
On the Issue of Reinstatement in

Argumentation

Martin Caminada

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-023

www.cs.uu.nl

ISSN: 0924-3275

On the Issue of Reinstatement in Argumentation

Martin W.A. Caminada

May 1, 2006

Abstract

Dung’s theory of abstract argumentation frameworks [8] led to the formalization of
various argument-based semantics, which are actually particular forms of dealing with
the issue of reinstatement. In this paper, we re-examine the issue of semantics from the
perspective of postulates. In particular, we ask ourselves the question of which (minimal)
requirements have to be fulfilled by any principle for handling reinstatement, and how this
relates to Dung’s standard semantics. Our purpose is to shed new light on the ongoing
discussion on which semantics is most appropriate.

1 Introduction

Dung’s abstract theory of formal argumentation [8] has been a guide for researchers in the
field of formal argumentation and nonmonotonic logic for more than ten years. During this
period, a significant amount of work has been done on proof procedures for Dung’s various
argument-based semantics [19, 5], as well as on concrete argumentation formalisms (such as
[15, 9, 1] based on Dung’s theory.

One specific issue that has received relatively little attention is the nature of reinstate-
ment. Although reinstatement as a principle is not totally uncontroversial [11], the current
consensus among many researchers in formal argumentation and nonmonotonic logic is that
reinstatement of arguments is an essential feature of defeasible reasoning (as is for instance
expressed in [13]). Dung provides several approaches for dealing with reinstatement, like
stable semantics, preferred semantics, complete semantics and grounded semantics. Our con-
tribution is not to criticize Dung’s theory but rather to strengthen it. In particular, we ask
ourselves the question: “Why do these semantics actually make sense?”

In previous work, we have stated a number of postulates which, in our view, every ar-
gumentation formalism should satisfy [4]. In the current paper, we will follow the same
approach and state some simple and intuitive properties for dealing with the issue of rein-
statement We then show how these properties are satisfied by Dung’s standard semantics
and how the differences between the various semantics could be viewed. We also show that
a careful examination of reinstatement postulates reveals a semantics not currently known.
Based on this discussion, we then share some thoughts on which type of semantics is most
appropriate.

2 Dung’s Standard Semantics

A central notion in Dung’s theory of abstract argumentation [8] is that of an argumentation
framework, which is defined as follows.

1

3 REINSTATEMENT LABELLINGS 2

Definition 1 (argumentation framework). An argumentation framework is a pair (Ar , def)
where Ar is a set of arguments and def ⊆ Ar ×Ar.

The shorthand notation A+ and A− stands for, respectively, the set of arguments defeated
by A and the set of arguments that defeat A.

Definition 2 (defense / conflict-free). Let A ∈ Ar and Args ⊆ Ar.

• We define A+ as {B | A def B} and
Args+ as {B | A def B for some A ∈ Args}.

• We define A− as {B | B def A} and
Args− as {B | B def A for some A ∈ Args}.

• Args defends an argument A iff A− ⊆ Args+.

• Args is conflict-free iff Args ∩Args+ = ∅.

In the following definition, F (Args) stands for the set of arguments that are acceptable
(in the sense of [8]) with respect to Args .

Definition 3 (acceptability semantics). Let Args be a conflict-free set of arguments and
let F : 2Args → 2Args be a function such that F (Args) = {A | A is defended by Args}.

• Args is admissible iff Args ⊆ F (Args).

• Args is a complete extension iff Args = F (Args).

• Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion) complete
extension.

• Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion) complete
extension.

• Args is a stable extension iff Args is a preferred extension that defeats every argument
in Ar\Args.

Note that there is only one grounded extension. It contains all the arguments which
are not defeated, as well as those arguments which are directly or indirectly defended by
non-defeated arguments.

3 Reinstatement Labellings

The issue of quality postulates, or axioms, has recently received some attention in the field of
formal argumentation and non-monotonic logic [4, 3]. An interesting question is whether one
can also provide quality postulates for dealing with the reinstatement of arguments. Although
the reinstatement has to a great extent been studied by Dung [8], the issue of which postulates
have to be satisfied in order for a specific criterion for reinstatement to make sense has received
relatively little attention.

One possible approach would be to start labelling the arguments in an argumentation
framework. We distinguish three labels: “in”, “out” and ”undec” (undecided).

