) = {a ∈ Ar | L(a) = undec}.
Also as before, a labelling defines a partition of the set of arguments, so L
can be written as a triple (in(L), out(L), undec(L)). Intuitively, an argu-
ment labelled in is explicitly accepted; an argument labelled out is explicitly
rejected; and one labelled undec is left undecided, i.e., it is neither accepted
nor rejected. We can now describe the remaining SETAF semantics studied
in [Alcântara et al., 2023]:

Definition 39. ([Flouris and Bikakis, 2019]) Let A = (Ar , att) be a SETAF.
A complete labelling L is called

• grounded iff in(L) is ⊆-minimal among all complete labellings of A

• preferred iff in(L) is ⊆-maximal among all complete labellings of A

• stable iff undec(L) = ∅.

• semi-stable iff undec(L) is⊆-minimal among all complete labellings of
A.

Let us consider the following example:

Example 13. Consider the SETAF A = (Ar , att) below:
Concerning the semantics of A, we have

• Complete labellings: L1 = (∅, ∅, {a, b, c, d, e}), L2 = ({a}, {b}, {c, d,
e}) and L3 = ({b}, {a, e}, {c, d});

• Grounded labellings: L1 = (∅, ∅, {a, b, c, d, e});

44

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

c

a b

e

d

Figure 2: A SETAF A. Joint attacks are drawn as arrows with two or more
origin nodes as, for instance, {d, a} jointly attack argument c.

• Preferred labellings: L2 = ({a}, {b}, {c, d, e}) and L3 = ({b}, {a, e},
{c, d});

• Stable labellings: none;

• Semi-stable labellings: L3 = ({b}, {a, e}, {c, d}).

The semantics of SETAF were studied in connection with Dung’s AFs in
[Flouris and Bikakis, 2019], with ADFs in [Polberg, 2016], [Dvořák et al.,
2023b] and [Alcântara and Sá, 2021] (ADF+’s36), with ABA and CAF in
[König et al., 2022] and in connection with logic programming in [König et
al., 2022] and [Alcântara et al., 2023]. For an overview of SETAFs and their
properties, we refer to [Bikakis et al., 2021; Caminada et al., 2024]. In what
follows, we will focus on the works of [Alcântara et al., 2023]37, which con-
cerns the relation between SETAF and logic programming. The authors of
both works devised the same translation functions between SETAF and LP.
We will start with their translation from NLP to SETAF, which was shown
in [Alcântara et al., 2023] to guarantee the equivalence between various kinds
of NLPs models and SETAFs labellings, including the complete labellings,
well-founded models and grounded labellings, regular models and preferred la-
bellings, stable models and stable labellings, L-stable models and semi-stable
labellings. Following [Alcântara et al., 2023], this translation is built upon the
translation from NLP to AF of [Caminada et al., 2015b].

36Before that, [Alcântara et al., 2019] showed the translation from SETAF to ADF proposed
by [Polberg, 2016] necessarily returns an ADF+.

37The translations appearing in [Alcântara et al., 2023] were also proposed by [König et
al., 2022], but they did not explore the connections between semantics of SETAF and logic
programs beyond that. In contrast, [Alcântara et al., 2023] also offer translations between
models and labellings and prove numerous semantic correspondence results.

45

SÁ, DVOŘÁK, CAMINADA

Definition 40. Let P be a program and SP be the set of all non-default argu-
ments constructed from P following Definition 13, the SETAF corresponding
to P is LP2SETAF(P) = AP = (ArP , attP) with

• ArP = {Conc(s) | s ∈ SP }

• attP = {(B, a) | B is a ⊆-minimal set s.t.
for each A ∈ SP there is some b ∈ B ∩ Vul(A)}.

A counterpart translation from SETAFs to NLPs is also considered:

Definition 41. Let A = (Ar , att) be a SETAF, the logic program correspond-
ing to A is SETAF2LP(A) = PA with

PA = {a← not b1, . . . not bn | a ∈ Ar and {b1, . . . , bn} ∈ Va}

where, Va∈Ar = {V ⊆ Ar | V is a ⊆-minimal set s.t.
for each B ∈ att(a) there is some b ∈ B ∩ V }.

Example 14. Recall the SETAF A of Example 13 (depicted in Fig 2). The
program corresponding to A is SETAF2LP(A) = PA comprising the rules:

d← not d c← not c, not d
a← not b b← not a
c← not c, not a e← not e, not b

Further, LP2SETAF(SETAF2LP(A)) = A. As proven by [Alcântara et al.,
2023], this holds for every SETAF A. This also suffices to show that

Theorem 22. ([Alcântara et al., 2023]) Let A be a SETAF. Then L is a
complete argument labelling of A if and only if L is 3-valued stable model of
PA.

Theorem 22 portrays a coincidence between the labellings of A and the
models of its corresponding program PA. As before, other results immediately
follow:

Corollary 23. Let A be a SETAF and L = (in, out, undec) be a complete
argument labelling of A. Then:

• L is grounded if and only if L is the well-founded model of PA.

46

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

• L is preferred if and only if L is a regular model of PA.

• L is stable if and only if L is a stable model of PA.

• L is semi-stable if and only if L is a L-stable model of PA.

On the other hand, we may obtain SETAF2LP(LP2SETAF(P)) ̸= P for
some cases of a program P . This will only be observed if there is some
c ∈ HBP for which there is no rule r ∈ P with head(r) = c. In that
case, there will be no argument for c in SP , therefore c will not be in ArP

of LP2SETAF(P) = (ArP , attP). Fortunately, this problem is easy to solve: if
{r ∈ P | head(r) = c} = ∅, we observe that I(c) = f in every model I of
P , so the extra atoms can be ignored [Alcântara et al., 2023]. In what follows,
allow us to use the shorthand

HB′
P =

{
c ∈ HBP

∣∣∣{r ∈ P | head(r) = c} ≠ ∅
}

.

Theorem 24. ([Alcântara et al., 2023]) Let P be a program. Then I =
(T, F, U) is 3-valued stable model of P if and only if I ′ = (T, F ∩ HB′

P , U)
is a complete argument labelling of AP .

While the result in Theorem 24 is not coincidental, the models of P and
labellings of AP are one-to-one related because HBP \ HB′

P can be retrieved
from P . Results concerning the particular cases of the complete and 3-valued
stable models immediately follow:

Corollary 25. Let P be a program, I = (T, U, F) be a 3-valued stable model
of P and I ′ = (T, F ∩HB′

P , U). Then:

• I = (T, F, U) is well-founded if and only if I ′ is the grounded labelling
of AP .

• I = (T, F, U) is regular if and only if I ′ is a preferred labelling of AP .

• I = (T, F, U) is stable if and only if I ′ is a stable labelling of AP .

• I = (T, F, U) is L-stable if and only if I ′ is a L-stable labelling of AP .

The results in Corollary 25 and Corollary 23 could be extended to appropri-
ate definitions of pre-ideal, ideal, pre-eager and eager semantics for SETAF.
Together, the results we presented lead to the conclusion that

47

SÁ, DVOŘÁK, CAMINADA

Theorem 26. Normal logic programs are equivalent to frameworks with sets
of attacking arguments.38

6 Implementing Argumentation with Answer-Set Pro-
gramming

In this section we discuss how logic programming can be used to implement
solvers for argumentation formalisms. That is, we consider reduction-based
implementations based on answer-set programming. Answer-set programming
is based on the stable model semantics of logic programming, but, compared
to normal logic programs considered so far, also allows for variables to denote
collections of rules, for disjunction in rule heads, and several other extensions
that deal with, for instance, constraints, aggregates, and minimization/maxi-
mization. Due to the availability of efficient solvers, answer-set programming
is nowadays a successful declarative programming approach for NP-hard prob-
lems. We will distinguish two kinds of ASP-implementation:

1. In what one may call compiler-style implementations one uses a pro-
gram that given a specific semantics transforms an argumentation frame-
work into an equivalent ground, i.e., without any variables, logic pro-
gram. That is, each argumentation framework has to be compiled into
a logic program which can be solved by ASP-solvers in order to com-
pute the extensions or labellings. This is the same schema as in typical
SAT-based approaches.

2. In what we call query-based implementations or (in the context of ar-
gumentation) ASPARTIX-style implementations one encodes the argu-
mentation framework as an input database, i.e., as facts of the LP, which
is independent of the semantics and reasoning task. This input database
can then be combined with fixed encodings of semantics and reasoning
tasks in order to solve specific reasoning tasks.

Compiler-style implementations date back to [Nieves et al., 2008] and can
also be found in a more recent paper by Sakama and Rienstra (2017). The

38The only exceptions to this equivalence result are programs whose syntax include irrele-
vant atoms, which are those c ∈ HBP \ HB′

P . However, all occurrences of not c and each
r ∈ P for which c ∈ body(r) can be removed from P without prejudice to the semantics of the
remaining atoms.

48

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

query-based approach has been used for Dung style abstract argumentation
by [Wakaki and Nitta, 2008] and the ASPARTIX system [Egly et al., 2010],
and similar approaches have also been used for richer abstract argumentation
formalisms [Dvořák et al., 2015; Ellmauthaler and Strass, 2014; Dvořák et al.,
2018] and structured argumentation [Lehtonen et al., 2021a; Lehtonen et al.,
2021b]. Toni and Sergot (2011) provide a survey on the earlier works on ASP
for abstract argumentation while later surveys on implementations techniques
for argumentation by Charwat et al. (2015) and Cerutti et al. (2018) focus on
ASPARTIX-style implementations.

In the remainder of this section we start with a brief introduction to answer-
set programming, then discuss compiler style implementations for abstract ar-
gumentation frameworks, and finally discuss ASPARTIX-style approaches for
different kinds of argumentation formalisms.

