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In this document, we describe the concepts of ideal semantics and stage semantics for abstract
argumentation in terms of argument labellings. The difference between the traditional exten-
sions approach and the labelling approach is that where the former only identifies the sets of
accepted arguments, the latter also identifies the rejected arguments as well as the arguments
that are neither accepted nor rejected. So far, the labellings approach has been successfully
applied to complete, grounded, preferred, stable and semi-stable semantics, as well as to the
concept of admissibility. In the current paper, we continue this line of research by showing that
also ideal semantics and stage semantics can be described in terms of argument labellings.
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1. Introduction

Formal argumentation has become a popular approach for purposes varying from
nonmonotonic reasoning (3, 9), multi-agent communication (1) and reasoning in
the semantic web (20). Although some research on formal argumentation can be
traced back to the early 1990s (like for instance the work of Vreeswijk (24) and
of Simari and Loui (21)) the topic really started to take off with Dung’s theory
of abstract argumentation (13). Here, arguments are seen as abstract entities (al-
though they can be instantiated using approaches like (9) and (18)) among which
an attack relationship is defined. The thus formed argumentation framework can
be represented as a directed graph in which the arguments serve as nodes and the
attack relation as the arrows.

Given such a graph, an interesting question is which sets of nodes can reasonably
be accepted. Several criteria of acceptance have been stated, including Dung’s
original approaches of grounded, complete, preferred and stable semantics (13), as
well as other approaches like semi-stable semantics1 (6, 22) and ideal semantics
(14).

The concepts of admissibility, as well as that of complete, grounded, preferred,
stable or semi-stable semantics were originally stated in terms of sets of arguments.
It is equally well possible, however, to express these concepts using argument la-
bellings. This approach was pioneered by Pollock (17) and has subsequently been
applied by Verheij (22), Jakobovits and Vermeir (15), Caminada (4, 7, 10) and
Vreeswijk (25). In this paper we follow the approach of (4, 7, 10) where each argu-
ment is assigned a label, which can either be in, out or undec. The label in indicates
that the argument is explicitly accepted, the label out indicates that the argument
is explicitly rejected, and the label undec indicates that the status of the argument

1Semi-stable semantics was described in terms of admissible stage extensions in (22).
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is undecided, meaning that one abstains from an explicit judgment whether the
argument is in or out.

An advantage of the labellings approach is that it becomes possible to describe
complete, preferred, grounded, stable and semi-stable semantics without having to
refer to technical concepts like admissibility or fixpoints of the characteristic func-
tion F , as is explained in (4, 10). Moreover, the labelling approach has also been
used for defining argumentation based algorithms, for instance for algorithms that,
given an argumentation framework, compute its stable, semi-stable or preferred
labellings (7, 16) (of which the sets of in-labelled arguments correspond to the
stable, semi-stable and grounded extensions, respectively). Another recent appli-
cation of argument labellings is in the field of judgement aggregation. In essence, a
(complete) labelling can be seen as a reasonable position an agent can take in the
presence of the conflicting information expressed in the argumentation framework.
The question then becomes how several of such positions can be aggregated to a
collective opinion. This has been the topic of work of Caminada and Pigozzi (11),
as well as of Rahwan and Tohmé (19).

In previous work (4, 5, 10) labellings have been specified for complete, stable,
semi-stable, preferred and grounded semantics. The key concept is that of a com-
plete labelling, which is shown to implement complete semantics (4, 10). The other
semantics can then be described in terms of complete labellings in which the occur-
rence of a particular type of label is maximized or minimized. A preferred labelling,
for instance, can be described as a complete labelling in which the set of in-labelled
arguments is maximal (w.r.t. set-inclusion). Similarly, the grounded labelling can
be described as a complete labelling in which the set of in-labelled arguments is
minimal, and a semi-stable labelling as a complete labelling in which the set of
undec-labelled arguments is minimal. In the current paper, we apply the labellings
approach to two additional semantics: ideal (14) and stage (22). Although these
semantics cannot be described by simply maximizing or minimizing the occurrence
of a particular type of label using complete labellings (as is the case for grounded,
preferred and semi-stable semantics) we show that the labelling approach can nev-
ertheless be meaningfully applied. We show that ideal semantics can be described
in terms of judgement aggregation. In particular, we show that the ideal labelling
is the most committed admissible (or complete) labelling that is compatible with
each admissible, complete or preferred labelling. Where the key concept of ideal
semantics is that of compatibility with other labellings (Section 3) the key concept
of stage semantics is that of maximal consistency (Section 4). In essence, a stage
labelling is a stable labelling of a maximal subgraph of the argumentation frame-
work that has at least one stable labelling, augmented by labelling all arguments
undec that are outside of the subgraph. However, before being able to explain ideal
and stage labellings in more detail, we first provide some formal preliminaries in
Section 2.

2. Formal Preliminaries

An argumentation framework (13) consists of a set of arguments and an attack
relation on these arguments. In order to simplify the discussion, we consider only
finite argumentation frameworks.

Definition 2.1: An argumentation framework is a pair (Ar , att) where Ar is a
set of arguments and att ⊆ Ar ×Ar .

We say that (1) an argument A attacks an argument B iff (A,B) ∈ att , (2) an
argument A attacks a set of arguments Args iff A attacks an argument in Args ,
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(3) a set of arguments attacks an argument A iff an argument in Args attacks A,
and (4) a set of argument Args1 attacks a set of arguments Args2 iff an argument
in Args1 attacks an argument in Args2.

The shorthand notation A+ and A− stands for, respectively, the set of arguments
attacked by argument A and the set of arguments that attack argument A. Like-
wise, if Args is a set of arguments, then we write Args+ for the set of arguments
that are attacked by at least one argument in Args , and Args− for the set of argu-
ments that attack at least one argument in Args . In the definition below, F (Args)
stands for the set of arguments that are acceptable in the sense of (13).

Definition 2.2 defense / conflict-free: Let (Ar , att) be an argumentation frame-
work, A ∈ Ar and Args ⊆ Ar .
We define A+ as {B | A att B} and Args+ as {B | A att B for some A ∈ Args}.
We define A− as {B | B att A} and Args− as {B | B att A for some A ∈ Args}.
Args is conflict-free iff Args ∩Args+ = ∅.
Args defends an argument A iff A− ⊆ Args+.
We define the function F : 2Ar → 2Ar as
F (Args) = {A | A is defended by Args}.

In the definition below, notions of grounded, preferred and stable semantics are
described in terms of complete semantics. These descriptions are not literally the
same as the ones provided by Dung (13), but as was stated in (4), these are in fact
equivalent to Dung’s original versions of grounded, preferred and stable semantics.

Definition 2.3 acceptability semantics: Let (Ar , att) be an argumentation frame-
work and let Args ⊆ Ar be a conflict-free set of arguments.

- Args is admissible iff Args ⊆ F (Args).
- Args is a complete extension iff Args = F (Args).
- Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion) com-

plete extension.
- Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion) complete

extension.
- Args is a stable extension iff Args is a complete extension that attacks every

argument in Ar\Args .
- Args is a semi-stable extension iff Args is a complete extension where Args ∪
Args+ is maximal (w.r.t. set-inclusion).

In (4, 10) it is described how the concepts of complete, grounded, preferred,
stable and semi-stable semantics, as well as the concept of admissibility, can be
characterised in terms of argument labellings.