4 LABELLINGS VERSUS SEMANTICS 3

Definition 4. Let (Ar , def) be a Dung-style argumentation framework. An AF-labelling is
a (total) function L : Ar −→ {in, out, undec}. We define in(L) as {A ∈ Ar | L(A) = in},
out(L) as {A ∈ Ar | L(A) = out} and undec(L) as {A ∈ Ar | L(A) = undec}.

In a reinstatement labelling, an argument is “in” iff all its defeaters are “out” and an
argument is “out” if it has a defeater that is “in”, as is stated in the following definition.

Definition 5. Let L be an AF-labelling. We say that L is a reinstatement labelling iff it
satisfies the following:

• ∀A ∈ Ar : (L(A) = out ≡ ∃B ∈ Ar : (Bdef A ∧ L(B) = in)) and

• ∀A ∈ Ar : (L(A) = in ≡ ∀B ∈ Ar : (Bdef A ⊃ L(B) = out)).

The above definitions can be illustrated using the argumentation frameworks in figure 1.
In the leftmost argumentation framework, there exists just one reinstatement labelling (L1)
with L1(A) = in, L1(B) = out, L1(C) = in. In the middle argumentation framework, there
exist three reinstatement labellings (L2,L3,L4) with L2(D) = in, L2(E) = out, L3(D) = out,
L3(E) = in, L4(D) = undec and L4(E) = undec. In the rightmost argumentation framework,
there exists just one reinstatement labelling (L5) with L5(F) = undec.

Notice that definition 5 can actually be seen as a postulate, as it specifies a restriction on
an AF-labelling. It turns out that different kinds of reinstatement labellings correspond with
different kind of Dung-style semantics. This is explored in the remainder of this paper.

A

B

C

D

E

F

Figure 1: Three argumentation frameworks.

4 Labellings versus Semantics

We now define two functions that, given an argumentation framework, allow a set of ar-
guments to be converted to a labelling and vice versa. The function Ext2Lab(Ar ,def) takes
a set of arguments (sometimes an extension) and converts it to a labelling. The function
Lab2Ext(Ar ,def) takes an AF-labelling and converts it to a set of arguments (sometimes an
extension). Notice that as an AF-labelling is defined as a function (definition 4), which in its
turn is essentially a relation, it is possible to represent the labelling as a set of pairs.

In the following definition, the resulting AF-labelling does not yet need to satisfy the
properties of a reinstatement labelling as stated in definition 5.

Definition 6. Let (Ar , def) be an argumentation framework, Args ⊆ Ar such that Args is
conflict-free, and L : Ar −→ {in, out, undec} an AF-labelling. We define Ext2Lab(Ar ,def)(Args)
as {(A, in) | A ∈ Args}∪{(A, out) | ∃A′ ∈ Args : A′def A}∪{(A, undec) | A 6∈ Args ∧¬∃A′ ∈
Args : A′def A}. We define LabToExt(Ar ,def)(L) as {A | (A, in) ∈ L}.

4 LABELLINGS VERSUS SEMANTICS 4

The fact that Args is conflict-free in the above definition makes that Ext2Lab(Ar ,def)(Args)
is indeed an AF-labelling. When the associated argumentation framework is clear, we some-
times simply write Ext2Lab and Lab2Ext instead of Ext2Lab(Ar ,def) and Lab2Ext(Ar ,def).

4.1 Reinstatement labellings without restrictions

It is interesting to notice that a reinstatement labelling coincides with Dung’s notion of a
complete extension. This is stated by the theorems 1 and 2.

Theorem 1. Let (Ar , def) be an argumentation framework and let L be a reinstatement
labelling. Then Lab2Ext(L) is a complete extension.

Proof. Let Args = Lab2Ext(L). We now prove that Args is a complete extension, that is,
F (Args) = Args. For this, we prove two things.

1. Args ⊆ F (Args)
Let A ∈ Args . Then L(A) = in. The fact that L is a reinstatement labelling means
that each defeater B of A is labeled out. This again means (still by the fact that L is
a reinstatement labelling) that each such B has a defeater (say C) that is labeled in.
By definition of Lab2Ext, it holds that C ∈ Args . This means that for each defeater B

of A, there is a C ∈ Args that defeats B. Therefore, A ∈ F (Args) (A is defended by
Args).

2. F (Args) ⊆ Args
Let A ∈ F (Args). Then each B that defeats A is defeated by some C ∈ Args means
by definition of Lab2Ext that C is labeled in by L. The fact that L is a reinstatement
labelling means that B is labeled out. This again means that A is labeled in. Therefore,
by definition of Lab2Ext, A ∈ Args .