6.1 Answer-Set Programming

We give an overview of the syntax and semantics of disjunctive logic programs
under the answer-set semantics [Gelfond and Lifschitz, 1991], generalizing or
Definitions from Section 2. We fix a countable set U of (domain) elements,
also called constants. An atom is an expression p(t1, . . . , tn), where p is a
predicate of arity n ≥ 0 and each ti is either a variable or an element from U .
An atom is ground if it is free of variables. BU denotes the set of all ground
atoms over U . A (disjunctive) rule r is of the form

x1 ∨ · · · ∨ xk ← y1, . . . , yn, not z1, . . . , not zm (1)

with k ≥ 0, n ≥ 0, m ≥ 0, and in each rule at least one of k, n, m is non zero.
xi, . . . , xk, y1, . . . , yn, z1, . . . , zm are atoms, and “not ” stands for negation
as failure. The head of r is the set head(r) = {x1, . . . , xk} and the body of r
is body(r) = {y1, . . . , yn, not z1, . . . , not zm}. Furthermore, body+(r)r =
{b1, . . . , bk} and body−(r) = {bk+1, . . . , bm}. A rule r is normal if k ≤ 1 and
a constraint if k = 0. A rule r is safe if each variable in r occurs in body+(r).
A rule r is ground if no variable occurs in r. A fact is a ground rule without
disjunction and empty body. An (input) database is a set of facts. A program
is a finite set of disjunctive rules. If each rule in a program is normal (resp.
ground), we call the program normal (resp. ground).

For any program π, let the Herbrand Literal Base Uπ be the set of all
constants appearing in π (if no constant appears in π, we add an arbitrary

49

SÁ, DVOŘÁK, CAMINADA

constant to Uπ). Moreover, Gr(π) is the set of rules obtained by applying, to
each rule r ∈ π, all possible substitutions σ from the variables in r to elements
of Uπ. We call Ground(π, UP) the grounding of π, and write Gr(π) as a
shorthand for Ground(π, UP). The semantics of a (non-ground) program π is
defined via its grounding Gr(π).

An interpretation I ⊆ BU satisfies a ground rule r iff head(r) ∩ I ̸= ∅
whenever body+(r) ⊆ I and body−(r) ∩ I = ∅. I satisfies a ground program
π, if each r ∈ π is satisfied by I . A non-ground rule r (resp., a program
π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.,
Gr(π)). I ⊆ BU is an answer-set of π iff it is a subset-minimal set satisfying
the Gelfond-Lifschitz reduct πI = {head(r) ← body+(r) | I ∩ body−(r) =
∅, r ∈ Gr(π)}. For a program π, we denote the set of its answer-sets by
AS(π).

Modern ASP-solvers offer additional language features. Among them we
make use of the conditional literal [Gebser et al., 2015]. In the head of a
disjunctive rule literals may have conditions, e.g. consider the head of rule
“p(X) : q(X)←”. Intuitively, this represents a head of disjunctions of atoms
p(a) where also q(a) is true. As well rules might have conditions in their body,
e.g. consider the body of rule “← p(X) : q(X)”, which intuitively represents
a conjunction of atoms p(a) where also q(a) is true. Notice, that when using
conditions in the head of a rule we have a disjunction of atoms while when
using conditions in the body of a rule we have a conjunction of atoms.

6.2 Compiler-Style ASP Encodings

In this section we follow [Sakama and Rienstra, 2017] in order to illustrate
the compiler style approach towards abstract argumentation. This approach is
based on the labelling characterisation of complete semantics and thus works
with three predicates in(x), out(x), undec(x) representing that an argument
has the corresponding label.

Example 15. As our running example for this section we will use the argumen-
tation framework AFrun = ({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}) as depicted
in Figure 3. We have the three admissible sets ∅, {a}, {b}, with {a}, {b} being
the preferred extensions and {b} being the only stable extension.

We start with the basic encoding of the in and out labels that applies to
all semantics. That is, given an argumentation framework AF = (Ar , att) we

50

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

a b c

Figure 3: Illustration of our running example AFrun for Section 6.2.

define πbasic(AF) as follows:

πbasic(AF) = {out(x)← in(y) | (y, x) ∈ att}∪
{in(x)← out(y1), . . . , out(yk) | x ∈ Ar , x− = {y1, . . . , yn}}∪
{← in(x), not out(y) | (y, x) ∈ att}∪
{← out(x), not in(y1), . . . , not in(yk) | x ∈ Ar , x− = {y1, . . . , yn}}

πbasic(AF) ensures the basic properties of labellings that if an argument
is labelled in the all its neighbours are labelled out and that if an argument is
labelled out it has an attacker that is labelled in. Notice that, so far, there is
no restriction on the number of different labels an argument can have and no
requirement to be labelled at all.

Example 16. When considering our running example AFrun and apply πbasic

we obtain the following ground logic program πbasic(AFrun):

out(b)← in(a).
out(a)← in(b).
out(c)← in(b).
out(c)← in(c).

in(a)← out(b).
in(b)← out(a).
in(c)← out(b), out(c).

← in(b), not out(a).
← in(a), not out(b).
← in(c), not out(b).
← in(c), not out(c).
← out(a), not in(b).
← out(b), not in(a).
← out(c), not in(b), not in(c).

Stable Semantics. Let us now consider stable semantics. For stable seman-
tics we only need in and out labels. In the following we extend the basic
encoding by two constraints: (i) each argument must be labelled in or out and
(ii) no argument can be labelled both in and out.

51

SÁ, DVOŘÁK, CAMINADA

πst(AF) ={in(x) ∨ out(x)←| x ∈ Ar}∪
{← in(x), out(x) | x ∈ Ar}

Example 17. When considering our running example AFrun we obtain the
following ground logic program πst(AFrun):

in(a) ∨ out(a)← .

in(b) ∨ out(b)← .

in(c) ∨ out(c)← .

← in(a), out(a).
← in(b), out(b).
← in(c), out(c).

Theorem 27. ([Sakama and Rienstra, 2017]) For every argumentation frame-
work AF = (Ar , att), the stable labellings of AF are in one-to-one corre-
spondence with the stable models of the logic program πbasic(AF)∪πst(AF).

The attentive reader may have noticed that πbasic(AF) ∪ πstb(AF) uses
disjunction in some rule heads and is thus not a normal logic program. How-
ever, often normal logic programs are preferable over disjunctive ones (e.g.,
due to limitations of solvers or computational advantages) and thus one might
ask whether we can avoid disjunctive rules here. Indeed the addition for sta-
ble semantics can be reformulated as follows in order to obtain normal logic
programs.

πstb′(AF) ={in(x)← not out(x) | x ∈ Ar}∪
{out(x)← not in(x) | x ∈ Ar}

Example 18. When considering our running example AFrun we obtain the
following ground logic program πst′(AFrun):

in(a)← not out(a).
in(b)← not out(b).
in(c)← not out(c).

out(a)← not in(a).
out(b)← not in(b).
out(c)← not in(c).

Theorem 28. ([Sakama and Rienstra, 2017]) For every argumentation frame-
work AF = (Ar , att), the stable labellings of AF are in one-to-one corre-
spondence with the stable models of the normal logic program πbasic(AF) ∪
πstb′(AF).

52

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Complete Semantics. Now we turn our attention to complete semantics.
Here we have to deal with all three labels. Again we have two types of con-
straints: (i) each argument must be labelled in, out, or undec. (ii) no argu-
ment can be labelled with two of the labels.

πco(AF) ={in(x) ∨ out(x) ∨ undec(x)←| x ∈ Ar}∪
{← in(x), out(x) | x ∈ Ar}∪
{← in(x), undec(x) | x ∈ Ar}∪
{← out(x), undec(x) | x ∈ Ar}

Example 19. When considering our running example AFrun we obtain the
following ground logic program πst(AFrun):

in(a) ∨ out(a) ∨ undec(a)← .

in(b) ∨ out(b) ∨ undec(b)← .

in(c) ∨ out(c) ∨ undec(c)← .

← in(a), out(a).
← in(b), out(b).
← in(c), out(c).

← in(a), undec(a).
← in(b), undec(b).
← in(c), undec(c).
← out(a), undec(a).
← out(b), undec(b).
← out(c), undec(c).

Theorem 29. ([Sakama and Rienstra, 2017]) For every argumentation frame-
work AF = (Ar , att), the complete labellings of AF are in one-to-one corre-
spondence with the stable models of the logic program πbasic(AF)∪πco(AF).

Again we can modify πcom(AF) in order to obtain a normal logic program.

πco′(AF) ={in(x)← not out(x), not undec(x) | x ∈ Ar}∪
{out(x)← not in(x), not undec(x) | x ∈ Ar}∪
{undec(x)← not in(x), not out(x) | x ∈ Ar}

Example 20. When considering our running example AFrun we obtain the
following ground logic program πco′(AFrun):

53

SÁ, DVOŘÁK, CAMINADA

in(a)← not out(a), not undec(a).
in(b)← not out(b), not undec(b).
in(c)← not out(c), not undec(c).

out(a)← not in(a), not undec(a).
out(b)← not in(b), not undec(b).

out(c)← not in(c), not undec(c).
undec(a)← not in(a), not out(a).
undec(b)← not in(b), not out(b).
undec(c)← not in(c), not out(c).

Theorem 30. ([Sakama and Rienstra, 2017]) For every argumentation frame-
work AF = (Ar , att), the complete labellings of AF are in one-to-one corre-
spondence with the stable models of the normal logic program πbasic(AF) ∪
πco′(AF).

