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Abstract

In this paper, we present a discussion game for argumentation under stable se-
mantics. Our work is inspired by Vreeswijk and Prakken, who have defined a
similar game for preferred semantics. In the current paper, we restate Vreeswijk
and Prakken’s work using the approach of argument labellings and then show
how it can be adjusted for stable semantics. The nature of the resulting ar-
gument game is somewhat unusual, since stable semantics does not satisfy the
property of relevance.

Key words: argumentation, argument labellings, discussion games, stable
semantics

1. Introduction

Stable semantics, a concept that goes back to [18], is one of the oldest se-
mantics for argumentation and non-monotonic reasoning. Although Dung’s
landmark paper [10] was partially meant to argue against the use of it, stable
semantics has remained an important concept in fields like default logic [16] and
logic programming [12, 13].

During recent years, several new semantics have been proposed [1, 6, 11, 2].
What makes stable semantics unique, however, are two fundamental properties.
First of all, there is the possible absence of stable extensions. When applying
stable semantics in, for instance, answer set programming, this can in fact be
a desirable property. If one encodes a problem such that the possible solutions
correspond with the stable extensions, then the absence of stable extensions
indicates the absence of solutions to the original problem. Secondly, stable
semantics does not satisfy the property of relevance [6]. That is, it is possible
for the status of an argument A to be influenced by a totally unrelated argument
B. For instance, let (Ar , def ) be an argumentation framework where the set of
arguments Ar is {A, B} and the defeat relation def is {(B, B)}, meaning that
B defeats B. Then A and B are totally unrelated in the sense that there does
not exist an (undirected) defeat-path between A and B. Yet, the existence of
argument B causes argument A not to be credulously accepted.

The invalidity of the property of relevance has implications for the possibil-
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ities of defining an argument game.1 For instance, for grounded and preferred
semantics, both of which do satisfy relevance, it is possible to define argument
games in which each move is a response to a previous move [19, 15, 4]. For
stable semantics, however, this is not possible. In the above example, argument
B is the reason why argument A is not credulously accepted. Yet, it would
be somewhat odd to reply to A with B, since no relation exists between these
arguments.

In this paper, we propose an argument game that can deal with the unique
characteristics of stable semantics. First, in Section 2, we briefly state some
preliminaries on argument semantics and argument labellings. Then, in Section
3, we restate the approach of Vreeswijk and Prakken in terms of argument
labellings. The discussion game for credulous acceptance under stable semantics
is then given in Section 4, and an approach for sceptical acceptance under stable
semantics is given in Section 5. Then, in Section 6, we finish with a discussion
about some future research topics.

2. Argument Semantics and Argument Labellings

In this section, we briefly restate some preliminaries regarding argument se-
mantics and argument-labellings. We restrict ourselves to finite argumentation
frameworks in order to assure termination for the proposed discussion game
defined later in this paper.

Definition 1. An argumentation framework is a pair (Ar , def ) where Ar is a
finite set of arguments and def ⊆ Ar × Ar.

We say that argument A defeats argument B (or alternatively, that A is a
defeater if B) iff (A, B) ∈ def .

An argumentation framework can be represented as a directed graph in which
the arguments are represented as nodes and the defeat relation is represented
as arrows. In several examples throughout this paper, we will use this graph
representation.

Definition 2 (defense / conflict-free).
Let (Ar , def ) be an argumentation framework, A ∈ Ar and Args ⊆ Ar.
We define A+ as {B | A def B} and Args+ as {B | A def B for some A ∈ Args}.
We define A− as {B | B def A} and Args− as {B | B def A for some A ∈ Args}.
Args is conflict-free iff Args ∩ Args+ = ∅.
Args defends an argument A iff A− ⊆ Args+.
Let F : 2Ar → 2Ar be the function defined as:
F (Args) = {A | A is defended by Args}.

1An argument game (in the sense of [19, 15, 4]) can be described as a formal discussion in
which two parties (proponent and opponent) take turns to exchange arguments. Usually, each
of their moves consists of uttering an argument that defeats one of the other party’s previous
arguments. The ultimate aim of the game is to determine whether the main argument (uttered
in the first move by the proponent) can be considered to be justified.