Definition 2.4: Let (Ar , att) be an argumentation framework. A labelling is a
total function Lab : Ar −→ {in, out,undec}.

We write in(Lab) for {A | Lab(A) = in}, out(Lab) for {A | Lab(A) = out}
and undec(Lab) for {A | Lab(A) = undec}. Sometimes, we write a labelling Lab
as a triple (Args1,Args2,Args3) where Args1 = in(Lab), Args2 = out(Lab) and
Args3 = undec(Lab).

We introduce two functions (Lab2Ext and Ext2Lab) that allows one to convert
a labelling to an extension, and an extension to a labelling. When converting a
labelling to an extension, one basically selects the set of in-labelled arguments. That
is, Lab2Ext(Lab) = in(Lab). When converting an extension to a labelling, one labels
the arguments of the extension in, the arguments attacked by the extension out and
the other arguments undec. That is, Ext2Lab(Args) = (Args ,Args+,Ar\(Args ∪
Args+)), where Ar is the set of all arguments in the argumentation framework.
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Notice that although Lab2Ext is defined for any labelling, Ext2Lab is defined only
for sets of arguments that are conflict-free (otherwise the result would not be a
correct labelling).

Definition 2.5: Let (Ar , att) be an argumentation framework. An admissible
labelling is a labelling such that for every A ∈ Ar it holds that:

(1) if A is labelled in then all attackers of A are labelled out
(2) if A is labelled out then A has an attacker that is labelled in

Admissible labellings correspond to admissible sets, although the relationship is
not one-to-one.1

Theorem 2.6 : Let AF = (Ar , att) be an argumentation framework. It holds
that:

(1) if Args is an admissible set of AF then Ext2Lab(Args) is an admissible
labelling of AF , and

(2) if Lab is an admissible labelling of AF then Lab2Ext(Lab) is an admissible
set of AF .

Definition 2.7: Let (Ar , att) be an argumentation framework. A complete la-
belling is a labelling such that for every A ∈ Ar it holds that:

(1) if A is labelled in then all attackers of A are labelled out
(2) if A is labelled out then A has an attacker that is labelled in
(3) if A is labelled undec then not all attackers of A are labelled out and A

does not have an attacker that is labelled in

Notice that the first two conditions of a complete labelling are the same condi-
tions as of an admissible labelling. Whereas an admissible labelling requires one to
be able to explain why an argument is labelled in and why an argument is labelled
out, a complete labelling also requires one to explain why an argument is labelled
undec.

It is also possible to describe a complete labelling in a different way.

Proposition 2.8 (11): Let Lab be a labelling of an argumentation framework
AF = (Ar , att). Lab is a complete labelling iff for each argument A ∈ Ar it holds
that:

(1) A is labelled in iff all its attackers are labelled out, and
(2) A is labelled out iff it has at least one attacker that is labelled in.

The difference between Definition 2.7 and Proposition 2.8 is that the former de-
scribes a complete labelling using three if-statements, and the latter describes it
using two iff-statements. Although the latter description does not explicitly men-
tion the undec label, it follows that for an argument to be labelled undec, it cannot
have all its attackers labelled out (otherwise it would have to be labelled in ac-
cording to point 1 of Proposition 2.8). Similarly, it cannot have an attacker that
labelled in (otherwise it would have to be labelled out according to point 2 of
Proposition 2.8). These two observations, when put together, are equivalent with
point 3 of Definition 2.7. Hence, the description of complete labellings of Propo-
sition 2.8 puts restrictions on the use of the undec label, even without explicitly
referring to it.

1For instance, in the argumentation framework of Figure 2, both ({A}, ∅, {B, C}) and ({A}, {B}, {C}) are
admissible labellings that are associated with the same admissible set {A}.
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Lemma 2.9 (11): Let Lab1 and Lab2 be complete labellings of argumentation
framework AF = (Ar , att). It holds that:

(1) in(Lab1) ⊆ in(Lab2) iff out(Lab1) ⊆ out(Lab2),
(2) in(Lab1) ( in(Lab2) iff out(Lab1) ( out(Lab2) and
(3) in(Lab1) = in(Lab2) iff out(Lab1) = out(Lab2).

Complete labellings correspond to complete extensions, as is stated by the fol-
lowing theorem.

Theorem 2.10 : Let AF = (Ar , att) be an argumentation framework. It holds
that:

(1) if Args is a complete extension of AF then Ext2Lab(Args) is a complete
labelling of AF , and

(2) if Lab is a complete labelling of AF then Lab2Ext(Lab) is a complete ex-
tension of AF .

In (11) it is also proved that the relationship between complete labellings and
complete extensions is one-to-one. That is, each complete labelling is associated
to exactly one complete extension and vice versa. This property can be seen as a
result of Lemma 2.9.

Using the concept of complete labellings, one can then also describe the con-
cept of grounded, preferred, stable and semi-stable semantics in terms of argument
labellings, as has been done in (11). A summary is provided in the following defi-
nition.

Definition 2.11: Let Lab be a complete labelling of argumentation framework
AF = (Ar , att).

• Lab is a preferred labelling iff in(Lab) is maximal w.r.t. set-inclusion among all
complete labellings.

• Lab is the grounded labelling iff in(Lab) is minimal w.r.t. set-inclusion among all
complete labellings.

• Lab is a semi-stable labelling iff undec(Lab) is minimal w.r.t. set-inclusion among
all complete labellings.

• Lab is a stable labelling iff undec(Lab) = ∅.

Preferred, grounded, semi-stable and stable labellings correspond to preferred,
grounded, semi-stable and stable extensions, respectively, as is stated in the fol-
lowing theorem.

Theorem 2.12 : Let AF = (Ar , att) be an argumentation framework. It holds
that:

(1) if Args is a preferred extension of AF then Ext2Lab(Args) is a preferred
labelling of AF , and if Lab is a preferred labelling of AF then Lab2Ext(Lab)
is a preferred extension of AF .

(2) if Args is the grounded extension of AF then Ext2Lab(Args) is the
grounded labelling of AF , and if Lab is the grounded labelling of AF then
Lab2Ext(Lab) is the grounded extension of AF .

(3) if Args is a semi-stable extension of AF then Ext2Lab(Args) is a semi-
stable labelling of AF , and if Lab is a semi-stable labelling of AF then
Lab2Ext(Lab) is a semi-stable extension of AF .

(4) if Args is a stable extension of AF then Ext2Lab(Args) is a stable labelling
of AF , and if Lab is a stable labelling of AF then Lab2Ext(Lab) is a stable
extension of AF .
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Since for complete semantics, the relation between labellings and extensions is
one-to-one, it follows that for preferred, grounded, stable and semi-stable semantics
the relation between labellings and extensions is also one-to-one.

It turns out that there are different ways to describe the concepts of preferred,
grounded, semi-stable and stable labellings. For instance, a preferred labelling can
also be described as a complete labelling where the set of out-labelled arguments is
maximal. Similarly, the grounded labelling can also be described as the complete
labelling where the set of out-labelled arguments is minimal, or where the set of
undec-labelled arguments is maximal.

restriction Dung-style
complete labellings semantics

no restrictions complete semantics
empty undec stable semantics
maximal in preferred semantics
maximal out preferred semantics

maximal undec grounded semantics
minimal in grounded semantics
minimal out grounded semantics

minimal undec semi-stable semantics

Table 1. Argument labellings and Dung-style semantics (10).