Preferred Semantics. Finally, for preferred semantics we introduce three
new predicates IN(x), OUT(x), UNDEC(x) that will correspond to the ac-
tual labels of the preferred labelling. The main idea is that in the program we
allow that an argument can satisfy both in(x) and out(x) and then map the
resulting stable model to an argument labelling as follows. An argument a
is: (i) labelled in if in(a) holds and out(x) does not hold; (ii) labelled out
if out(a) holds and in(x) does not hold, (iii) labelled undec if in(a) and
out(x) hold. We use the new predicates IN(x), OUT(x), UNDEC(x) to
compute the argument labels.

πpr(AF) ={in(x) ∨ out(x)←| x ∈ Ar}∪
{IN(x)← in(x), not out(x) | x ∈ Ar}∪
{OUT(x)← not in(x), out(x) | x ∈ Ar}∪
{UNDEC(x)← in(x), out(x) | x ∈ Ar}

Example 21. When considering our running example AFrun we obtain the
following ground logic program πpr(AFrun):

54

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

in(a) ∨ out(a)← .

in(b) ∨ out(b)← .

in(c) ∨ out(c)← .

IN(a)← in(a), not out(a).
IN(b)← in(b), not out(b).
IN(c)← in(c), not out(c).

OUT(a)← not in(a), out(a).
OUT(b)← not in(b), out(b).
OUT(c)← not in(c), out(c).

UNDEC(a)← in(a), out(a).
UNDEC(b)← in(b), out(b).
UNDEC(c)← in(c), out(c).

Theorem 31. ([Sakama and Rienstra, 2017]) For every argumentation frame-
work AF = (Ar , att), the preferred labellings of AF are in one-to-one corre-
spondence with the stable models of the logic program πbasic(AF)∪πpr(AF).

Again we have a disjunctive rule in our logic program. This time, in con-
trast with the previous encodings, we cannot replace these rules with normal
rules (this is due to complexity results for preferred semantics [Sakama and
Rienstra, 2017] 39).

6.3 ASPARTIX-style ASP-Encodings

We will now discuss ASPARTIX-style implementations of argumentation for-
malisms. That is, we follow a query based approach where we (a) have queries
(that do not depend on the actual framework) encoding semantics and rea-
soning tasks, which are combined with (b) an input database that encodes the
actual argumentation framework. First, we define an input format that encodes
argumentation frameworks of the considered argumentation formalism as in-
put database, an ASP program consisting solely of facts. This input format is
independent of the actual semantics and reasoning task one aims to solve. Then
for each semantics of interest one provides an ASP encoding, an ASP query
consisting of non-ground rules that, when combined with an input database,
results answer-sets that are in one-to-one correspondence with extensions (or
labellings) of the argumentation framework represented by the input database.
Moreover, in order to implement specific reasoning tasks one can add mod-
ules encoding theses reasoning tasks. In order to solve a reasoning task (for

39This based on the fact that complexity of reasoning with preferred semantics is located
on the second level of the polynomial hierarchy while reasoning with admissible, complete and
stable semantics is located on the first level of the polynomial hierarchy [Dvořák and Dunne,
2018].

55

SÁ, DVOŘÁK, CAMINADA

ASP-solver
arg(a).
arg(b).
att(a,b).

input database

ASP-encoding
of semantics

ASP-encoding of
reasoning task

> in(a). out(b).

> out(a). out(b).

result

Figure 4: Basic workflow of ASPARTIX like implementations

a given framework under a given semantics) one then combines the input en-
coding of the framework, the encoding of the semantics, and the encoding of
the reasoning task and runs a state of the art ASP-solver on that to obtain the
corresponding answer-sets. This answer-sets can then be easily interpreted in
order to answer the reasoning task. This standard workflow is illustrated in
Figure 4. What we described so far is the standard workflow when using one-
shot solving via a single ASP encoding to solve reasoning problems. However,
in particular in systems optimized towards performance, also multi-shot meth-
ods and incremental approaches have been exploited for argumentation sys-
tems [Dvořák et al., 2020b; Lehtonen et al., 2021b]. That is, instead of solving
a reasoning task with a single call of an ASP-solver such methods might use
several calls to an ASP-solver in order to solve a single argumentation reason-
ing task. However, as these approaches are often tailored to specific reasoning
tasks one loses a bit of the flexibility and modularity of the standard workflow.

6.3.1 Abstract Argumentation

Here we start with encoding a given argumentation framework AF =(Ar , att)
as facts [Egly et al., 2010]. We use a unary predicate arg(x) to encode the
arguments and a binary predicate att(x, y) to encode the attacks.

πinput(AF) ={arg(x) | x ∈ Ar}}∪
{att(x, y) | (x, y) ∈ att}

Notice that πinput(AF) only consists of facts and will act as input database
for our queries. That is, πinput(AF) is the only part that actually depends on

56

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

the given argumentation framework.

Example 22. When considering our running example AFrun we obtain the
following input database πinput(AFrun):

arg(a).
arg(b).
arg(c).

att(a, b).
att(b, a).
att(b, c).
att(c, c).

In the following we introduce encodings of the central argumentation se-
mantics. We start with conflict-free sets. This encoding will also act as the
basis for most of the other semantics. We use a predicate in to encode that an
argument is in the set and a predicate out to encode that an argument is not in
the set. We first encode that each argument a is either in the set (in(a)) or it is
not in the set (out(a)). That is, we simply generate subsets of the arguments.
We then add a constraint to ensure that we do not select two arguments that
appear in the same attack.

πcf = {in(X)← not out(X).
out(X)← not in(X).

← in(X), in(Y), att(X, Y).}

If we now compute the answer-sets of πAF (AF) ∪ πcf we obtain the conflict-
free sets AF from the answer-sets by, for each answer-set, forming a set with
the arguments a that satisfy in(a).

Example 23. The three answer-sets of πinput(AFrun) ∪ πcf are (we neglect
the input predicates arg, att):

{out(a), out(b), out(c)}
{in(a), out(b), out(c)}
{out(a), in(b), out(c)}

These answer-sets correspond to the three conflict-free sets ∅, {a}, {b} of
AFrun.

Proposition 32. ([Egly et al., 2010]) For every argumentation framework
AF = (Ar , att), the conflict-free sets of AF are in one-to-one correspon-
dence with the stable models of the normal logic program πinput(AF) ∪ πcf .

57

SÁ, DVOŘÁK, CAMINADA

Now starting from the characterisation of conflict-free sets we can encode
more evolved semantics by adding the additional constraints these semantics
have for their extensions. For admissible semantics we define a unary predicate
defeated that encodes that an argument is attacked by the selected extensions,
i.e., it includes the arguments that would be labeled out in a labelling based
characterisation. We then add a constraint stating that there is no argument that
attacks the extensions but is not attacked by the extension which ensures that
the extension defends all its arguments.

πad = πcf ∪ {defeated(X)← in(Y), att(Y, X).
← in(X), att(Y, X), not defeated(Y).}

Example 24. The three answer-sets of πinput(AFrun) ∪ πad are (we neglect
the input predicates arg and att):

{out(a), out(b), out(c)}
{in(a), out(b), out(c), defeated(b)}
{out(a), in(b), out(c), defeated(a), defeated(c)}

These answer-sets correspond to the three admissible sets ∅, {a}, {b} of
AFrun.

Again we obtain a one-to-one correspondence between admissible sets and
the stable models of πinput(AF) ∪ πadm.

Proposition 33. ([Egly et al., 2010]) For every argumentation framework
AF = (Ar , att), the admissible sets of AF are in one-to-one correspondence
with the stable models of the normal logic program πinput(AF) ∪ πad.

Next we extend the encoding of admissible semantics by (a) a predicate
undefended that contains all arguments that are not defended by the ex-
tension and (b) a constraint that states that there is not argument outside the
extension the is defended.

πcom = πadm ∪ {undefended(X)← att(Y, X), not defeated(Y).
← out(X), not undefended(X).}

58

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Example 25. The three answer-sets of πinput(AFrun) ∪ πcom are (we neglect
the input predicates arg and att):

{out(a), out(b), out(c), undefended(a), undefended(b), undefended(c)}
{in(a), out(b), out(c), defeated(b), undefended(b), undefended(c)}
{out(a), in(b), out(c), defeated(a), defeated(c), undefended(a),
undefended(c)}

These answer-sets correspond to the three complete extensions ∅, {a}, {b} of
AFrun.

Proposition 34. ([Egly et al., 2010]) For every argumentation framework
AF = (Ar , att), the complete extensions of AF are in one-to-one correspon-
dence with the stable models of the normal logic program πinput(AF)∪πcom.

Along the same lines we one can extend the conflict-free encoding for sta-
ble semantics by again defining a predicate defeated and adding a constraint
that rules out arguments that are neither in the extension nor attacked.

πst = πcf ∪ {defeated(X)← in(Y), att(Y, X).
← out(X), not defeated(X).}

Example 26. The only answer-set of πinput(AFrun) ∪ πst is (we neglect the
input predicates arg and att):

{out(a), in(b), out(c), defeated(a), defeated(c)}

The unique answer-set correspond to the only stable extension {b} of AFrun.

As before, this encoding explicitly encodes all the requirements of stable
extensions as rules of the LP. That is, it does not use the close connection be-
tween stable semantics for AFs and stable model semantics for LPs. However,
there is also a more direct approach using conditional literals [Dvořák et al.,
2020b], that follows the correspondence result from Section 3.2.

πst′(AF) = {in(Y)← arg(Y), not in(X) : att(X, Y).}

This encoding typically results in smaller grounding of the program in
the ASP-solving process and has shown better performance on benchmark in-
stances. Of course, both encodings provide the one-to-one correspondence
between stable extensions and answer-sets.