2



In the definition below, stable semantics is described as an admissible set
that defeats each argument that is not an element of it. It can be proven that
this is the same as Dungs original definition [10] of a stable extension as a
conflict-free set that defeats each argument that is not an element of it

Definition 3 (acceptability semantics). Let (Ar , def ) be an argumentation
framework. A conflict-free set Args ⊆ Ar is called

- an admissible set iff Args ⊆ F (Args).

- a preferred extension iff Args is a maximal admissible set.

- a stable extension iff Args is an admissible set that defeats every argument
in Ar\Args.

The concepts of admissibility, as well as those of preferred and stable se-
mantics were originally stated in terms of sets of arguments. It is equally well
possible, however, to express these concepts using argument labellings. This
approach has been proposed by Pollock [14] and Verheij [17] and has recently
been extended by Caminada [5]. The idea of a labelling is to associate with
each argument at most one label, which can be in or out. It is also possible
for an argument to be unlabelled.2 The label in indicates that the argument is
explicitly accepted and the label out indicates that the argument is explicitly
rejected.

Definition 4. A labelling is a partial function L : Ar −→ {in, out}.

We write in(L) for {A | L(A) = in} and out(L) for {A | L(A) = out}.
Since a labelling is a function, which is essentially a relation, it can be repre-

sented as a set of pairs. For instance, a possible labelling of the argumentation
framework of Figure 1 would be {(A, in), (B, out)}

Definition 5. Let L be a labelling of argumentation framework (Ar , def ) and
A ∈ Ar. We say that:

1. A is legally in iff A is labelled in and each defeater of A is labelled out

2. A is legally out iff A is labelled out and A has at least one defeater that
is labelled in

We say that an argument A is illegally in iff A is labelled in but is not
legally in. We say that an argument A is illegally out iff A is labelled out but
is not legally out.

Definition 6. Let (Ar , def ) be an argumentation framework and L : Ar −→
{in, out} be a partial function. We say that L is an admissible labelling iff it
satisfies the following:

2In [5, 7] an argument has exactly one label, which is either in, out or undec. This approach
is suitable for capturing the notion of complete semantics. However, in the current paper, we
are merely interested in capturing the notion of preferred and stable semantics, for which the
current, simple definition of a labelling is sufficient.
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• each argument that is labelled in is legally in.

• each argument that is labelled out is legally out.

A preferred labelling is a maximal (w.r.t. set inclusion) admissible labelling L.
A stable labelling is an admissible labelling L where each argument is labeled.

As an example, consider the argumentation framework of Figure 1. Here
∅, {(A, in), (B, out)}, {(A, out), (B, in)} and {(A, out), (B, in), (C, out), (D, in),
(E, out)} are examples of admissible labellings. Only {(A, in), (B, out)} and
{(A, out), (B, in), (C, out), (D, in), (E, out)} are preferred labellings (because
they are maximal w.r.t. set inclusion). Only {(A, out), (B, in), (C, out), (D, in),
(E, out)} is a stable labelling.

It can be proved that the various types of labellings correspond to the various
kinds of argument semantics [5, 7]. The first step is to show that admissible sets
coincide with admissible labellings. This can then serve as the basis to show that
preferred extensions coincide with preferred labellings and that stable extensions
coincide with stable labellings.

Theorem 1. Let (Ar , def ) be an argumentation framework and let Args ⊆ Ar.
Args is an admissible set iff there exists an admissible labelling L with in(L) =
Args.