Table 1, taken from (4, 10), examines what happens when one focusses on com-
plete labellings in which one particular label has been maximized or minimized. It
turns out that in all but one case, one obtains a correspondence with one of the
semantics described in (13). The only exception is when one minimizes undec, in
which one obtains correspondence with a semantics that was introduced in (6).

Although Table 1 nicely shows how the traditional semantics of (13) plus the
one from (6) fit together, it only treats semantics that can be expressed using
maximality or minimality of one of the labels. In the current paper, we will therefore
treat two other semantics that are not defined using maximality or minimality
conditions of complete labellings: ideal semantics and stage semantics. We show
that the labelling approach is nevertheless capable not only of capturing these
semantics, but also in contributing to understanding what these semantics are
essentially all about.

3. Ideal Semantics

The intuition behind ideal semantics1 (14) can perhaps be best explained as a form
of judgement aggregation(11), where a set of judgements (labellings) is combined
to reach an aggregated judgement (labelling). The idea is to start with a group of
people who individually try to accept as much as possible. The process of judgment
aggregation then examines what they all agree on and whether the aggregated
judgment (labelling) is still reasonable (admissible). If not, then some argument
that were accepted (in) or rejected (out) are abstained from having an opinion
about (that is, they are relabelled to undec). This process is repeated until the
resulting overall judgment (labelling) is reasonable (admissible). The result is the
ideal labelling.

1Please notice that we do not intend to give any value judgement by adopting the term “ideal semantics”.
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In order to formally define the concept of the ideal labelling, we first need to
treat some preliminaries from (11).

Definition 3.1 (11): Let Lab1 and Lab2 be labellings of argumentation framework
AF = (Ar , att). We say that Lab2 is more or equally committed than Lab1 (written
as Lab1 ⊑ Lab2) iff in(Lab1) ⊆ in(Lab2) and out(Lab1) ⊆ out(Lab2). We say that
Lab2 is compatible with Lab1 (written as Lab1 ≈ Lab2) iff in(Lab1)∩ out(Lab2) = ∅
and out(Lab1) ∩ in(Lab2) = ∅.

It holds that “⊑” defines a partial order (reflexive, anti-symmetric, transitive)
on the labellings of an argumentation framework. We can therefore talk about a
labelling being “bigger” or “smaller” than another labelling with respect to “⊑”.
The relation “≈”, although reflexive and symmetric, is not an equivalence relation,
since it does not satisfy transitivity.1 It holds that “⊑” is at least as strong as “≈”;
that is, if Lab1 ⊑ Lab2 then Lab1 ≈ Lab2.

2

The idea of “⊑” is to define what it means for a labelling to be more committed
than another labelling. For instance, the grounded labelling is the least committed
labelling among all complete labellings. The idea of “≈” is to define when a labelling
of one person might still be acceptable to another person. To see this, first consider
that by requiring that in(Lab1) ∩ out(Lab2) = ∅ and out(Lab1) ∩ in(Lab2) = ∅, the
relation “≈” does not alow for conflicts between in and out. That is, if there is an
argument that is accepted by agent A but rejected by agent B (or vice versa) then
their labellings are not compatible. However, there is no problem in having conflicts
between in and undec, or between out and undec. Thus, the idea of compatibility
is to provide an indication of how easy or difficult it is to have to defend a position
that is not one’s own. It is easier to do this for a labelling that is compatible than
for a labelling that is not compatible. In the former case the worst that can happen
is that one has to abstain from something one accepts or rejects (or have to accept
or reject something where one did not have an explicit opinion about). In the latter
case, however, one has to make statements that go directly against one’s private
position.

To come back to the informal description of ideal semantics, we assume a meeting
in which every preferred labelling is represented. The meeting then discusses each
argument, one by one, with the aim to define an inital labelling. If everybody
agrees that the argument is labelled in (that is, the argument is labelled in in every
preferred labelling) then the argument is also labelled in in the initial labelling.
If everybody agrees that the argument is labelled out (that is, the argument is
labelled out in every preferred labelling) then the argument is labelled out in the
initial labelling. In all other cases, the argument is labelled undec in the initial
labelling. After this process is over, and the initial labelling has been finished, the
meeting goes to the second phase, in which the initial labelling is “watered down”
in order to become an admissible labelling. This is done by iteratively relabelling
each argument that is illegally in or illegally out to undec. When there are no more
arguments left that are illegally in or illegally out, the result is the ideal labelling.
It was proved in (11) that this process results in constructing the most committed
(“biggest”) labelling that is less or equally committed to each preferred labelling.
This leads to the following definition of ideal semantics.

Definition 3.2: Let AF = (Ar , att) be an argumentation framework. The ideal

1As a counterexample, consider an argumentation framework AF = ({A, B}, {(A, B), (B, A)}). Let Lab1 =
({A}, {B}, ∅), Lab2 = (∅, ∅, {A, B}) and Lab3 = ({B}, {A}, ∅). It holds that Lab1 ≈ Lab2 and Lab2 ≈ Lab3

but Lab1 6≈ Lab3.
2This is because Lab1 ≈ Lab2 iff in(Lab1) ⊆ in(Lab2) ∪ undec(Lab2) and out(Lab1) ⊆ out(Lab2) ∪
undec(Lab2).
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labelling is the biggest admissible labelling that is smaller or equal to each preferred
labelling.

The uniqueness of the ideal labelling has been proved in (11).1 It also holds that
the ideal labelling is a complete labelling (11). Since the grounded labelling is the
smallest complete labelling (w.r.t. “≈”) it directly follows that the ideal labelling
is bigger or equal to the grounded labelling.

Proposition 3.3: Let (Ar , att) be an argumentation framework, let Labgrounded be
its grounded extension and Labideal be its ideal extension. It holds that Labgrounded ⊑
Labideal.

In the current paper, we extend the results of (11) by proving that the ideal
labelling is also the biggest admissible labelling that is compatible with each ad-
missible/complete/preferred labelling.

Theorem 3.4 : Let Lab be a labelling of argumentation framework AF =
(Ar , att). The following statements are equivalent.

(1) Lab is the biggest admissible labelling that is smaller or equal to each pre-
ferred labelling (that is, Lab is the ideal labelling)

(2) Lab is the biggest admissible labelling that is compatible with each admissible
labelling

(3) Lab is the biggest admissible labelling that is compatible with each complete
labelling

(4) Lab is the biggest admissible labelling that is compatible with each preferred
labelling

Proof : From 1 to 2:
Let Lab be the biggest admissible labelling that is smaller or equal to each preferred
labelling. Then Args = in(Lab) is the biggest admissible set that is a subset of each
preferred extension. This can be seen as follows. First of all, Args is an admissible
set that is a subset of each preferred extension (this is because from Lab ⊑ Lab′ it
follows that in(Lab) ⊆ in(Lab′)). We now prove that Args is also the biggest ad-
missible set that is a subset of each preferred extension. Let Args ′ be an admissible
set that is a subset of each preferred extension. Then Lab′ = Ext2Lab(Args ′) is an
admissible labelling that is smaller or equal to each preferred labelling (this follows
from Lemma 2.9). So Lab ′ ⊑ Lab (this is because Lab is the biggest admissible
labelling that is smaller or equal to each preferred labelling). So in(Lab ′) ⊆ in(Lab)
so Args ′ ⊆ Args. So Args is indeed the biggest (w.r.t. set-inclusion) admissible set
that is a subset of each preferred extension.
We can then apply the results from (14, Theorem 3.3): If Args is the biggest ad-
missible set that is a subset of each preferred extension, then Args is the biggest
admissible set that is not attacked by any admissible set. We now prove that Lab
is an admissible labelling that is compatible with each admissible labelling. Let
Labadm be an arbitrary admissible labelling and let Argsadm = in(Labadm). We
now prove the following.