59

SÁ, DVOŘÁK, CAMINADA

Example 27. The only answer-set of πinput(AFrun) ∪ πst′ is (we neglect the
input predicates arg and att) is {in(b)}. This answer-set corresponds to the
only stable extension {b} of AFrun.

Proposition 35. ([Egly et al., 2010; Dvořák et al., 2020b]) For every argu-
mentation framework AF = (Ar , att), we have that the stable extensions of
AF are in one-to-one correspondence with the stable models of the normal
logic programs πinput(AF) ∪ πst and πinput(AF) ∪ πst′ respectively.

Finally, let us consider preferred semantics. Due to complexity results, we
know that we need disjunctive rules for preferred semantics. As preferred ex-
tensions are ⊆-maximal admissible set we start from the encoding for admis-
sible semantics (or alternatively from the encoding complete semantics) and
can then apply ASP-techniques for ⊆-maximization. Here we follow [Gaggl
et al., 2015] and present an encoding based on saturation that uses conditional
disjunction in the rule heads. The use of conditional disjunction allows for a
compact encoding compared to earlier versions,

πpr = πadm∪
{notTrivial← out(X).

witness(X) : out(X)← notTrivial.
spoil ∨witness(Z) : att(Z, Y)← witness(X), att(Y, X).
spoil← witness(X), witness(Y), att(X, Y).
spoil← in(X), witness(Y), att(X, Y).
witness(X)← spoil, arg(X).
← not spoil, notTrivial.}

The admissible part generates admissible extensions and the additional rules
deal with the ⊆-maximality. The encoding first tests whether we are in the
trivial case where all arguments are in the extension and thus the extension
is clearly preferred. If not, we aim to construct a larger extension by adding
some of the arguments which are not in the admissible set (at least one). These
new arguments are stored in the predicate witness. We then have another
rule that adds further arguments if those are required to defend the arguments
already included as witness. If that is not possible, we obtain the constant
spoil which indicates that the set we constructed is not admissible. Moreover
we have two rules that check whether the constructed set is conflict-free and if

60

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

not yield the constant spoil. The two final rules are then due to the saturation
technique. First, whenever we obtain spoil we have to include all arguments
as witnesses. This ensures that we only get one answer-set for each preferred
extension and also makes sure that we rule out such potential answer-sets when
we find an model for the same admissible set that does not lead spoil. Now
assume we find a model M that satisfies all rules but the last one and does
not include spoil. Of course, the last rule ensures that M is not an answer-set,
but it also rules out all answer-sets M ′ that coincide on the admissible part but
yield spoil as M is always a smaller model than M ′ on the reduct of M ′.

Example 28. The two answer-sets of πinput(AFrun)∪πpr are (we neglect the
input predicates arg and att):

{in(a), out(b), out(c), defeated(b), spoil, notTrivial,
witness(a), witness(b), witness(c)}

{out(a), in(b), out(c), defeated(a), defeated(c), spoil, notTrivial,
witness(a), witness(b), witness(c)}

These two answer-sets correspond to the preferred extensions {a}, {b} of
AFrun.

Now consider the answer-set S = {out(a), out(b), out(c)} for the ad-
missible encoding (which corresponds to the empty set). If we extend S by the
atoms witness(a) and notTrivial, i.e., we consider S′ = {out(a), out(b),
out(c), witness(a), notTrivial}, we satisfy all but the last rule of πpr.
Moreover, the last rule is clearly violated as spoil is not included in S′. That
is, S′ is itself not an answer-set of the program but also excludes all other
models extending S and containing spoil from being an answer-set, as this
would be violating the minimal model property on the reduct.

Proposition 36. ([Gaggl et al., 2015]) For every argumentation framework
AF = (Ar , att), we have that the preferred extensions of AF are in one-to-
one correspondence with the stable models of the logic program πinput(AF)∪
πpr.

An alternative approach towards encodings of preferred semantics [Dvořák
et al., 2020b] is to use the encoding for admissible semantics and exploit clingo
domain heuristics [Gebser et al., 2013] to perform the ⊆-maximization on the
in predicate.

61

SÁ, DVOŘÁK, CAMINADA

In this section we presented prototypical ASP encodings for the selected
semantics. Indeed, there are ASP encodings for most of the argumentation
semantics and those are integrated in the ASPARTIX system [Dvořák et al.,
2020a]. For the interested reader we next provide the relevant pointers to
the literature. Encodings for semi-stable and stage semantics are discussed in
[Egly et al., 2010; Gaggl et al., 2015], ideal semantics are discussed in [Faber
and Woltran, 2009; Dvořák et al., 2020b], encodings for cf2 semantics are
presented in [Osorio et al., 2010; Gaggl and Woltran, 2013], for encodings of
resolution-based grounded semantics see [Dvořák et al., 2011], and strongly
admissible semantics and their minimization are discussed in [Dvořák and
Wallner, 2020].

ASP queries to decide acceptance problems. Given the encoding of an ar-
gumentation semantics we can use an ASP-solver to compute an extension or
even all extensions of an argumentation framework. However, sometimes we
are even more interested in the acceptance status of an argument. Classic ac-
ceptance problems are the credulous/skeptical acceptance of an argument a (or
a set of arguments S = {a1, . . . an}). That is, deciding whether an argument
a (or a set S) is contained in one of the extensions, in all of the extensions re-
spectively. We can simply address these problems by adding an additional rule
to the encoding. For credulous acceptance we require that in(a) holds while
for skeptical acceptance we are looking for a counter example by requiring that
in(a) does not hold.

πcred(a) = {← not in(a)}
πcred(S) = {← not in(a) | a ∈ S}
πskept(a) = {← in(a)}
πskept(S) = {← in(a1), . . . , in(an) | S = {a1, . . . an}}

If we now solve πinput(AF) ∪ πσ ∪ πcred(a) the solver either provides an
answer-set that corresponds to a σ-extension that contains the argument a or
returns that the program is unsatisfiable. In the later case we know that no such
σ-extension exists and thus can answer the query negatively. Similarly, if we
now solve πinput(AF) ∪ πσ ∪ πskept(a) the solver either provides an answer-
set that corresponds to a σ-extension that does not include the argument a, i.e.,
argument a is not skeptically accepted, or returns that the program is unsat-

62

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

isfiable. In the later case we know that no σ-extension that acts as counter
example exists and thus can answer the query positively.

ASP for generalizations of abstract argumentation frameworks. ASP en-
codings have been provided for a number of generalizations of AFs. Some
of the extensions are directly based on the encoding for AFs. For instance
when dealing with preferences or support the encodings [Egly et al., 2010]
construct a new attack relation that corresponds to standard AF and then use
the encodings of semantics for AFs. Similarly, for argumentation frameworks
with recursive attacks (AFRAs) the encoding of the ASPARTIX system 40 con-
structs an equivalent AF and exploits the existing encodings. However, for
other generalizations careful adaptations or even new encodings are required.
Popular examples are the encodings for extended argumentation frameworks
(EAF) [Dvořák et al., 2015], SETAFs [Dvořák et al., 2018] and Abstract Di-
alectical Frameworks (ADF) [Ellmauthaler and Wallner, 2012; Ellmauthaler
and Strass, 2014]. While a full discussion of these encodings is beyond the
scope of this chapter we want to give a first impression how these general-
izations can be approached via ASP by illustrating the input encodings of the
formalisms in Figure 5.

6.3.2 Assumption-Based Argumentation

In this section we discuss the ASPARTIX-style approach towards assumption-
based argumentation by Lehtonen et al. (2021a, 2021b). That is, we present an
approach that encodes assumption-based argumentation frameworks (ABAFs)
as input database and then provide fixed encodings of semantics that do not
depend on the actual framework.

In the following let F = (L,R,A,) be an ABAF such that R =
{r1, r2, ...rk}. We use the following set of facts πABA(F) to represent the

40https://www.dbai.tuwien.ac.at/research/argumentation/
aspartix/afra.html

63

https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/afra.html
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/afra.html

SÁ, DVOŘÁK, CAMINADA

ARGUMENTATION FRAMEWORK INPUT ENCODING

Value-based AF

a b c

v1 v2 v1

v1 < v2 arg(a). arg(b). arg(c).
att(a, b). att(b, a). att(b, c).att(c, c).
val(a, v1). val(b, v2). val(a, v1).
valpref(v1, v2)

Bipolar AF

a b c arg(a). arg(b). arg(c).
att(b, c).
support(a, b).

Extended AF

a b c arg(a). arg(b). arg(c).
att(a, b). att(b, c).
d(c, a, b).

AF with recursive attacks

a b c

afraA(a). afraA(b). afraA(c).
afraR(att1, a, b). afraR(att2, b, c).
afraR(att3, c, att1).
afraR(att4, a, att3).

AFs with collective attacks (SETAF)

a

b

c
arg(a). arg(b). arg(c).
att(att1, c). mem(att1, a).
mem(att1, b).
att(att2, a). mem(att2, c).

Abstract Dialectical Frameworks (ADF)
a

b

c

¬c

⊤ ¬a ∨ ¬b

statement(a). statement(b).
statement(c).
ac(a, neg(c)). ac(b, c(v)).
ac(c, or(neg(a), neg(b))).

Figure 5: Input encodings for different generalizations of AFs.

64

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

ABAF F for our further investigations:

πABA(F) ={assumption(a) | a ∈ A}∪
{head(i, h) | ri ∈ R, h ∈ head(ri)}∪
{body(i, b) | ri ∈ R, b ∈ body(ri)}∪
{contrary(a, a) | a ∈ A}.