Proof.
“=⇒”: Let Ar be an admissible set. Now consider a labelling L with in(L) =
Args and out(L) = Args+. From the fact that Args is conflict-free it follows
that Args ∩ Args+ = ∅, so the labelling is well-defined.
We now prove that L has no arguments that are illegally in. Let A be an
arbitrary argument that is labelled in by L. Then A ∈ Args . Let B be an
arbitrary defeater of A. The fact that Args is an admissible set means that
Args contains an argument (say C) that defeats B. Therefore, B ∈ Args+,
so B is labelled out by L. As this holds for any arbitrary defeater B of A, it
follows that each defeater of A is labelled out. Therefore, A is legally in.
Next we prove that L has no arguments that are illegally out. Let A be an
arbitrary argument that is labelled out by L. Then A ∈ Args+. The fact that
A ∈ Args+ means that there is some argument (say B) in Args that defeats A.
The fact that B is in Args means that B is labelled in by L. Thus, A has a
defeater that is labelled in. Therefore, A is legally out.
“⇐=”: Let L be an admissible labelling and let Args = in(L).
We first prove that Args is conflict-free. Suppose this is not the case. Then
there exist two (possibly the same) arguments A, B ∈ Args such that A defeats
B. The fact that A, B ∈ Args means that both A and B are labelled in by
L. But then B would be illegally in, which implies that L is not an admissible
labelling. Contradiction.
We now prove that Args ⊆ F (Args), Let A ∈ Args . Then A is labelled in by L.
Let B be an arbitrary defeater of A. The fact that L is an admissible labelling
means that L has no arguments that are illegally in, so from the fact that A is
labelled in by L it follows that B must be labelled out. The fact that L is an
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admissible labelling also means that L has no arguments that are illegally out,
so from the fact that B is labelled out it follows that B must have a defeater
(say C) that is labelled in means that C ∈ Args . So, as A is defended by Args
against any possible defeater B, we have that A ∈ F (Args).

Theorem 2. Let (Ar , def ) be an argumentation framework and let Args ⊆ Ar.
Args is a preferred extension iff
there exists a preferred labelling L with in(L) = Args.
Args is a stable extension iff
there exists a stable labelling L with in(L) = Args.

Proof. Using the results of Theorem 1 this then follows in a straightforward way
from Definition 2 and Definition 6.

There are different ways to characterize a stable extension.

Proposition 1. Let (Ar , def ) be an argumentation framework and Args ⊆
Ar. The following statements, describing the concept of stable semantics, are
equivalent:

1. Args defeats exactly the arguments in Ar\Args

2. Args is a conflict-free set
that defeats each argument in Ar\Args

3. Args is an admissible set
that defeats each argument in Ar\Args

4. Args is a preferred extension
that defeats each argument in Ar\Args

3. Vreeswijk and Prakken’s Argumentation Game for Preferred Se-

mantics

In this section we treat a reformulated version of Vreeswijk and Prakken’s
argument game for preferred semantics [19]. Although there also exist other
argument games for preferred semantics, like [8], we have chosen [19] for its
relative simplicity and its easy adaptability to work with argument labellings.
Our reformulation is aimed at slightly simplifying Vreeswijk and Prakken’s ap-
proach, and also to allow for its easy adaptation to stable semantics, which will
be treated in the next section.

In order to determine whether an argument (say A) is in an admissible set
(say Args), one can examine whether there exists an admissible labelling (L)
with L(A) = in (Theorem 2). The discussion game is then aimed at providing
this admissible labelling. The admissible discussion game can be described as
follows:

• proponent (P) and opponent (O) take turns; P begins

• each move of O is a defeater of some (not necessarily the directly preced-
ing) previous argument of P
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• each move of P (except the first one) is a defeater of the directly preceding
argument of O

• O is not allowed to repeat its own moves, but may repeat P’s moves

• P is not allowed to repeat O’s moves, but may repeat its own moves

The game is won by the proponent iff the opponent cannot move anymore. It is
won by the opponent iff the proponent cannot move anymore, or if the opponent
manages to repeat one of the proponent’s moves.

One good way to view the discussion game is as the proponent trying to build
the set of in-labelled arguments and the opponent trying to build the set of
out-labelled arguments. As an example, consider the argumentation framework
illustrated in Figure 1.

E

A B
C

D

Figure 1: An argumentation framework

Here, the proponent can win the discussion game for argument D in the
following way:
P: in(D) “I have an admissible labelling in which D is labelled in.”
O: out(C) “Then in your labelling it must also be the case that D’s defeater C is
labelled out (otherwise D would not be legally in). Based on which grounds?”
P: in(B) “C is labelled out because B is labelled in.”
O: out(A) “Then in your labelling it must also be the case that B’s defeater A is
labelled out (otherwise B would not be legally in). Based on which grounds?”
P: in(B) “A is labelled out because B is labelled in.”