Theorem 2. Let (Ar , def) be an argumentation framework and let Args be a complete ex-
tension. Then L = Ext2Lab(Args) is a reinstatement labelling.

Proof. In order to prove that Ext2Lab(Args) is a reinstatement labelling, we have to prove
four things:

1. ∀A ∈ Ar : (L(A) = out ⊃ ∃B ∈ Ar : (Bdef A ∧ L(B) = in))
Let A ∈ Ar such that L(A) = out. Then, according to the definition of Ext2Lab, the
fact that L(A) = out means that there is an A′ ∈ Args that defeats A. And the fact
that A′ ∈ Args means that L(A′) = in.

2. ∀A ∈ Ar : (L(A) = out ⊂ ∃B ∈ Ar : (Bdef A ∧ L(B) = in))
Let A ∈ Ar be such that it has a defeater B labeled in. The fact that L(B) = in means
that B ∈ Args (Ext2Lab). By definition of Ext2Lab, L(A) = out.

3. ∀A ∈ Ar : (L(A) = in ⊃ ∀B ∈ Ar : (Bdef A ⊃ L(B) = out))
Let A be an argument that is labeled in. The fact that L(A) = in means that A ∈ Args .
The fact that Args is a complete extension implies that it is an admissible set. That is,
Args defeats every defeater of A. By the definition of Ext2Lab, this means that every
defeater of A is labeled out.

4 LABELLINGS VERSUS SEMANTICS 5

4. ∀A ∈ Ar : (L(A) = in ⊂ ∀B ∈ Ar : (Bdef A ⊃ L(B) = out))
Let A ∈ Ar be such that every defeater of A is labeled out. This means, by definition
of Ext2Lab, that for every defeater B of A there is a C ∈ Args that defeats B. But as
Args is a complete extension (everything that is defended by Args is already in Args)
this means that A ∈ Args . By definition of Ext2Lab, this means that A is labeled in.

It is interesting to observe that, when the domain and range of Lab2Ext is restricted to
reinstatement labellings and complete extensions, and the domain and range of Ext2Lab is re-
stricted to complete extensions and reinstatement labellings, then the resulting functions (call
them Lab2Ext

r and Ext2Lab
r) are bijective (that is, they are both injective and surjective)

and each other’s inverse.

Theorem 3.
Let Lab2Ext

r
(Ar ,def) : {L | L is a reinstatement labelling of (Ar , def)} −→ {Args |

Args is a complete extension of (Ar , def)} be a function defined by Lab2Ext
r
(Ar ,def)(L) =

Lab2Ext(Ar ,def)(L).
Let Ext2Lab

r
(Ar ,def) : {Args | Args is a complete extension of (Ar , def)} −→ {L | L is

a reinstatement labelling of (Ar , def)} be a function defined by Ext2Lab
r
(Ar ,def)(Args) =

Ext2Lab(Ar ,def)(Args).
The functions Lab2Ext

r and Ext2Lab
r are bijective and are each other’s inverse.

Proof. As every function that has an inverse is bijective, we only need to prove that
Lab2Ext

r and Ext2Lab
r are each other’s inverses. That is (Lab2Extr)−1 = Ext2Lab

r and
(Ext2Labr)−1 = Lab2Ext

r. For this, we prove the following two things:

1. For every reinstatement labelling L it holds that
Ext2Lab

r(Lab2Extr(L)) = L.
Let L be a reinstatement labelling of (Ar , def) and let A ∈ Ar .
If L(A) = in then A ∈ Lab2Ext

r(L), so Ext2Lab
r(Lab2Extr(L))(A) = in.

If L(A) = out then A is defeated by Lab2Ext
r(L), so Ext2Labr(Lab2Extr(L))(A) = out.

If L(A) = undec then A 6∈ Lab2Ext
r(L) and A is not defeated by Lab2Ext

r(L), so
Ext2Lab

r(Lab2Extr(L))(A) = undec.

2. For every complete extension Args it holds that
Lab2Ext

r(Ext2Labr(Args)) = Args.
Let Args be a complete extension of (Ar , def). We now prove two things:

(a) Lab2Ext
r(Ext2Labr(Args)) ⊆ Args

Let A ∈ Lab2Ext
r(Ext2Labr(Args)). Then A is labelled in by Ext2Lab

r(Args).
Therefore A ∈ Args.

(b) Args ∈ Lab2Ext
r(Ext2Labr(Args)) ⊆ Args

Let A ∈ Args. Then A is labelled in by Ext2Lab
r(Args). Therefore A ∈

Lab2Ext
r(Ext2Labr(Args)).