Notice that πABA(F) introduces a unique identifiers for each rules and then
uses the binary predicate head to encode the head of a rule and a predicate
body to encode the body atoms of the rule. Moreover, we can easily ex-
tend the input encoding to also deal with ABAFs that have a preference rela-
tion ≤ (commonly referred to as ABA+ frameworks). That is we introduce
a binary predicate preferred and add a fact preferred(a, b) to the input
database whenever a ≤ b, i.e., we obtain πABA+(F ,≤) = πABAF (F) ∪
{preferred(x, y) | y ≤ x}. However, in this chapter we will focus on
encodings of ABAFs without preferences and moreover restrict ourselves to
flat ABAFs. The interested reader is referred to [Lehtonen et al., 2021a;
Lehtonen et al., 2021b] for ASP encodings of ABA+.

We start with encoding conflict-free assumption sets. Again this encod-
ing will be the basis for the encodings of the other semantics. To this end we
use two unary predicates in and out to encode that an assumption is in re-
spectively outside the considered assumption set. We then introduce the unary
predicate supported which encodes that a statement can be derived from the
selected assumptions. In order to derive supported we use a unary pred-
icate triggered to encode all rules whose body is satisfied by the selected
assumptions and the already derived statements. Moreover, we have the unary
defeated predicate that computes the assumptions which are attacked by the
selected assumption set and is based on supported and the contrary function.
Finally, to ensure conflict-freeness, we have a constraint that states that none

65

SÁ, DVOŘÁK, CAMINADA

of the selected assumptions is defeated.

πcf = {in(X)← assumption(X), not out(X).
out(X)← assumption(X), not in(X).
supported(X)← assumption(X), in(X).
supported(X)← head(R, X), triggered(R).
triggered(R)← head(R, _), supported(X) :body(R, X).
defeated(X)← supported(Y), contrary(X, Y).
← in(X), defeated(X).}

The conflict-free sets of the ABAF correspond to the answer-set of the LP
πABA(D) ∪ πcf , i.e., given an answer-set we can compute the corresponding
assumption set by inspecting the in predicate. However, for ABAFs we are not
only interested in the accepted assumptions but also in the statements that can
be derived from them. These statements are accessible via the supported
predicate, i.e., for each answer-set a statement s is a consequence of the se-
lected assumptions if and only if supported(s) holds in that answer-set.

Proposition 37. ([Lehtonen et al., 2021a]) For every ABAFF=(L,R,A,),
the conflict-free assumption sets of F are in one-to-one correspondence with
the answer-sets of πABA(F) ∪ πcf . Moreover, a statement s can be derived
from a conflict-free assumption set iff supported(s) is in the corresponding
answer-set.

Next we consider admissible semantics. The idea here is to consider as-
sumptions that are not defeated by the set of selected assumptions and test
whether they attack the selected assumptions, which of course would violate
admissibility. To this end we introduce the predicate derivedFromUndef
that contains all undefeated assumptions and all statements that can be derived
from them. Furthermore, we again use a predicate triggeredByUndef
which collects the rules we use to derive these statements. Finally, with the
predicate attackedByUndef we derive the assumptions attacked by the un-
defeated assumptions and add a constraint that none of the assumptions in our
set is attacked by the undefeated assumptions.

66

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

πad = πcf ∪ {
derivedFromUndef(X)← assumption(X), not defeated(X).
derivedFromUndef(X)← head(R, X), triggeredByUndef(R).
triggeredByUndef(R)← head(R, _),

derivedFromUndef(X) :body(R, X).
attackedByUndef(X)← contrary(X, Y), derivedFromUndef(Y).
← in(X), attackedByUndef(X).}

Proposition 38. ([Lehtonen et al., 2021a]) For every ABAFF=(L,R,A,),
the admissible assumption sets ofF are in one-to-one correspondence with the
answer-sets of
πABA(F) ∪ πad. Moreover, a statement s can be derived from an admissi-
ble assumption set iff supported(s) is in the corresponding answer-set.

Now the step from admissible to complete semantics is rather easy. We just
add a constraint that there are no assumptions that are neither in the selected
set nor attacked by the undefeated assumptions.

πco = πadm ∪ {← out(X), not attackedByUndef(X).}

Proposition 39. ([Lehtonen et al., 2021a]) For every ABAFF=(L,R,A,),
the complete assumption sets of F are in one-to-one correspondence with the
answer-sets of πABA(F) ∪ πco. Moreover, a statement s can be derived from
a complete assumption set iff supported(s) is in the corresponding answer-
set.

Given the encoding for admissible and complete semantics one can use
standard techniques for ⊆-maximization to deal with preferred semantics. For
enumeration Lehtonen et al. [2021a] propose to use preferential optimization
statements while for skeptical reasoning algorithms iterative calls to the ASP-
solver are used [Lehtonen et al., 2021b].

67

SÁ, DVOŘÁK, CAMINADA

Now for stable semantics, we only rely on the conflict-free encoding and
add a constraint that each assumption that is not selected must be defeated by
the selected assumptions.

πst = πcf ∪ {← out(X), not defeated(X).}

Proposition 40. ([Lehtonen et al., 2021a]) For every ABAFF=(L,R,A,),
the stable assumption sets of F are in one-to-one correspondence with the
answer-sets of πABA(F) ∪ πst. Moreover, a statement s can be derived from
a stable assumption set iff supported(s) is in the corresponding answer-set.

We next provide an alternative encoding of stable semantics following the
correspondence result between ABA stable semantics and stable model seman-
tics of LPs in Section 4.3.2 (cf. Theorem 18). That is, we restate ABA rules as
LP rules using conditional literals and then add rules stating that an assump-
tion is supported if its contrary is not. In order to be compatible with the other
encodings we then introduce rules that fills the in predicate with the supported
assumptions.

πst′ = {supported(X)← head(R, X), supported(Y) :body(R, Y).
supported(X)← contrary(X, Z), not supported(Z).

in(X)← assumption(X), supported(X).}

ASP queries to decide acceptance problems. Given the characterisations
above we can use ASP-solver to compute an assumption set or even all assump-
tion sets of an argumentation framework (under a given semantics). However,
sometimes we are even more interested in the acceptance status of an assump-
tion or a statement. Classic acceptance problems are the credulous/skepti-
cal acceptance of a statement s, i.e., deciding whether there is an assump-
tion set that implies s or deciding whether s is implied by all assumption sets
(under a given semantics). Again we can address these problems by adding
the corresponding rule to the encoding. For credulous acceptance we require
that supported(s) holds while for skeptical acceptance we are looking for a
counter example by requiring that supported(s) does not hold.

πcred(s) = {← not supported(s).}
πskept(s) = {← supported(s).}

68

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

If we now solve πABA(F)∪πσ∪πcred(s) the solver either provides an answer-
set that corresponds to a σ-assumption set that implies the statement s or re-
turns that the program is unsatisfiable. In the later case we know that there
is no such σ-assumption set and thus can answer the query negatively. Sim-
ilarly, if we now solve πABA(F) ∪ πσ ∪ πskept(s) the solver either provides
an answer-set that corresponds to a σ-assumption set that does not imply the
statement s, i.e., statement s is not skeptically accepted, or returns that the pro-
gram is unsatisfiable. In the later case we know that no σ-assumption set that
acts as counter-example exists and thus can answer the query positively.

7 Discussion

In this chapter, we have discussed several argumentation systems (Dung’s AFs,
ABA, ADFs, SETAFs) focusing on their connections to logic programming.
In each case, whenever it applies, we highlighted similarities concerning syn-
tax, terminology and the representation and computation of semantic models,
implementation in ASP as well as translations from theories in each system to
and from normal logic programs. The highest interest when comparing logi-
cal systems usually concerns their relative expressive power, so we focused on
the relation between the various systems based on semantics: for each argu-
mentation system, we considered whether they can model inference from logic
programming and vice-versa. The results gathered ensure that:

1. normal logic programs semantically subsume Dung’s AFs (Section 3) 41

2. normal logic programs are semantically subsumed by flat-ABA, but they
become equivalent if the programs are equipped with semantic projec-
tion (Section 4) 42

3. normal logic programs are semantically subsumed by ADFs43, but they
remain equivalent to the fragment of ADF+s (Section 5.1) 44

41The results were gathered primarily from [Caminada et al., 2015b; Sá and Alcântara,
2021a; Caminada et al., 2022].

42The results were gathered primarily from [Bondarenko et al., 1997; Caminada and Schulz,
2017; Sá and Alcântara, 2019; Sá and Alcântara, 2021b].

43If ADFs are equipped with three-valued acceptance conditions, which were proposed in
[Alcântara and Sá, 2019].

44The results were gathered primarily from [Strass, 2013; Alcântara et al., 2019].

69

SÁ, DVOŘÁK, CAMINADA

4. normal logic programs are equivalent to SETAF, with their semantics
coinciding for all programs rid of irrelevant atoms (Section 5.2) 45

Other systems worth mentioning regarding their relation to logic program-
ming are Defeasible Logic Programming (DeLP) [Simari and Loui, 1992;
García and Simari, 2004] and Claim-Augmented AFs (CAFs) [Dvořák and
Woltran, 2020; König et al., 2022].

DeLP [Simari and Loui, 1992] is a rule-based argumentation system in-
troduced in [García and Simari, 2004] as a formalism that combines results
of logic programming and defeasible argumentation. Overall, the presentation
of concepts in DeLP follow conventions from Logic Programming, but one
important difference is that their semantics is inherently based on the possible
derivations of claims, which intuitively amounts to the arguments constructed
from a logic program following Definition 13. Further, the syntax of DeLP in-
cludes strong negation and the possibility of a priority relation between rules,
which is extended to a set of preferences over arguments. These features pose
as obstacles to a direct comparison between DeLP and normal logic programs
or even AFs.