(1) in(Lab) ∩ out(Labadm) = ∅
This follows from the fact that Argsadm does not attack Args .

(2) out(Lab) ∩ in(Labadm) = ∅
This follows from the fact that for admissible sets the attack relation is
symmetrical.2 So from the fact that Argsadm does not attack Args it follows

1The idea is to perform the sceptical judgment aggregation procedure of (11) on all preferred labellings.
2That is, if Args1 and Args2 are admissible sets and Args1 attacks Args2 then Args2 also attacks Args1.
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that Args does not attack Argsadm.

We now prove that Lab is also the biggest admissible labelling that is compatible
with each admissible labelling. Let Lab ′ be an admissible labelling that is compati-
ble with each admissible labelling. Then Args ′ = in(Lab ′) is an admissible set that
is not attacked by any admissible set. So Args ′ ⊆ Args. It then follows that also
Lab ′ ⊑ Lab. This can be seen as follows.

• in(Lab ′) ⊆ in(Lab)
This is because Args ′ ⊆ Args and in(Lab ′) = Args ′ and in(Lab) = Args

• out(Lab ′) ⊆ out(Lab)
Let A ∈ out(Lab ′). Then there is an argument B ∈ in(Lab ′) that attacks A. From
the fact that in(Lab ′) ⊆ in(Lab) it follows that B ∈ in(Lab). From the fact that
Lab is a complete labelling (see (11)) it follows that A ∈ out(Lab).

So Lab is the biggest admissible labelling that is compatible with each admissible
labelling.
From 2 to 1:
Let Lab be the biggest admissible labelling that is compatible with each admissible
labelling. Let Lab ′ be the biggest admissible labelling that is smaller or equal to
each preferred labelling. It then follows (“from 1 to 2”) that Lab ′ is also the biggest
admissible labelling that is compatible with each admissible labelling. From the
uniqueness of the biggest admissible labelling that is compatible with each admis-
sible labelling (which is basically the biggest element of a partially ordered set) it
then follows that Lab′ = Lab.
From 2 to 3:
Let Lab be the biggest admissible labelling that is compatible with each admissible
labelling. From the fact that each complete labelling is also an admissible labelling,
it follows that Lab is also compatible with each complete labelling. We now prove
that Lab is also the biggest admissible labelling that is compatible with each com-
plete labelling. Let Lab′ be an arbitrary admissible labelling that is compatible with
each complete labelling. We will now prove that Lab ′ ⊑ Lab. We do this by proving
that Lab′ is compatible with each admissible labelling. Let Lab′′ be an arbitrary
admissible labelling. Let Lab ′′′ be the up-complete labelling of Lab ′′, as defined in
(11). It then holds that Lab′′′ is a complete labelling with Lab′′ ⊑ Lab ′′′ (11). From
the fact that Lab ′ is compatible with each complete labelling it then follows that
Lab ′ is compatible with Lab ′′′. From this, together with the fact that Lab′′ ⊑ Lab′′′,
it follows that Lab ′ is compatible with Lab ′′. Since this holds for any arbitrary
admissible labelling Lab′′, it follows that Lab′ is compatible with each admissible
labelling. Since Lab is the biggest admissible labelling that is compatible with each
admissible labelling, it then follows that Lab′ ⊑ Lab.
From 3 to 2:
This follows from “from 2 to 3” together with the uniqueness of 3. The proof is
similar to the proof of “from 2 to 1”.
From 3 to 4:
Let Lab be the biggest admissible labelling that is compatible with each complete
labelling. From the fact that each preferred labelling is a complete labelling, it fol-
lows that Lab is also compatible with each preferred labelling. We now prove that
Lab is also the biggest admissible labelling that is compatible with each preferred
labelling. Let Lab ′ be an arbitrary admissible labelling that is compatible with each
preferred labelling. We will now prove that Lab′ ⊑ Lab. We do this by proving that
Lab ′ is compatible with each complete labelling. Let Lab ′′ be an arbitrary complete
labelling. Let Lab′′′ be a preferred labelling such that Lab ′′ ⊑ Lab ′′′ (the existence
of such a Lab ′′′ follows from the fact that for every complete extension E′′ there
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exists a preferred extension E′′′ with E′′ ⊆ E′′′ (13), which together with Lemma
2.9 implies that Ext2Lab(E′′) ⊑ Ext2Lab(E′′′)). From this, together with the fact
that Lab ′ is compatible with Lab ′′′ (because Lab′ is compatible with each preferred
labelling) it follows that Lab ′ is compatible with Lab′′. Since this holds for any arbi-
trary complete labelling Lab ′′, it follows that Lab′ is compatible with each complete
labelling. Since Lab is the biggest admissible labelling that is compatible with each
complete labelling it then follows that Lab′ ⊑ Lab.
From 4 to 3:
This follows from “from 3 to 4” together with the uniqueness of 4. The proof is
similar to the proof of of “from 2 to 1”. �

We will now treat the notion of ideal semantics as described in (14).1

Definition 3.5: Let AF = (Ar , att) be an argumentation framework. An ad-
missible set Args is called ideal iff it is a subset of each preferred extension. The
ideal extension is a maximal (w.r.t. set-inclusion) ideal set.

It turns out that the ideal extension is unique (which implies that it is also the
biggest ideal set) and that it is also a complete extension (14).

There are several ways of describing the ideal extension.

Proposition 3.6: Let AF = (Ar , att) be an argumentation framework, and let
Args ⊆ Ar. The following statements are equivalent.

(1) Args is the biggest admissible set that is a subset of each preferred extension
(that is, Args is the ideal extension)

(2) Args is the biggest admissible set that is not attacked by any admissible set
(3) Args is the biggest admissible set that is not attacked by any complete ex-

tension
(4) Args is the biggest admissible set that is not attacked by any preferred ex-

tension

In Proposition 3.6 the equivalence between points 1 and 2 follows from (14,
Theorem 3.3). The equivalence between points 2, 3 and 4 follows from the fact
that an argument (or set) is attacked by an admissible set iff it is attacked by a
complete extension iff it is attacked by a preferred extension.

It turns out that the ideal labelling corresponds to the ideal extension.2

Theorem 3.7 : Let AF = (Ar , att) be an argumentation framework. It holds
that:

(1) if Args is the ideal extension of AF then Ext2Lab(Args) is the ideal la-
belling of AF , and

(2) if Lab is the ideal labelling of AF then Lab2Ext(Lab) is the ideal extension
of AF .