The above example illustrates the need for the proponent to be able to repeat
its own arguments. At the same time, the proponent should not be allowed to
repeat the opponent’s arguments, since these have to be labelled out, so the
proponent cannot claim them to be labelled in.

The argumentation framework of Figure 1 can also be used for an example
of a game won by the opponent:
P: in(E) “I have an admissible labelling in which E is labelled in.”
O: out(D) “Then in your labelling it must be the case that E’s defeater D is
labelled out. Based on which grounds?”
P: in(C) “D is labelled out because C is labelled in.”
O: out(E) “Then in your labelling it must be the case that C’s defeater E is
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labelled out. This contradicts with your earlier claim that E is labelled in.”

The above example illustrates that it is necessary to allow the opponent
to repeat the proponent’s arguments. Nevertheless, it would not be useful for
the opponent to repeat its own arguments, since the reason why the particular
argument is labelled out has already been explained by the proponent, so it
makes no sense to ask again.

A

B

C

Figure 2: An argumentation framework with floating defeat

As a last illustration of the dialogue game for admissibility, consider the ar-
gumentation framework of Figure 2. Argument C is not in an admissible set.
It is illustrative to see what happens if the proponent tries to defend C.
P: in(C) “I have an admissible labelling in which C is labelled in.”
O: out(A) “Then in your labelling C’s defeater A must be labelled out. Based
on which grounds?”
P: in(B) “A is labelled out because B is labelled in.”
O: out(B) “But from the fact that you hold C to be in, it follows that C’s
defeater B must be labelled out. This contradicts with your earlier claim that
B is labelled in.”

The above example illustrates the need for the opponent to be able to re-
spond not only to the immediately preceding move, but to any past move of the
proponent; in the example, out(B) is a response to in(C). This is because for
an argument to be legally in, all its defeaters have to be out, so the opponent
may need to respond to the proponent’s argument with more than one move.
At the other hand, it is not needed for the proponent to be able to respond to
any move but the previous one. This is because for an argument to be legally
out it is sufficient to have one defeater that is labelled in. If the proponent sim-
ply gives this defeater, then there is no need to give any additional defeaters.
Hence, the proponent only needs to respond to the directly preceding move of
the opponent.

The correlation between the thus described discussion game and the concept
of admissibility can be described as follows.

Theorem 3. Let (Ar , def ) be an argumentation framework and A ∈ Ar. There
exists an admissible labelling L with L(A) = in iff there exists an admissible
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discussion for A that is won by the proponent.

Proof.
“=⇒”: Suppose there exists an admissible labelling that labels A in. Now,
consider a discussion that is started with A. It is possible for the proponent
only to give moves that are labelled in in L. If the proponent adopts this
strategy, then the opponent can only put forward moves that are labelled out in
L. Thus, the opponent is not able to repeat any of the proponent’s arguments.
Furthermore, the discussion will terminate when the opponent cannot move
anymore, because it has played all possible defeaters of the arguments labelled
in in L.
“⇐=”: Suppose there exists a discussion for A that is won by the proponent.
Then the labelling L that labels all proponent-moves in and all opponent-moves
out is an admissible labelling. This can be seen as follows. First of all, L is
well-defined, since the fact that it is won by the proponent means there is no
argument that is put forward by both the proponent and opponent. Also, for
each argument that is labelled in, it holds that all its defeaters are labelled out.
This follows from the fact that the opponent cannot move anymore, so every
defeater of the proponent’s arguments has been put forward by the opponent.
Furthermore, each argument that is labelled out has at least one defeater that
is labelled in. This is because each move of the opponent has been responded
to by the proponent.

Since the concept of admissible labellings coincides with the concept of an
admissible set (theorem 2) it holds that an argument is in an admissible set iff
it is possible for the proponent to win the discussion for it. Moreover, it holds
that an argument is in an admissible set iff it is in a preferred extension (or,
alternatively, iff it is labelled in in a preferred labelling). Hence, the discussion
game can be used as a basis for proof procedures for credulous preferred.