Intuitively, Claim-Augmented AFs (CAFs) [Dvořák and Woltran, 2020]
are the same as AFs, but each argument is accompanied by a claim (or con-
clusion, as we consider in Definition 13). CAFs admit the argument exten-
sion semantics for AFs (including complete, grounded, preferred, etc.) and
also claim-based variants of extensions where the claims of arguments in a
σ-extension S of a CAF are extracted into corresponding σ-claim-extensions.
The conversion between argument-based and claim-based extensions is iden-
tical to that observed in [Caminada et al., 2015b] to convert the argument la-
bellings of LP2AA(P) (see Section 3.3) into conclusion labellings,which can be
compared to the models of the program P . In fact, whatever P is, LP2AA(P)
can be immediately perceived as a CAF, since each argument A built using
Definition 13 has a single atom (a claim) assigned as Conc(A). From this con-
nection, a series of results concerning the relationship between CAFs and nor-
mal logic programs are implied from the results of [Caminada et al., 2015b]
and have been considered in [Dvořák et al., 2023a; König et al., 2022]: it
means CAFs are subsumed by logic programs in the same way AFs are; but
then translating from LPs to CAFs, we will find some differences between

45The results were gathered primarily from [König et al., 2022; Alcântara et al., 2023].

70

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

the L-stable program semantics and the CAF semi-stable claim-based seman-
tics. Based on this observation, [Dvořák et al., 2023c] introduces alternative
versions of semantics for CAFs based on the additional information about the
claims of the argument. Prominently it provides a variant of semi-stable se-
mantics that naturally maps to L-stable program semantics. Computational
properties of these semantics have then been investigated in [Dvořák et al.,
2023a]. [König et al., 2022] studied the connection between CAFs and logic
programs, but they only prove correspondence for the stable semantics.46

It is also worth mentioning the investigation of [Caminada et al., 2015a]
about the relationship between AFs and ABA. Their translations between AF
and ABA could be combined with the translations from [Caminada et al.,
2015b] between NLP and AF (see Section 3) to obtain results about the re-
lationship between ABA and LP. We conjecture that the potential results ob-
tained through the combined translations would prove themselves redundant
to the results found in [Caminada and Schulz, 2017] and [Sá and Alcântara,
2021b] (Section 4).

We have also provided a detailed overview of the implementation of argu-
mentation systems and the retrieval of their semantics using answer-set pro-
grams (ASP), an expressive class of logic programs based on the stable model
semantics. Our discussion in Section 6 includes mapping theories of systems
such as AFs and ABA to corresponding answer set programs, allowing the
computation of their semantics using ASP solvers. On that matter, several
authors contributed to this line of research. Nieves et al. [2008] provided a
compiler-style approach to implement abstract argumentation in ASP, where
the logic program is computed from the considered argumentation framework.
On the other hand, Wakaki and Nitta [2008] and Egly et al. [2008] provided the
first query-based implementations for abstract argumentation, where the argu-
mentation framework is provided as input database. While Wakaki and Nitta
followed the labelling-based characterisations of the semantics, Egly et al. fol-
lowed the extension-based characterisation in their encodings. For a compari-
son of these early works the interested reader is referred to [Toni and Sergot,
2011]. The ASPARTIX system 47 of [Egly et al., 2008] was later extended to

46[König et al., 2022] discusses back-and-forth translations between multiple systems, in-
cluding CAFs, NLPs, ABA frameworks, ADFs and SETAFs, but the focus is primarily on the
syntax of theories in each system.

47https://www.dbai.tuwien.ac.at/research/argumentation/
aspartix/

71

 https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/
 https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

SÁ, DVOŘÁK, CAMINADA

deal with several generalizations of abstract argumentation and new semantics
that were introduced in the literature (see, e.g., [Egly et al., 2010; Dvořák et al.,
2015; Ellmauthaler and Strass, 2014; Dvořák and Wallner, 2020]). Alternative
encodings in a compiler-style approach were introduced by Sakama and Rien-
stra [2017]. Moreover, ASP techniques have also been applied to structured ar-
gumentation formalisms, prominently assumption-based argumentation. The
first approaches first build a corresponding abstract argumentation framework
and then use ASP Encodings on these frameworks to deal with the argumen-
tation semantics [Cyras and Toni, 2016; Lehtonen et al., 2017]. However,
more recent systems directly approach the assumption-based argumentation
semantics without constructing abstract frameworks [Lehtonen et al., 2021a;
Lehtonen et al., 2021b].

References

[Alcântara and Sá, 2019] João Alcântara and Samy Sá. On three-valued acceptance
conditions of abstract dialectical frameworks. Electronic Notes in Theoretical
Compututer Science, 344(C):3–23, aug 2019.

[Alcântara and Sá, 2021] João Alcântara and Samy Sá. Equivalence results between
SETAF and attacking abstract dialectical frameworks. In Leila Amgoud and
Richard Booth, editors, Proceedings of the 19th International Workshop on Non-
monotonic Reasoning (NMR 2021), pages 139–148, 2021.

[Alcântara et al., 2019] João Alcântara, Samy Sá, and Juan Acosta-Guadarrama. On
the equivalence between abstract dialectical frameworks and logic programs. The-
ory and Practice of Logic Programming, 19(5-6):941–956, 2019.

[Alcântara et al., 2023] João Alcântara, Renan Cordeiro, and Samy Sá. On the equiv-
alence between logic programming and SETAF. (submitted, under review), 2023.

[Baroni et al., 2018] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin.
Abstract argumentation frameworks and their semantics. In Handbook of Formal
Argumentation, volume 1. College Publications, 2018.

[Baumann and Spanring, 2015] Ringo Baumann and Christof Spanring. Infinite ar-
gumentation frameworks — on the existence and uniqueness of extensions. In Th.
Eiter, H. Strass, M. Truszczyński, and S. Woltran, editors, Advances in Knowledge
Representation, Logic Programming, and Abstract Argumentation — Essays Ded-
icated to Gerhard Brewka on the Occasion of His 60th Birthday, page 281–295.
Springer, 2015.

[Baumann, 2018] Ringo Baumann. On the nature of argumentation semantics: Ex-
istence and uniqueness, expressibility, and replaceability. In Handbook of Formal

72

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

Argumentation, volume 1. College Publications, 2018.
[Besnard and Hunter, 2014] Philippe Besnard and Anthony Hunter. Constructing ar-

gument graphs with deductive arguments: A tutorial. Argument & Computation,
5:5–30, 2014. Special Issue: Tutorials on Structured Argumentation.

[Bikakis et al., 2021] Antonis Bikakis, Andrea Cohen, Wolfgang Dvořák, Giorgos
Flouris, and Simon Parsons. Joint attacks and accrual in argumentation frame-
works. In D. Gabbay, M. Giacomin, G. Simari, and M. Thimm, editors, Handbook
of Formal Argumentation, volume 2, chapter 2. College Publications, 2021.

[Bondarenko et al., 1997] Andrei Bondarenko, Phan Minh Dung, Bob Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach to default reason-
ing. Artificial Intelligence, 93:63–101, 1997.

[Brewka and Woltran, 2010] Gerhard Brewka and Stefan Woltran. Abstract dialecti-
cal frameworks. In Twelfth International Conference on the Principles of Knowl-
edge Representation and Reasoning, pages 102–111. AAAI Press, 2010.

[Brewka et al., 2013] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes
Wallner, and Stefan Woltran. Abstract dialectical frameworks revisited. In Pro-
ceedings of the Twenty-Third international joint conference on Artificial Intelli-
gence, pages 803–809. AAAI Press, 2013.

[Brewka et al., 2018] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Jo-
hannes P. Wallner, and Stefan Woltran. Abstract dialectical frameworks. In Pietro
Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre, editors,
Handbook of Formal Argumentation, volume 1, chapter 5, pages 237–285. College
Publications, 2018.

[Caminada and Gabbay, 2009] Martin Caminada and Dov Gabbay. A logical account
of formal argumentation. Studia Logica, 93(2-3):109–145, 2009. Special issue:
new ideas in argumentation theory.

[Caminada and Schulz, 2017] Martin Caminada and Claudia Schulz. On the equiva-
lence between assumption-based argumentation and logic programming. Journal
of Artificial Intelligence Research, 60:779–825, 2017.

[Caminada and Verheij, 2010] Martin Caminada and Bart Verheij. On the existence
of semi-stable extensions. In G. Danoy, M. Seredynski, R. Booth, B. Gateau, I. Jars,
and D. Khadraoui, editors, Proceedings of the 22nd Benelux Conference on Artifi-
cial Intelligence, 2010.

[Caminada et al., 2015a] Martin Caminada, Samy Sá, João Alcântara, and Wolfgang
Dvorák. On the difference between assumption-based argumentation and abstract
argumentation. IfCoLog Journal of Logics and their Applications, 2:15–34, 2015.

[Caminada et al., 2015b] Martin Caminada, Samy Sá, João Alcântara, and Wolfgang
Dvořák. On the equivalence between logic programming semantics and argumen-
tation semantics. International Journal of Approximate Reasoning, 58:87–111,

73

SÁ, DVOŘÁK, CAMINADA

2015.
[Caminada et al., 2022] Martin Caminada, Sri Harikrishnan, and Samy Sá. Com-

paring logic programming and formal argumentation; the case of ideal and eager
semantics. Argument & Computation, 13:91–120, 2022.

[Caminada et al., 2024] Martin Caminada, Matthias König, Anna Rapberger, and
Markus Ulbricht. Attack semantics and collective attacks revisited. Argument &
Computation, 2024. in print.

[Caminada, 2006] Martin Caminada. On the issue of reinstatement in argumenta-
tion. In M. Fischer, W. van der Hoek, B. Konev, and A. Lisitsa, editors, Logics
in Artificial Intelligence; 10th European Conference, JELIA 2006, pages 111–123.
Springer, 2006. LNAI 4160.