Proof :

(1) Let Args be the ideal extension of AF . From Proposition 3.6 it follows that
Args is the biggest admissible set that is not attacked by any complete
extension. Since the ideal extension is also a complete extension, it follows
that Args is the biggest complete extension that is not attacked by any
complete extension. Since attacks among admissible sets are symmetric
(and therefore attacks among complete extensions are also symmetric) it

1We use the term ideal extension to refer to the biggest ideal set.
2Point 2 (but not point 1) of Theorem 3.7 has been proved in (11).
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follows that Args is also the biggest complete extension that does not attack
any complete extension. It then follows that Ext2Lab(Args) is the biggest
complete labelling that is compatible with each complete labelling. It then
follows that Ext2Lab(Args) is also the biggest admissible labelling that
is compatible with any complete labelling (this follows from point 3 of
Theorem 3.4, together with the uniqueness of the ideal labelling and the fact
that the ideal labelling is a complete labelling). Therefore, Ext2Lab(Args)
is the ideal labelling.

(2) Let Lab be the ideal labelling of AF . From the fact that the ideal la-
belling is a complete labelling, together with the one-to-one relation-
ship between complete labellings and complete extensions, it follows that
Ext2Lab(Lab2Ext(Lab)) = Lab. Let Args = Lab2Ext(Lab). From the fact
that Ext2Lab(Args) = Lab, together with the fact that the ideal extension
is unique, it follows (from point 1) that Args is the ideal extension.

�

Since for complete semantics, the relation between labellings and extensions is
one-to-one, it follows that for ideal semantics the relation is one-to-one as well (this
is because the ideal extension/labelling is also a complete extension/labelling).

4. Stage Semantics

The concept of stage semantics goes back to work of Verheij (22). In essence, a
stage extension can be described as a conflict-free set of arguments Args , where
Args ∪ Args+ is maximal w.r.t. set-inclusion.1

In order to describe a stage extension in terms of labellings, we first introduce
the concept of a conflict-free labelling

Definition 4.1: Let Lab be a labelling of argumentation framework AF =
(Ar , att). Lab is conflict-free iff for each A ∈ Ar it holds that:

(1) if A is labelled in then it does not have an attacker that is labelled in
(2) if A is labelled out then it has at least one attacker that is labelled in

When comparing a conflict-free labelling to an admissible labelling it can be
noticed that the condition on out labelled arguments (point 2) is essentially the
same. However, the condition for in-labelled arguments (point 1) is weaker for
conflict-free labellings than for admissible labellings. It then follows that every
admissible labelling is also a conflict-free labelling (just like every admissible set is
also a conflict-free set by definition).

The idea of a stage labelling can then be described as a conflict-free labelling
where undec is minimal.

Definition 4.2: Let AF = (Ar , att) be an argumentation framework. A labelling
Lab is called a stage labelling iff it is a conflict-free labelling where undec(Lab) is
minimal (w.r.t. set-inclusion) among all conflict-free labellings.

It holds that every stable labelling is also a stage labelling.2

Theorem 4.3 : Let Lab be a labelling of argumentation framework AF =
(Ar , att). If Lab is a stable labelling of AF then Lab is also a stage labelling of
AF .

1Recall that Args+ stands for the set of arguments attacked by Args.
2A similar observation was made in (22).
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Proof : Let Lab be a stable labelling of AF . Then Lab is a complete labelling with
undec(Lab) = ∅. From the fact that Lab is a complete labelling (points 1 and 2
from Proposition 2.8), it follows (Definition 4.2) that Lab is a conflict-free labelling
(points 1 and 2 from Definition 4.1). Since undec(Lab) = ∅, it directly follows
that undec(Lab) is minimal among all conflict-free labellings. Hence, Lab is a stage
labelling. �

If there exists at least one stable labelling, then each stage labelling is also a
stable labelling.1

Theorem 4.4 : Let AF = (Ar , att) be an argumentation framework. If there
exists at least one stable labelling of AF then every stage labelling is also a stable
labelling.

Proof : Let Lab be a stable labelling of AF . Then from Theorem 4.3 it follows
that Lab is also a stage labelling. In particular, Lab is a stage labelling with
undec(Lab) = ∅. Now, let Lab′ be an arbitrary stage labelling of AF . It then
follows that undec(Lab ′) is minimal among all conflict-free labellings. Since Lab is
a conflict-free labelling with undec(Lab) = ∅ it follows that undec(Lab ′) must also
be ∅. So Lab ′ is a conflict-free labelling with undec(Lab ′) = ∅. In order to show that
Lab ′ is a stable labelling, we first show that it is a complete labelling, hence that
the three points of Definition 2.7 are satisfied:

(1) “if A is labelled in then all attackers of A are labelled out”
This follows from point 1 of Definition 4.1, together with the fact that
undec(Lab) = ∅ (therefore from the fact that A does not have any defeaters
that are labelled in it follows that all defeaters of A are labelled out).

(2) “if A is labelled out then all attackers of A are labelled in”
This follows from point 2 of Definition 4.1.

(3) “if A is labelled undec then not all attackers of A are labelled out and A

does not have an attacker that is labelled in”
This is trivially satisfied, since undec(Lab ′) = ∅.

So Lab ′ is a complete labelling with undec(Lab ′) = ∅. Hence (Definition 2.11) Lab ′

is a stable labelling. �

There also exists an alternative way to describe the concept of a stage labelling.
In essence, what a stage labelling does is to take a maximal subgraph of the ar-
gumentation framework that has a stable labelling. A stage labelling is then a
stable labelling of such a maximal subgraph, augmented with undec labels for the
arguments that did not make their way into the subgraph.

In the following lemma, AF |Args stands for (Ar ∩Args , att ∩ (Args ×Args)) (as-
suming that AF = (Ar , att)) and Lab|Args stands for Lab∩(Args×{in, out,undec}).

Lemma 4.5: Let Lab be a labelling of argumentation framework AF = (Ar , att).
The following two statements are equivalent.

(1) Lab is a conflict-free labelling.
(2) Lab|Args is a stable labelling of AF |Args , where Args = in(Lab) ∪ out(Lab).

Proof :

from 1 to 2:
Let Lab be a conflict-free labelling. We now prove that Lab|Args is a stable labelling
of AF |Args . We do this by proving that Lab|Args fulfils the three conditions of a
complete labelling (Definition 2.7).

1A similar observation, in the context of DefLog, was made in (23, page 337).
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(1) “If A is labelled in then all attackers of A are labelled out”
This follows from point 1 of Definition 4.1, together with the fact that
undec(Lab|Args) = ∅.

(2) “if A is labelled out then A has an attacker that is labelled in”
This follows from point 2 of Definition 4.1.

(3) “if A is labelled undec then not all attackers of A are labelled out and A

does not have an attacker that is labelled in”
This is trivially satisfied since undec(Lab|Args ) = ∅.

From the validity of point 1, 2 and 3 it follows that Lab|Args is a complete labelling
of AF |Args . From the fact that undec(Lab|Args) = ∅ it follows that Lab|Args is also
a stable labelling of AF |Args .
from 2 to 1:
Let Lab be a labelling of AF such that Lab|Args is a stable labelling of AF |Args .
We now prove that Lab is a conflict-free labelling of AF . According to Definition
4.1 we need to prove two things:

(1) “if A is labelled in then it does not have an attacker that is labelled in”
Let B be an arbitrary attacker of A in AF . We distinguish two cases:

a) B ∈ Args . Then B also attacks A in AF |Args . From the fact that
Lab|Args is a stable labelling (and therefore also a complete labelling)
of AF |Args it follows that B is labelled out by Lab|Args , and therefore
that B is labelled out by Lab.

b) B 6∈ Args . Then B 6∈ in ∪ out so B ∈ undec(Lab).
In both cases, B is not labelled in by Lab. Therefore A does not have an
attacker in AF that is labelled in by Lab.