Vreeswijk and Prakken show that the discussion game can also be used as a
basis for the decision problem of sceptical preferred semantics. This approach,
however, only works for argumentation frameworks where every preferred ex-
tension is also a stable extension.

4. A Discussion Game for Credulous Stable Semantics

In the current section, we provide the main result of this paper, which is
a discussion game for credulous stable semantics. Before doing so, it may be
illustrative to see why the standard admissibility discussion game does not work
for stable semantics. Consider again the argumentation framework of Figure 1.
Even though A is in an admissible set and in a preferred extension ({A}), A is
not in a stable extension. To see why A is in an admissible set, consider the
following discusion:
P: in(A) “I have an admissible labelling where A is labelled in”
O: out(B) “Then in your labelling, argument B must be labelled out. Based
on which grounds?”

8



P: in(A) “B is labelled out because A is labelled in”
The point is, however, that once it has been committed that A is labelled
in and B is labelled out, it is not possible anymore to label the remaining
arguments such that final result will be a stable labelling. This can be seen as
follows. Suppose C is labelled in. Then E must be labelled out, so D should
be labelled in, which means that C would be labelled out. Contradiction.
Similarly, suppose that C is labelled out. Then E must be labelled in, so D
should be labelled out, so C should be labelled in. Again, contradiction.

Proposition 1 shows that there are many ways to characterize a stable exten-
sion. For our purposes, the most useful characterization is that of an admissible
set which defeats every argument that is not in it. When one translates this to
labellings, one obtains an admissible labelling where each argument is labelled
either in or out, and no argument is left unlabelled.

It appears that a discussion game for stable semantics requires an additional
type of move: question. To illustrate the role of this new move, imagine
a politician being interviewed for TV. At first the discussion may be about
financial matters (say, whether the banking system should be nationalized).
Then, the discussion may be about the consequences of the politician’s opinion
(“If you accept to nationalize the banks, then you must reject the possibility
to improve healthcare, because there will not be enough money left to do so.”).
However, at some moment, the interviewer could choose to totally change topic
(“By the way, what are your opinions about abortion?”). It is this change of
topic that is enabled by the question move.

For the discussion game for stable semantics, we use the question move to
involve those arguments that have never been uttered before so that we can
label all the elements of Ar . By questioning an argument (question(A)), the
opponent asks the proponent to give an explicit opinion on whether A should
be labelled in or out. If the proponent thinks that A should be labelled in

then it should respond with in(A). If the proponent thinks that A should be
labelled out then it should respond with in(B) where B is a defeater of A. The
discussion game for stable semantics can thus be described as follows:

• The proponent (P) and opponent (O) take turns. The proponent begins.

• Each move of the opponent is either of the form out(A), where A is a
defeater of some (not necessarily the directly preceding) move of the pro-
ponent, or of the form question(A), where A is an argument that has
not been uttered in the discussion before (by either the proponent or the
opponent). The opponent is only allowed to do a question move if it
cannot do an out move.

• The first move of the proponent is of the form in(A), where A is the main
argument of the discussion. The following moves of the proponent are also
of the form in(A) although A no longer needs to be the main claim. If
the directly preceding move of the opponent is of the form out(B) then
A is a defeater of B. If the directly preceding move of the opponent is of
the form question(B) then A is either equal to B or a defeater of B.
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• The opponent may not repeat any of its out moves.

• The proponent is allowed to repeat its own moves, but may not do an
in(A) move if the opponent has done some earlier out(A) move.

The opponent wins if it is able to do an out(A) move and the proponent
has done an earlier in(A) move, or if the proponent cannot move anymore. The
proponent wins if the opponent cannot move anymore.

To illustrate the use of the discussion game, consider the argumentation
framework depicted in Figure 3.

A B C D

Figure 3: Another argumentation framework

Suppose the proponent would like to start a discussion about A.
P: in(A) “I have a stable labelling in which A is labelled in.”
O: out(B) “Then in your labelling, A’s defeater B must be labelled out. Based
on which grounds?”
P: in(A) “B is labelled out because A is labelled in.”
O: question(C) “What about C?”
P: in(C) “C is labelled in.”
O: out(D) “Then C’s defeater D must be labelled out. Based on which grounds?”
P: in(C) “D is labelled out because C is labelled in.”
The proponent wins the discussion, since the opponent cannot move anymore.