[Cerutti et al., 2018] Federico Cerutti, Sarah Gaggl, Matthias Thimm, and Johannes
Wallner. Foundations of implementations for formal argumentation. In P. Baroni,
D. Gabbay, M. Giacomin, and L. van der Torre, editors, Handbook of Formal Ar-
gumentation, chapter 15, pages 688–767. College Publications, 2018. also appears
in IfCoLog Journal of Logics and their Applications 4(8):2623–2706.

[Charwat et al., 2015] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Jo-
hannes Peter Wallner, and Stefan Woltran. Methods for solving reasoning problems
in abstract argumentation - A survey. Artificial Intelligence, 220:28–63, 2015.

[Cramer and Saldanha, 2020] Marcos Cramer and Emmanuelle-Anna Dietz Sal-
danha. Logic programming, argumentation and human reasoning. In Mehdi Das-
tani, Huimin Dong, and Leon van der Torre, editors, Logic and Argumentation,
pages 58–79, Cham, 2020. Springer International Publishing.

[Cyras and Toni, 2016] Kristijonas Cyras and Francesca Toni. ABA+: assumption-
based argumentation with preferences. In Ch. Baral, J. Delgrande, and F. Wolter,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April
25-29, 2016, pages 553–556. AAAI Press, 2016.

[Čyras et al., 2018] Kristijonas Čyras, Xiuyi Fan, Claudia Schulz, and Francesca
Toni. Assumption-based argumentation: Disputes, explanations, preferences. In
Handbook of Formal Argumentation, volume 1. College Publications, 2018.

[Dung et al., 2007] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Com-
puting ideal sceptical argumentation. Artificial Intelligence, 171(10-15):642–674,
2007.

[Dung et al., 2009] Phan Minh Dung, Bob Kowalski, and Francesca Toni.
Assumption-based argumentation. In G. Simari and I. Rahwan, editors, Argumen-
tation in Artificial Intelligence, pages 199–218. Springer US, 2009.

[Dung, 1991] Phan Minh Dung. Negations as hypotheses: An abductive foundation
for logic programming. In Koichi Furukawa, editor, Logic Programming, Proceed-

74

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

ings of the Eigth International Conference, Paris, France, June 24-28, 1991, pages
3–17. MIT Press, 1991.

[Dung, 1995a] Phan Minh Dung. An argumentation-theoretic foundation for logic
programming. The Journal of Logic Programming, 22(2):151–177, 1995.

[Dung, 1995b] Phan Minh Dung. On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence, 77:321–357, 1995.

[Dvořák and Dunne, 2018] Wolfgang Dvořák and Paul Dunne. Computational prob-
lems in formal argumentation and their complexity. In P. Baroni, D. Gabbay, M. Gi-
acomin, and L. van der Torre, editors, Handbook of Formal Argumentation, chap-
ter 14, pages 631–687. College Publications, 2018. also appears in IfCoLog Journal
of Logics and their Applications 4(8):2557–2622.

[Dvořák and Wallner, 2020] Wolfgang Dvořák and Johannes Wallner. Computing
strongly admissible sets. In H. Prakken, S. Bistarelli, F. Santini, and C. Taticchi,
editors, Computational Models of Argument - Proceedings of COMMA 2020, Peru-
gia, Italy, September 4-11, 2020, volume 326 of Frontiers in Artificial Intelligence
and Applications, pages 179–190. IOS Press, 2020.

[Dvořák et al., 2011] Wolfgang Dvořák, Sarah Gaggl, Johannes Wallner, and Stefan
Woltran. Making use of advances in answer-set programming for abstract argumen-
tation systems. In H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel, M. Umeda,
and A. Wolf, editors, Applications of Declarative Programming and Knowledge
Management - 19th International Conference, INAP 2011, and 25th Workshop on
Logic Programming, WLP 2011, Vienna, Austria, September 28-30, 2011, Revised
Selected Papers, volume 7773 of Lecture Notes in Computer Science, pages 114–
133. Springer, 2011.

[Dvořák et al., 2015] Wolfgang Dvořák, Sarah Gaggl, Thomas Linsbichler, and Jo-
hannes Wallner. Reduction-based approaches to implement Modgil’s extended ar-
gumentation frameworks. In Th. Eiter, H. Strass, M. Truszczynski, and S. Woltran,
editors, Advances in Knowledge Representation, Logic Programming, and Abstract
Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His 60th
Birthday, volume 9060 of Lecture Notes in Computer Science, pages 249–264.
Springer, 2015.

[Dvořák et al., 2018] Wolfgang Dvořák, Alexander Greßler, and Stefan Woltran.
Evaluating SETAFs via Answer-Set Programming. In Proceedings of the Sec-
ond International Workshop on Systems and Algorithms for Formal Argumentation,
pages 10–21. CEUR-WS.org, 2018.

[Dvořák et al., 2020a] Wolfgang Dvořák, Sarah Gaggl, Anna Rapberger, Johannes
Wallner, and Stefan Woltran. The ASPARTIX system suite. In H. Prakken,
S. Bistarelli, F. Santini, and C. Taticchi, editors, Computational Models of Argu-
ment - Proceedings of COMMA 2020, Perugia, Italy, September 4-11, 2020, vol-

75

SÁ, DVOŘÁK, CAMINADA

ume 326 of Frontiers in Artificial Intelligence and Applications, pages 461–462.
IOS Press, 2020.

[Dvořák et al., 2020b] Wolfgang Dvořák, Anna Rapberger, Johannes Wallner, and
Stefan Woltran. ASPARTIX-V19 - an answer-set programming based system for
abstract argumentation. In A. Herzig and J. Kontinen, editors, Foundations of In-
formation and Knowledge Systems - 11th International Symposium, FoIKS 2020,
Dortmund, Germany, February 17-21, 2020, Proceedings, volume 12012 of Lec-
ture Notes in Computer Science, pages 79–89. Springer, 2020.

[Dvořák et al., 2023a] Wolfgang Dvořák, Alexander Greßler, Anna Rapberger, and
Stefan Woltran. The complexity landscape of claim-augmented argumentation
frameworks. Artif. Intell., 317:103873, 2023.

[Dvořák et al., 2023b] Wolfgang Dvořák, Atefeh Keshavarzi Zafarghandi, and Stefan
Woltran. Expressiveness of setafs and support-free adfs under 3-valued semantics.
J. Appl. Non Class. Logics, 33(3-4):298–327, 2023.

[Dvořák et al., 2023c] Wolfgang Dvořák, Anna Rapberger, and Stefan Woltran. A
claim-centric perspective on abstract argumentation semantics: Claim-defeat, prin-
ciples, and expressiveness. Artif. Intell., 324:104011, 2023.

[Dvořák and Woltran, 2020] Wolfgang Dvořák and Stefan Woltran. Complexity
of abstract argumentation under a claim-centric view. Artificial Intelligence,
285:103290, 2020.

[Egly et al., 2008] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. ASPAR-
TIX: implementing argumentation frameworks using answer-set programming. In
M. de la Banda and E. Pontelli, editors, Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, volume
5366 of Lecture Notes in Computer Science, pages 734–738. Springer, 2008.

[Egly et al., 2010] Uwe Egly, Sarah Gaggl, and Stefan Woltran. Answer-set pro-
gramming encodings for argumentation frameworks. Argument & Computation,
1(2):147–177, 2010.

[Ellmauthaler and Strass, 2014] Stefan Ellmauthaler and Hannes Strass. The DIA-
MOND system for computing with abstract dialectical frameworks. In S. Parsons,
N. Oren, Ch. Reed, and F. Cerutti, editors, Computational Models of Argument
- Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK,
September 9-12, 2014, volume 266 of Frontiers in Artificial Intelligence and Ap-
plications, pages 233–240. IOS Press, 2014.

[Ellmauthaler and Wallner, 2012] Stefan Ellmauthaler and Johannes Wallner. Eval-
uating abstract dialectical frameworks with ASP. In B. Verheij, S. Szeider, and
S. Woltran, editors, Computational Models of Argument - Proceedings of COMMA
2012, Vienna, Austria, September 10-12, 2012, volume 245 of Frontiers in Artifi-
cial Intelligence and Applications, pages 505–506. IOS Press, 2012.

[Faber and Woltran, 2009] Wolfgang Faber and Stefan Woltran. Manifold answer-

76

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

set programs for meta-reasoning. In E. Erdem, F. Lin, and T. Schaub, editors,
Logic Programming and Nonmonotonic Reasoning, 10th International Conference,
LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings, volume
5753 of Lecture Notes in Computer Science, pages 115–128. Springer, 2009.

[Flouris and Bikakis, 2019] Giorgos Flouris and Antonis Bikakis. A comprehensive
study of argumentation frameworks with sets of attacking arguments. International
Journal of Approximate Reasoning, 109:55–86, 2019.

[Gaggl and Woltran, 2013] Sarah Alice Gaggl and Stefan Woltran. The cf2 argu-
mentation semantics revisited. Journal of Logic and Computation, 23(5):925–949,
2013.

[Gaggl et al., 2015] Sarah Gaggl, Norbert Manthey, Alessandro Ronca, Johannes
Wallner, and Stefan Woltran. Improved answer-set programming encodings for
abstract argumentation. Theory and Practice of Logic Programming, 15(4-5):434–
448, 2015.

[García and Simari, 2004] Alejandro García and Guillermo Simari. Defeasible logic
programming: an argumentative approach. Theory and Practice of Logic Program-
ming, 4(1):95–138, 2004.

[García and Simari, 2018] Alejandro Javier García and Guillermo Ricardo Simari.
Argumentation based on logic programming. In Handbook of formal argumen-
tation, pages 409–436. College Publications, 2018.