(2) “If A is labelled out then it has at least one attacker that is labelled in”
Let A be an argument that is labelled out by Lab. Then A ∈ Args, so
the fact that Lab|Args is a stable (and therefore also complete) labelling of
AF |Args implies that there exists an argument B labelled in by Lab|Args

that attacks A in AF |Args , so B is also labelled in by Lab and also attacks
A in AF .

�

Theorem 4.6 : Let Lab be a labelling of argumentation framework AF =
(Ar , att). The following two statements are equivalent.

(1) Lab is a conflict-free labelling where undec(Lab) is minimal (w.r.t. set in-
clusion) among all conflict-free labellings (that is, Lab is a stage labelling)

(2) Args = in(Lab)∪out(Lab) is a maximal subset of Ar such that AF |Args has
a stable labelling, and Lab|Args is a stable labelling of AF |Args .

Proof :

from 1 to 2:
Let Lab be a conflict-free labelling where undec(Lab) is minimal. From Lemma
4.5 it follows that Lab|Args is a stable labelling of AF |Args . We now prove that
Args is a maximal subset of Ar such that AF |Args has a stable labelling. Suppose
Args ′ % Args is a subset of Ar such that AF |Args ′ has a stable labelling (say Lab′).
Let Lab′′ = Lab ∪ {(A,undec) | A ∈ Ar\Args ′}. It holds that Lab ′ = Lab ′′|Args ′ .
From Lemma 4.5 it follows that Lab ′′ is a conflict-free labelling of AF . Moreover,
it holds that undec(Lab ′′) $ undec(Lab), so undec(Lab) is not minimal. Contradic-
tion.
from 2 to 1:
Let Args = in(Lab) ∪ out(Lab) be a maximal subset of Ar such that AF |Args

has a stable labelling, and that Lab|Args is a stable labelling of AF |Args . From
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Lemma 4.5 it follows that Lab is a conflict-free labelling of AF . We now prove
that undec(Lab) is minimal. Let Lab ′ be a conflict-free labelling of AF with
undec(Lab ′) $ undec(Lab) and let Args ′ = in(Lab ′) ∪ out(Lab ′). Then, according
to Lemma 4.5 it follows that Lab′|Args ′ is a stable labelling of AF |Args . However,
since Args ′ % Args it follows that Args is not a maximal subset of Ar such that
AF |Args has a stable labelling. Contradiction. �

As was mentioned at the beginning of the current section, stage semantics can
also be expressed using the traditional approach of argument extensions.

Definition 4.7: Let AF = (Ar , att) be an argumentation framework. A stage
extension is a conflict-free set Args ⊆ Ar where Args ∪ Args+ is maximal (w.r.t.
set inclusion) among all conflict-free sets.

Lemma 4.8: Let AF = (Ar , att) be an argumentation framework and Args ⊆
Ar. The following two statements are equivalent:

(1) Args is a conflict-free set of AF

(2) Args is a stable extension of AF |Args∪Args+

Proof : Similar to Lemma 4.5. �

Theorem 4.9 : Let AF = (Ar , att) be an argumentation framework and Args ⊆
Ar. The following two statements are equivalent.

(1) Args is a conflict-free set where Args ∪Args+ is maximal (w.r.t. set inclu-
sion) among all conflict-free sets (that is, Args is a stage extension).

(2) Args ∪ Args+ is a maximal subset of Ar such that AF |Args∪Args+ has a
stable extension, and Args is a stable extension of AF |Args∪Args+.

Proof : Similar to the proof of Theorem 4.6. �

Before discussing the connection between stage labellings and stage extensions,
we first state the connection between conflict-free labellings and conflict-free sets.

Proposition 4.10: Let AF = (Ar , att) be an argumentation framework. It holds
that:

(1) if Args is a conflict-free set of AF then Ext2Lab(Args) is a conflict-free
labelling of AF

(2) if Lab is a conflict-free labelling of AF then Lab2Ext(Lab) is a conflict-free
set of AF

The relation between conflict-free sets and conflict-free labellings is not one-to-
one, however. There can be several conflict-free labellings which are associated with
the same conflict-free set.1

Theorem 4.11 : Let AF = (Ar , att) be an argumentation framework. It holds
that:

(1) if Args is a stage extension of AF then Ext2Lab(Args) is a stage labelling
of AF

(2) if Lab is a stage labelling of AF then Lab2Ext(Lab) is a stage extension of
AF

Proof : This follows from Proposition 4.10. �

1An example would be an argumentation framework ({A, B}, {(A, B)}) with Lab1 = ({A}, {B}, ∅) and
Lab2 = ({A}, ∅, {B}).
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Stage extensions and stage labellings stand in a one-to-one relation to each other.
That is, when restricted to stage extensions and stage labellings, the functions
Ext2Lab and Lab2Ext become bijections and each other’s inverse.

Theorem 4.12 : Let AF = (Ar , att) be an argumentation framework, se its set of
stage extensions and sl its set of stage labellings. Let Ext2Labs : se → sl be a func-
tion such that Ext2Labs(Args) = Ext2Lab(Args) (that is, Ext2Labs is the func-
tion Ext2Lab where the domain/range is restricted to stage extensions/labellings)
and Lab2Exts : sl → se be a function such that Lab2Exts(Lab) = Lab2Ext(Lab)
(that is, Lab2Exts is the function Lab2Ext where the domain/range is restricted
to stage labellings/extensions). The functions Ext2Labs and Lab2Exts are bijective
and each other’s inverse.

Proof : As every function that has an inverse is bijective, we only need to prove
that Lab2Exts and Ext2Labs are each other’s inverses. That is (Lab2Exts)−1 =
Ext2Labs and (Ext2Labs)−1 = Lab2Exts. For this, we prove the following two
things:

(1) “For every stage labelling Lab it holds that Ext2Labs(Lab2Exts(Lab)) =
Lab.”
Let Lab be a stage labelling of AF . Let Args = in(Lab) ∪ out(Lab).
Then according to Theorem 4.6 Lab|Args is a stable labelling of AF |Args

and since stable labellings and stable extensions are one-to-one re-
lated (this follows from the fact that complete labellings and complete
extensions are one-to-one related, as proved in (10)) it follows that
Ext2Lab(Lab2Ext(Lab|Args )) = Lab|Args . It then follows that for every
A ∈ Ar :
Ext2Labs(Lab2Exts(Lab))(A) = in iff Lab(A) = in
Ext2Labs(Lab2Exts(Lab))(A) = out iff Lab(A) = out
It then directly follows that: Ext2Labs(Lab2Exts(Lab))(A) = undec iff
Lab(A) = undec
So Ext2Labs(Lab2Exts(Lab)) = Lab.

(2) “For every stage extension E it holds that Lab2Exts(Ext2Labs(E)) = E.”
Let E be a stage extension of AF . We now prove two things:

a) Lab2Exts(Ext2Labs(E)) ⊆ E

Let A ∈ Lab2Exts(Ext2Labs(E)) ⊆ E. Then A is labelled in by
Ext2Labs(E). Therefore A ∈ E.

b) E ⊆ Lab2Exts(Ext2Labs(E))
Let A ∈ E. Then A is labelled in by Ext2Labs(E). Therefore A ∈
Lab2Exts(Ext2Labs(E)).