The above example also shows that the outcome of a discussion may depend
on P’s response to a question move. For instance, if P would have replied to
question(C) with in(D), then it would have lost the discussion, since O would
then do out(D).

As an example of a game that cannot be won by the proponent, consider
a game for argument B. This game has to be lost by the proponent since the
argumentation framework of Figure 3 has only one stable extension: {A, C},
which does not include B.
P: in(B) “I have a stable labelling in which B is labelled in.”
O: out(A) “Then in your labelling, B’s defeater A must be labelled out. Based
on which grounds?”
P: in(B) “A is labelled out because B is labelled in.”
O: question(C) “What about C?”
P: in(D) “C is labelled out because its defeater D is labelled in.”
O: out(D) “Then D’s defeater D (itself) must be labelled out. Contradiction.”
The proponent would still not have won the discussion if it had responded
to question(C) with in(C) instead of with in(D). This is because then the
opponent would have reacted with out(B) and would therefore still have won
the discussion.
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Formally, the stable discussion game can be described as follows.

Definition 7. Let (Ar , def ) be an argumentation framework. A stable discus-
sion is a sequence of moves [M1, M2, . . . , Mn] (n ≥ 0) such that:

• each Mi (1 ≤ i ≤ n) where i is odd (which is called a proponent move) is
of the form in(A), where A ∈ Ar.

• each Mi (1 ≤ i ≤ n) where i is even (which is called an opponent move)
is of the form out(A) where A ∈ Ar, or of the form question(A) where
A ∈ Ar.

• For each opponent move Mi = out(A) (2 ≤ i ≤ n) there exists a proponent
move Mj = in(B) (j < i) where A defeats B.

• For each proponent move Mi = in(A) (3 ≤ i ≤ n) it either holds that (1)
Mi−1 = out(B) where A defeats B, or (2) Mi−1 = question(B) where
either A = B or A defeats B.

• For each opponent move Mi = out(A) (1 ≤ i ≤ n) there does not exist an
opponent move Mj = out(A) with j < i.

• For each opponent move Mi = question(A) (1 ≤ i ≤ n) there does not
exist any move Mj (j < i) of the form in(A), out(A) or question(A).

• For each proponent move Mi = in(A) (1 ≤ i ≤ n) there does not exist an
opponent move Mj = out(A) with j < i.

A stable discussion [M1, M2, . . . , Mn] is said to be finished iff there exists no
Mn+1 such that [M1, M2, . . . , Mn, Mn+1] is a stable discussion, or if Mn is an
opponent move of the form out(A) for which there exists a proponent move Mi

(1 ≤ i ≤ n) of the form in(A). A finished discussion is won by the proponent if
the last move is a proponent move, and is won by the opponent if the last move
is an opponent move.

It turns out that an argument is in at least one stable extension iff the
proponent can win the stable discussion game for it. Notice that the proof
of this depends on the condition that the argumentation framework is finite,
because the game requires each and every argument to have been played (either
by the proponent or by the opponent) before it is finished.

Theorem 4. Let (Ar , def ) be an argumentation framework and A ∈ Ar. There
exists a stable labelling L with L(A) = in iff there exists a stable discussion for
A that is won by the proponent.

Proof.
“=⇒”: Suppose there exists a stable labelling L with L(A) = in.
As the first step the discussion game the proponent utters in(A). Trivially,
it now holds that we have a discussion in which all in-labelled moves are also
labelled in in the stable labelling L.
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We now prove that any unfinished discussion where the proponent does the last
move and where all proponent-moves are labelled in in L can be extended to a
discussion with an additional opponent move and an additional proponent-move
such that the result will again be a discussion in which the proponent does the
last move, and all proponent moves are labelled in in L.
Let [M1, . . . , Mn] be an unfinished discussion where Mn is a proponent move
and all proponent moves are labelled in in L. From the fact that the discussion
is unfinished, it follows that the opponent can do a move Mn+1 which is either
of the form out(B), where B is a defeater of some earlier proponent move (say
in(A)), or of the form question(B). In the first case (out(B)), it holds that
B is labelled out in L, because A is labelled in in L. It then follows that
there exists an argument C which defeats B and is labelled in in L, which
makes it possible for the proponent to respond with in(C). In the second case
(question(B)), the proponent’s response depends on whether B is labelled in