[Gebser et al., 2013] Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón
Otero, Torsten Schaub, and Philipp Wanko. Domain-specific heuristics in an-
swer set programming. In M. desJardins and M. Littman, editors, Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA, pages 350–356. AAAI Press, 2013.

[Gebser et al., 2015] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Mar-
ius Lindauer, Max Ostrowski, Javier Romero, Torsten Schaub, and Sven Thiele.
Potassco User Guide. University of Potsdam, second edition edition, 2015.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical
negation in logic programs and disjunctive databases. New Generation Comput-
ing, 9(3/4):365–386, 1991.

[Gorogiannis and Hunter, 2011] Nikos Gorogiannis and Anthony Hunter. Instantiat-
ing abstract argumentation with classical logic arguments: Postulates and proper-
ties. Artificial Intelligence, 175(9-10):1479–1497, 2011.

[Hölldobler and Kencana Ramli, 2009] Steffen Hölldobler and Carroline Dewi Puspa
Kencana Ramli. Logic programs under three-valued łukasiewicz semantics. In
Logic Programming: 25th International Conference, ICLP 2009, Pasadena, CA,
USA, July 14-17, 2009. Proceedings 25, pages 464–478. Springer, 2009.

[Kakas et al., 1994] A. C. Kakas, P. Mancarella, and Phan Minh Dung. The accept-

77

SÁ, DVOŘÁK, CAMINADA

ability semantics for logic programs. In Proceedings of the Eleventh International
Conference on Logic Programming, page 504–519, Cambridge, MA, USA, 1994.
MIT Press.

[König et al., 2022] Matthias König, Anna Rapberger, and Markus Ulbricht. Just
a matter of perspective. In F. Toni, S. Polberg, R. Booth, M. Caminada, and
H. Kido, editors, Computational Models of Argument - Proceedings of COMMA
2022, Cardiff, Wales, UK, 14-16 September 2022, volume 353 of Frontiers in Arti-
ficial Intelligence and Applications, pages 212–223. IOS Press, 2022.

[Lehtonen et al., 2017] Tuomo Lehtonen, Johannes Wallner, and Matti Järvisalo.
From structured to abstract argumentation: Assumption-based acceptance via AF
reasoning. In A. Antonucci, L. Cholvy, and O. Papini, editors, Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty - 14th European Conference,
ECSQARU 2017, Lugano, Switzerland, July 10-14, 2017, Proceedings, volume
10369 of Lecture Notes in Computer Science, pages 57–68. Springer, 2017.

[Lehtonen et al., 2021a] Tuomo Lehtonen, Johannes Wallner, and Matti Järvisalo.
Declarative algorithms and complexity results for assumption-based argumenta-
tion. Journal of Artificial Intelligence Research, 71:265–318, 2021.

[Lehtonen et al., 2021b] Tuomo Lehtonen, Johannes Wallner, and Matti Järvisalo.
Harnessing incremental answer set solving for reasoning in assumption-based ar-
gumentation. Theory and Practice of Logic Programming, 21(6):717–734, 2021.

[Modgil and Prakken, 2013] Sanjay Modgil and Henry Prakken. A general account
of argumentation with preferences. Artificial Intellligence, 195:361–397, 2013.

[Modgil and Prakken, 2014] Sanjay Modgil and Henry Prakken. The ASPIC+
framework for structured argumentation: a tutorial. Argument & Computation,
5:31–62, 2014. Special Issue: Tutorials on Structured Argumentation.

[Modgil and Prakken, 2018] Sanjay Modgil and Henry Prakken. Abstract rule-based
argumentation. In Handbook of Formal Argumentation, volume 1. College Publi-
cations, 2018.

[Nielsen and Parsons, 2006] Søren Holbech Nielsen and Simon Parsons. A gener-
alization of Dung’s abstract framework for argumentation: Arguing with sets of
attacking arguments. In International Workshop on Argumentation in Multi-Agent
Systems, pages 54–73. Springer, 2006.

[Nieves et al., 2008] Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés. Pre-
ferred extensions as stable models. Theory and Practice of Logic Programming,
8(4):527–543, 2008.

[Osorio et al., 2010] Mauricio Osorio, Juan Carlos Nieves, and Ignasi Gómez-
Sebastià. CF2-extensions as answer-set models. In P. Baroni, F. Cerutti, M. Gia-
comin, and G. Simari, editors, Computational Models of Argument: Proceedings
of COMMA 2010, Desenzano del Garda, Italy, September 8-10, 2010, volume 216
of Frontiers in Artificial Intelligence and Applications, pages 391–402. IOS Press,

78

CONNECTIONS BETWEEN LOGIC PROGRAMMING AND ARGUMENTATION

2010.
[Polberg, 2016] Sylwia Polberg. Understanding the abstract dialectical framework. In

European Conference on Logics in Artificial Intelligence, pages 430–446. Springer,
2016.

[Przymusinski, 1990] Teodor Przymusinski. The well-founded semantics coincides
with the three-valued stable semantics. Fundamenta Informaticae, 13(4):445–463,
1990.

[Sá and Alcântara, 2019] Samy Sá and João Alcântara. Interpretations and models
for assumption-based argumentation. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pages 1139–1146, 2019.

[Sá and Alcântara, 2021a] Samy Sá and João Alcântara. An abstract argumentation
and logic programming comparison based on 5-valued labellings. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty: 16th European Confer-
ence, ECSQARU 2021, Prague, Czech Republic, September 21–24, 2021, Proceed-
ings 16, pages 159–172. Springer, 2021.

[Sá and Alcântara, 2021b] Samy Sá and João Alcântara. Assumption-based argu-
mentation is logic programming with projection. In Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty: 16th European Conference, ECSQARU
2021, Prague, Czech Republic, September 21–24, 2021, Proceedings 16, pages
173–186. Springer, 2021.

[Saccà and Zaniolo, 1997] Domenico Saccà and Carlo Zaniolo. Deterministic and
non-deterministic stable models. Journal of Logic and Computation, 7(5):555–
579, 1997.

[Sakama and Rienstra, 2017] Chiaki Sakama and Tjitze Rienstra. Representing ar-
gumentation frameworks in answer set programming. Fundamenta Informaticae,
155(3):261–292, 2017.

[Schultz and Toni, 2014] Claudia Schultz and Francesca Toni. Complete assumption
labellings. In Proceedings of COMMA 2014, pages 405–412, 2014.

[Schulz and Toni, 2017] Claudia Schulz and Francesca Toni. Labellings for
assumption-based and abstract argumentation. International Journal of Approx-
imate Reasoning, 84:110–149, 2017.

[Simari and Loui, 1992] Guillermo Simari and Ronald Loui. A mathematical treat-
ment of defeasible reasoning and its implementation. Artificial Intelligence,
53:125–157, 1992.

[Strass, 2013] Hannes Strass. Approximating operators and semantics for abstract
dialectical frameworks. Artificial Intelligence, 205:39–70, 2013.

[Toni and Sergot, 2011] Francesca Toni and Marek Sergot. Argumentation and an-
swer set programming. In Marcello Balduccini and Tran Cao Son, editors, Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays

79

SÁ, DVOŘÁK, CAMINADA

Dedicated to Michael Gelfond on the Occasion of His 65th Birthday, pages 164–
180. Springer, 2011.

[Toni, 2014] Francesca Toni. A tutorial on assumption-based argumentation. Ar-
gument & Computation, 5:89–117, 2014. Special Issue: Tutorials on Structured
Argumentation.

[Wakaki and Nitta, 2008] Toshiko Wakaki and Katsumi Nitta. Computing argumen-
tation semantics in answer set programming. In H. Hattori, T. Kawamura, T. Idé,
M. Yokoo, and Y. Murakami, editors, New Frontiers in Artificial Intelligence, JSAI
2008 Conference and Workshops, Asahikawa, Japan, June 11-13, 2008, Revised
Selected Papers, volume 5447 of Lecture Notes in Computer Science, pages 254–
269. Springer, 2008.

[Weydert, 2011] Emil Weydert. Semi-stable extensions for infinite frameworks. In
P. de Causmaecker, J. Maervoet, T. Messelis, K. Verbeeck, and T. Vermeulen, edi-
tors, Proceedings of the 23rd Benelux Conference on Artificial Intelligence (BNAIC
2011), pages 336–343, 2011.

[Wu et al., 2009] Yining Wu, Martin Caminada, and Dov Gabbay. Complete exten-
sions in argumentation coincide with 3-valued stable models in logic programming.
Studia Logica, 93(1-2):383–403, 2009. Special issue: new ideas in argumentation
theory.

	Introduction
	Logic Programs: Syntax and Semantics
	On the Connection between Abstract Argumentation and Logic Programming
	Abstract Argumentation: Syntax and Semantics
	From Abstract Argumentation to Logic Programming
	From Logic Programming to Abstract Argumentation
	The Conundrum of Minimizing Undecided Arguments vs Undecided Conclusions

	On the Connection between Assumption-Based Argumentation and Logic Programming
	Assumption-Based Argumentation: Syntax and Semantics
	From Logic Programming to Assumption-Based Argumentation
	From Assumption-Based Argumentation to Logic Programming
	Mapping Assumptions to NAF-literals
	ABA as Logic Programming with Projection

	Equivalence for enhanced frameworks
	Abstract Dialectical Frameworks
	Argumentation Frameworks with Sets of Attacking Arguments

	Implementing Argumentation with Answer-Set Programming
	Answer-Set Programming
	Compiler-Style ASP Encodings
	ASPARTIX-style ASP-Encodings
	Abstract Argumentation
	Assumption-Based Argumentation

	Discussion