�

In order to understand the difference between stage semantics and the admissi-
bility based semantics, it is useful to make an analogy with classical logic. In the
presence of a potentially inconsistent knowledge base one could do two things:

(1) Take the maximal consistent subsets of the knowledge base, and examine
what is entailed by all of these. That is, take the (classical) models of the
maximal subsets of the knowledge base that have classical models.

(2) Define a new semantics such that the entire knowledge base will have mod-
els.This is the approach that is, for instance, taken in the field of paracon-
sistent logic (2, 12).

Solution 1 (applying the original semantics to maximal subsets of the original prob-
lem description) is comparable to stage semantics, whereas solution 2 (redefining
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the semantics so that it can meaningfully be applied to a bigger class of knowledge
bases) is comparable with the admissibility based semantics.

4.1. Stage Semantics versus Semi-Stable Semantics

The concept of stage semantics is similar to that of semi-stable semantics, as both
of these semantics aim to maximize the range (Args ∪Args+) of their extensions.1

However, where semi-stable semantics aims to maximize the range under the condi-
tion of admissibility, stage semantics tries to maximize the range under the weaker
condition of conflict-freeness. It turns out that the approach of stage semantics is
equivalent to taking the stable extensions (labellings) of the biggest subframework
that has at least one stable extension (labelling). Hence, the approach of stage
semantics is comparable with the approach of handling inconsistent knowledge
bases, where one can select maximal consistent subsets of the knowledge base, and
then examine what holds in all of them (in the union of all their models). That
is, it is as if stage semantics interprets the absence of stable extensions as some
form of “inconsistency”, which needs to be handled taking the “maximal consistent
subframeworks”.

In semi-stable semantics, on the other hand, one still takes all the arguments
of the argumentation framework into account. That is, one does not ignore any
information provided by the argumentation framework. An example is shown in
Figure 1. Here, semi-stable semantics yields a single extension ∅, corresponding with
a labelling (∅, ∅, {A,B}), whereas stage semantics yields a single extension {B},
corresponding with a labelling ({B}, ∅, {A}). In essence, what stage semantics does
is to ignore argument A, since this argument causes the framework not to have any
stable extensions.

BA

Figure 1. Stage semantics differs from semi-stable semantics

Another example to illustrate the difference between stage semantics and semi-
stable semantics is given in Figure 2. Here, semi-stable semantics yields a single
extension {A}, corresponding to a labelling ({A}, {B}, {C}). Stage semantics yields
two extensions, the first one being equivalent to the one yielded by semi-stable se-
mantics, the second one being {B}, corresponding to a labelling ({B}, {C}, {A}).
The first stage extension (labelling) is the result of ignoring argument C, the second
stage extension (labelling) is the result of ignoring argument A. For both possibil-
ities, the remaining argumentation framework is a maximal one that has at least
one stable extension (labelling). It can therefore be observed that under stage se-
mantics, even an argument without any attackers (like argument A in Figure 2) is
not always labelled in.2 With semi-stable semantics, however, an argument without
any attackers is always labelled in.

Although examples like illustrated by Figure 2 pose a serious problem for stage se-
mantics, the situation is not hopeless. A positive aspect is that each argumentation
framework has at least one stage labelling that is at least as committed (“bigger or
equal”) as the grounded labelling. It then directly follows that each argumentation

1Or, alternatively, they try to minimize the set of undec-labelled arguments of their labellings.
2We would like to thank Pietro Baroni and Massimiliano Giacomin for this observation.
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BA C

Figure 2. Stage semantics does not always endorse non-attacked arguments

framework has at least one stage labelling that labels each argument without any
attackers in. In order to prove this, we need the following lemma. In this lemma,
as well as in the subsequent theorem, the range of a labelling stands for its set of
in-labelled or out-labelled arguments (that is, range(Lab) = in(Lab) ∪ out(Lab)).

Lemma 4.13: Let AF be an argumentation framework with grounded labelling
G such that undec(G) = ∅. Let C be an arbitrary conflict-free labelling of AF . It
holds that if range(G) ⊆ range(C) then C = G.

Proof : From the fact that range(G) ⊆ range(C), together with the fact that
undec(G) = ∅, it follows that range(G) = range(C). So undec(C) = ∅, so C is a
stable labelling. The grounded labelling is less or equally committed than every
complete labelling (and is therefore also less or equally committed than every sta-
ble labelling). That is, G ⊑ C. Since undec(G) = ∅ it then follows that G = C.
�

Theorem 4.14 : Let AF = (Ar , att) be an argumentation framework and G be
its grounded labelling. There exists at least one stage labelling S such that G ⊑ S.

Proof : Let Cmax be an element of {C | C is a conflict-free labelling of AF and
G ⊑ C} with a maximal range within this set. Since the set is finite (because AF

is finite) and non-empty (because it contains at least G) such an element with
maximal range (Cmax) does exist. Now suppose that Cmax is not a stage labelling.
Then there exists a conflict-free labelling Dmax of AF such that range(Cmax) (
range(Dmax). Let AF ′ = AF |range(G), G

′ = G|range(G), C
′
max = Cmax|range(G), and

D′
max = Dmax|range(G). From the fact that G ⊑ Cmax it follows that G′ = C′

max. Also,
from range(Cmax) ( range(Dmax) it follows that range(C′

max) ⊆ range(D′
max).

Furthermore, it holds that range(G′) ⊆ range(C′
max) (since G′ = C′

max), so by
transitivity we obtain range(G′) = range(D′

max). From Lemma 4.13 it then follows
that G′ = D′

max, from which it follows that G ⊑ Dmax. So Dmax is an element
of {C | C is a conflict-free labelling of AF and G ⊑ C}. But since range(Cmax) (
range(Dmax) it then follows that Cmax does not have a maximal range among the
elements of this set. Contradiction. �

Hence, a possible way of dealing with problems such as the one illustrated in
Figure 2 is simply to delete all stage labellings that do not label all arguments
without attackers in. Theorem 4.14 guarantees that after doing so, there will be at
least one stage labelling left.

4.2. Verheij’s Original Formalization of Stage Semantics

In (22), stage semantics was originally introduced not in terms of traditional argu-
ment extensions, nor in terms of labellings in the sense of Definition 2.4. Instead, it
was introduced using what we will refer to as argumentation tuples, which in essence
is a type of labelling in which undec is not explicitly represented. In the current
section we treat the overlap between our formalization and Verheij’s original work.

We first state Definition 3 of (22), although we have slightly changed the ter-
minology in order to be compatible with what is nowadays commonly used in the
field of formal argumentation.
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Definition 4.15 Definition 3 of (22):

(1) An argumentation tuple (IN,OUT) is a pair of disjoint sets of arguments.
The union of IN and OUT is called the range of the argumentation tuple.

(2) A stage tuple is an argumentation tuple (IN,OUT) such that for each ar-
gument A ∈ IN ∪ OUT it holds that:
A ∈ OUT iff there exists an argument A′ ∈ IN that attacks A

(3) A stage tuple extension is a stage tuple (IN,OUT) such that there is no
stage tuple with a larger range.