or out in L. If B is labelled in in L, then the proponent replies with in(B).
However, if B is labelled out in L, then from the fact that L is a stable (and
therefore also admissible) labelling it follows that B has at least one defeater
(say C) that is labelled in in L. The proponent then replies with in(C). In any
case, the resulting discussion will have a proponent move as the last move, and
all proponent-moves labelled in in L.
From the fact that the argumentation framework is finite (Definition 1) and the
fact that the opponent cannot repeat its moves, it follows that each discussion
will ultimately finish. From the fact that every unfinished discussion game can
always be extended to a discussion game in which the last move is still move
by the proponent, it then follows that it is possible to play the game in such a
way that when it is finished, the last move will be a proponent move, and that
therefore the game will be won by the proponent.
“⇐=”: Suppose there exists a stable discussion game for argument A that is
won by the proponent. Let Args be the set of the in labelled arguments. Args
is confict-free, otherwise the opponent would have labelled an argument out

that was labelled in by proponent earlier and would have won the game. Fur-
thermore, Args defeats each argument that is not in Args . This can be seen as
follows. Let B /∈ Args . This implies that there has not been a proponent-move
in(B). From the fact that the discussion is finished it follows that the opponent
has played each and every possible move. The fact that the proponent did not
play in(B) then implies that the opponent played out(B) or question(B). In
the former case (the opponent played out(B)) it follows that the proponent
reacted with a move in(C) where C is a defeater of B. In the latter case (the
opponent played question(B)) it follows that the proponent reacted with a
move in(C) where C is a defeater of B (the proponent did not react with in(B)
because then B ∈ Args). So in either case (former or latter) the proponent
reacted with in(C) where C is a defeater of B. So Args contains an argument
(C) that defeats B.
Since Args is conflict-free and defeats each argument not in it, Args is a stable
extension. From Theorem 2, it follows that there exists a stable labelling with
A is labelled in.

12



For the discussion game for preferred semantics, it is quite straightforward
to convert the resulting game to an admissible labelling: L = {(A, in) | there
exists a proponent-move in(A)} ∪ {(A, out) | there exists an opponent-move
out(A)}.

For the discussion game for stable semantics, converting the moves of the
game to a stable labelling is slightly different. L = {(A, in) | there exists a
proponent-move in(A)} ∪ {(A, out) | there exists an opponent-move out(A)} ∪
{(A, out) | there exists an opponent-move question(A) that was responded to
with in(B) where B is a defeater of A}.

There are some possible optimizations for the above mentioned discussion
game. As Vreeswijk and Prakken point out, the role of the opponent can also
be seen as actually helping the proponent to find what it is looking for. If one
takes this perspective, then it is quite reasonable to require the opponent to
do a question-move only when it has (temporarily) cannot do an out move
anymore. There is, however, another way in which the opponent can help the
proponent to construct a stable labelling. If the opponent has to do a question-
move, because it (temporarily) ran out of out-moves, then it makes sense for
the opponent to try to do a question(A)-move such that (1) A is an argument
that has a defeater that is in (that is, there exists an argument B such that
B defeats A and the proponent did an in(B)-move in the past) or (2) A is an
argument that has all its defeaters out (that is, for each argument B such that
B defeats A, the opponent did either an out(B)-move or a question(B)-move
at which the proponent did not respond with an in(B)-move). In both cases, it
is clear how the proponent should respond. In case (1), the proponent should
respond with in(B) (where B is a defeater of A that was already found to be
in; basically, the proponent is repeating one of its earlier moves). In case (2),
the proponent will respond with in(A). In general, the opponent could adapt a
strategy of trying to select questions that are relatively easy to answer for the
proponent. Such a strategy does not influence the correctness and completeness
of the discussion game as a proof theory for stable semantics because it just
gives the priority to some arguments to be questioned first.