There exists a one-to-one relationship between the notion of stage tuples (Defi-
nition 4.15) and the notion of a conflict-free labellings (Definition 4.1).

Theorem 4.16 : Let (Ar , att) be an argumentation framework. It holds that
(IN,OUT) is a stage tuple iff (IN,OUT,Ar\(IN∪OUT)) is a conflict-free labelling.

Proof : “⇒”: Let (IN,OUT) be a stage tuple. We now prove the following.

(1) “If A ∈ IN then it does not have an attacker B such that B ∈ IN.”
Let B be an attacker of A. Then according to point 2 of Definition 4.15,
B ∈ OUT. Since IN and OUT are disjoint, it follows that B 6∈ IN.

(2) “If A ∈ OUT then it has at least one attacker B such that B ∈ IN.”
This follows directly from point 2 of Definition 4.15.

“⇐”: Let (IN,OUT,Ar\(IN ∪OUT)) be a conflict-free labelling. That is, for each
argument A ∈ Ar it holds that:

(1) If A ∈ IN then it does not have an attacker B such that B ∈ IN.
(2) If A ∈ OUT then it has at least one attacker B such that B ∈ IN.

We first observe that IN and OUT are disjoint (if A ∈ IN and A ∈ OUT then
from 1 and 2 a contradiction follows) thus satisfying point 2 of Definition 4.15.
Moreover, for each A ∈ IN ∪ OUT it holds that:

• if A ∈ OUT then there exists an A′ ∈ IN that attacks A (follows directly from
2)

• if A 6∈ OUT then there does not exist an A′ ∈ IN that atacks A (follows from 1,
together with the fact that A ∈ IN when A ∈ IN ∪ OUT and A 6∈ OUT)

From these two implications, point 2 of Definition 4.15 follows. �

Similarly, there exists a one-to-one correspondence between the notion of stage
tuple extensions (Definition 4.15) and the notion of stage labellings (Definition
4.2).

Theorem 4.17 : Let (Ar , att) be an argumentation framework. It holds that
(IN,OUT) is a stage tuple iff (IN,OUT,Ar\(IN ∪ OUT)) is a stage labelling.

Proof : “⇒”: Let (IN,OUT) be a stage extension. It then follows that
(IN,OUT,Ar\(IN ∪ OUT)) is a conflict-free labelling (Theorem 4.16). The fact
that (IN,OUT,Ar\(IN ∪ OUT)) is also a stage labelling (that is, a conflict-free
labelling with minimal Ar\(IN ∪ OUT)) follows from the fact that IN ∪ OUT is
maximal (from the fact that (IN,OUT is a stage tuple extension, it follows that it
has a maximal range).
“⇐”: Let (IN,OUT,Ar\(IN ∪ OUT)) be a stage labelling. It then follows that
(IN,OUT) is a stage tuple (Theorem 4.16). The fact that (IN,OUT) is a stage
tuple extension (that is, a stage tuple with maximal range IN∪OUT) then follows
from the fact that Ar\(IN∪OUT) is minimal (since (IN,OUT,Ar\(IN∪OUT)) is
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a stage labelling). �

Since stage extensions, stage labellings and stage tuple extensions express essen-
tially the same concept (though in different manifestations) we can use either form
without loosing essential information.

Although Verheij shows that, given a stage tuple (IN,OUT) the set IN is an
admissible set (and even a stable extension) of the argumentation framework re-
stricted to IN∪OUT (Theorem 3 of (22)) he does not go all the way and state that
a stage tuple extension is essentially about taking a maximal subframework that
has at least one stable extension (labelling), as we have stated in Theorem 4.9 and
Theorem 4.6.

The concept of semi-stable semantics corresponds with what Verheij calls “admis-
sible stage extensions”.1 It was ten years later that Caminada (initially unaware of
this correspondence) reinvented the concept under the name of “semi-stable seman-
tics”, and proved various of its properties, such as the fact that every semi-stable
extension is also a complete extension, the fact that semi-stable semantics satisfies
the postulate of relevance, and a number of conditions under which an argument
is credulously or sceptically endorsed under semi-stable semantics.

5. Roundup

In the current work, we have extended the results of (4, 10) by showing that
the labelling approach is applicable to two additional semantics from the existing
argumentation literature: ideal semantics and stage semantics. Moreover, there
turns out to be a one-to-one correspondence between the extensions and labellings
of these two semantics.

Ideal semantics can be described in terms of judgment aggregation. In (11) it
was shown that the ideal labelling is the result of the sceptical judgment aggre-
gation procedure based on all preferred labellings, or alternatively, the result of
the credulous or super-credulous judgment aggregation procedure on all admissi-
ble admissible, complete or preferred labellings. In the current paper, we go one
step further and show that this result is also the biggest (w.r.t. “⊑”) admissible
and complete labelling that is compatible with all admissible, complete or preferred
labellings.

As for stage semantics, it was found that this semantics takes the stable la-
bellings/extensions of the maximal subframework(s) that have at least one stable
labelling/extension. Here, we again see that the properties of a semantics (in this
case stage semantics) can be expressed both in terms of extensions and in terms of
labellings.

Although the labellings approach and the extensions approach are equivalent
(after all, an extension is basically the in-labelled part of a labelling) the labellings
approach offers several advantages. First of all, the labellings approach can offer
some technical advantages. For instance, the algorithm for stage semantics (8) has
been stated in terms of labellings, and would be very difficult to rewrite using only
the traditional extensions approach. A similar observation holds for the algorithm
for semi-stable semantics (4, 16). What makes labellings suitable for constructing
these algorithms is the fact that labellings can be defined in terms of relatively small
and modular properties that hold independently from each other. The algorithms

1Verheij also expresses the notions of preferred and stable semantics, as well as the notion of admissibility,
in terms of argumentation tuples.
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then uses the fine-grainedness of these properties to work to satisfy all of them in
an incremental way.

The second and in our view even most important advantage of the labellings
approach is that it tends to make formal argumentation more easy to understand,
even for non-experts. For instance, for complete semantics (Proposition 2.8) the
essential rule is that an argument has to be accepted iff all its attackers are rejected,
and an argument has to be rejected iff it has at least one attacker that is accepted.
Thus, argumentation can be explained without referring to things like admissibility
or fixpoints of Dungs characteristic function. In a gunfight, one stays alive iff all
attackers are dead, and one dies iff at least one attacker is still alive. Those who can
understand this have basically understood what complete semantics is all about.
This understanding can then also be used to explain the basic intuitions behind
other semantics, like preferred, grounded, stable and semi-stable (see Table 1). As
for ideal semantics, the labellings approach allows it to be described (Proposition
Theorem 3.4) as the most committed reasonable (admissible/complete) position
one can take that is still compatible with each reasonable (admissible/complete)
position. As for stage semantics, the labellings approach also provides an intuitive
description (Theorem 4.6): one wants to have a black-and-white (in or out) view of
the world, in which there is no room for shades of gray (undec), even if one has to
ignore part of the available information to achieve this (that is, one wants to have
a stable labelling of a maximal part of the argumentation framework).

Overall, by treating two additional semantics (stage and ideal) in terms of la-
bellings, we hope to have contributed to promoting labellings as a general way to
characterize argumentation semantics, that has advantages of both technical and
conceptual nature.

Thanks

We would like to thank Yining Wu for helping to develop the concept of an ideal
labelling.
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