5. A Discussion Game for Sceptical Stable Semantics

In [19] Vreeswijk and Prakken provide a procedure for determining if an
argument is an element of every preferred extension. Their procedure, however,
only works for argumentation frameworks where each preferred extension is also
a stable extension. The discussion procedure for sceptical stable semantics that
is proposed in this section does not have this restriction.

The idea is that an argument is in each stable extension iff there is no stable
extension that contains one of its defeaters.

Theorem 5. Let (Ar , def ) be an argumentation framework, and let A ∈ Ar.
A is an element of each stable extension iff there exists no stable extension
containing a defeater of A.
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Proof.
“=⇒”: Suppose A is an element of each stable extension. Then there exists no
stable extension S that does not contain A. Therefore (since for each argument
A ∈ Ar , a stable extension contains either A or a defeater of A), there exists no
stable extension that contains a defeater of A.
“⇐=”: Suppose there exists no stable extension containing a defeater of A.
Then each stable extension does not contain a defeater of A. Therefore (since
for each argument A ∈ Ar , a stable extension either contains A or a defeater of
A) each stable extension contains A.

So in order to examine whether an argument A is in each stable extension,
one should examine the defeaters of A one by one. If one finds a defeater that is
in a stable extension, then the question of whether A is in each stable extension
can be answered with “no”. If, however, it turns out that each defeater of A is
not in any stable extension, then the answer is “yes”. Therefore, one can simply
apply the (credulous) stable discussion game for each defeater of A, to obtain
the answer regarding sceptical stable.

6. Discussion and Further Research

In this paper, we have introduced a discussion game for stable semantics,
based on the work of Vreeswijk and Prakken [19]. Our discussion game is not
the only approach that can be based their work. The proof procedures of Dung,
Mancarella and Toni for ideal semantics [11] can, for instance, also be described
in terms of Vreeswijk and Prakken’s argument game for preferred semantics.
We recall that a set of arguments is ideal iff it is an admissible set that is a
subset of each preferred extension.3 The ideal extension can then be defined
as the (unique) maximal ideal set of arguments. It holds that an argument is
in the ideal extension iff it is in an admissible set that is not defeated by any
admissible set [11]. This means one can first perform the dialogue game for
the argument itself, and then the dialogue game against each argument in the
thus obtained admissible set to see whether the main argument is in the ideal
extension.

The discussion game for stable semantics has so far been described in a
relatively informal way, similarly like was done in [19]. It would be interesting
to provide a more formalized version of the dialogue game, like for instance was
done by Bodenstaff, Prakken and Vreeswijk [3]. Their approach is to use event
calculus to formalize the discussion game of [19]. For the stable discussion game,
such a formalization would be a topic for future research.

Another topic that is currently left open is that of computational complexity.
Although it is known that both credulous preferred and credulous stable are NP-
complete problems [9], it still has to be examined how this theoretical complexity

3It is also possible to describe an ideal set in terms of labellings. An ideal labelling can be
defined as an admissible labelling that is a subset of each preferred labelling. It can be proven
that L is an ideal labelling iff in(L) is an ideal set.
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of the respective problems relates to actual algorithms that can be defined based
on the discussion game described in this paper.

Although the discussion game described in this paper can serve as a basis
for the implementation of an algorithm, our main contribution is meant to be
conceptual rather than algorithmic. The basic idea of defining a discussion game
is to provide a notion of dialectical rationality. That is, the concept of justified
information becomes that which can be defended in a rational discussion. The
next question, then, is what a rational discussion actually looks like. This
question does not have a unique answer; different formalisms implement different
ideas about what is a rational discussion. For instance, grounded semantics
supports a discussion game in which the burden of proof is higher than, say, the
discussion game of preferred semantics. By providing a dialectical semantics of
a particular formalism one gains insight in the notion of rationality that the
formalism is (implicitly) implementing. In the current paper, we have described
how the notion of rational discussion that is implemented by stable semantics
differs from the notion of rational discussion that is implemented by preferred
semantics. Our aim is that such a comparison is useful by itself, apart from any
algorithmic considerations such as efficiency and computational complexity.
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