As Lab2Ext
r and Ext2Lab

r are bijective functions that are each other’s inverse, there
exists a strong similarity between complete extensions and reinstatement labellings.

4 LABELLINGS VERSUS SEMANTICS 6

4.2 Reinstatement labellings with empty undec

Reinstatement labellings where undec is empty coincide with stable extensions. This is stated
by the theorems 4 and 5.

Theorem 4. Let (Ar , def) be an argumentation framework and let L be a reinstatement
labelling such that undec(L) = ∅. Then Lab2Ext(L) is a stable extension.

Proof. Let Args = Lab2Ext(L). Now consider an arbitrary A ∈ Ar\Args . From the fact that
undec(L) = ∅, it follows that L(A) = out. By definition, this means that A is defeated by an
argument (say B) labelled in. The fact that B is labelled in means that B ∈ Args . Therefore,
A is defeated by some argument in Args . As this holds for any arbitrary A ∈ Ar\Args , it
means that Args defeats any argument not in it. Thus, Args is a stable extension.

Theorem 5. Let (Ar , def) be an argumentation framework and let Args be a stable extension.
Then L = Ext2Lab(Args) is a labelling such that undec(L) = ∅.

Proof. Let A ∈ Ar . We distinguish two possibilities:

1. A ∈ Args. Then, by definition, L(A) = in.

2. A 6∈ Args. As Args is a stable extension, this means that some argument in Args defeats
A. This means that L(A) = out.

In both cases, L(A) 6= undec. As this holds for any arbitrary A ∈ Ar , it holds that undec(L) =
∅.

4.3 Reinstatement labellings with maximal in

Reinstatement labellings where in is maximal coincide with preferred extensions. This is
stated by the theorems 6 and 7.

Theorem 6. Let (Ar , def) be an argumentation framework and let L be a reinstatement
labelling such that in(L) is maximal. Then Lab2Ext(L) is a preferred extension.

Proof. Let L be a reinstatement labelling such that in(L) is maximal. Now, suppose that
Args = Lab2Ext(L) is not a preferred extension. Then, by definition of a preferred ex-
tension (definition 3) there must be a complete extension Args ′ such that Args (Args ′.
Let L′ = Ext2Lab(Args ′). Then, in(L) (in(L′). But then in(L) would not be maximal.
Contradiction.

Theorem 7. Let (Ar , def) be an argumentation framework and let Args be a preferred ex-
tension. Then L = Ext2Lab(Args) is a labelling such that in(L) is maximal.

Proof. Let Args be a preferred extension and let L be Ext2Lab(Args). Now, suppose that
in(L) is not maximal. Then there must be some reinstatement labelling L′ with in(L) (

in(L′). Let Args ′ = Lab2Ext(L′). Then Args ′ is a complete extension with Args (Args ′.
But then Args would not be a preferred extension. Contradiction.

4 LABELLINGS VERSUS SEMANTICS 7

4.4 Reinstatement labellings with maximal out

It is interesting to notice that, contrary to what one might expect, reinstatement labellings in
which out is maximized coincide with preferred extensions, just like (as was proved earlier)
labellings in which in is maximized. We start our proofs with two lemmas.

Lemma 1. Let L and L′ be two reinstatement labellings. If in(L) (in(L′) then out(L) (

out(L′).

Proof. Suppose in(L) (in(L′). This means two things:

1. ∀A ∈ in(L) : A ∈ in(L′)

2. ∃B ∈ in(L′) : B 6∈ in(L)

We now prove the following two things:

• ∀C ∈ out(L) : C ∈ out(L′).
Let C ∈ out(L). By the definition of a reinstatement labelling (definition 5) this means
that C is defeated by some A ∈ in(L). But then, according to 1, it also holds that
A ∈ in(L′). This, by the definition of a reinstatement labelling, means that C ∈ out(L ′).

• ∃D ∈ out(L′) : D 6∈ out(L).
Let B be an argument (taken from 2) such that B ∈ in(L′). Then, according to the
definition of a reinstatement labelling, it must also be the case that each defeater of B

is labelled out in L′, but there is some defeater of B that is not labelled out in L. This
means that ∃D ∈ out(L′) : D 6∈ out(L)

Lemma 2. Let L and L′ be two reinstatement labellings. If out(L) (out(L′) then in(L) (

in(L′).

Proof. Suppose out(L) (out(L′). This means two things:

1. ∀A ∈ out(L) : A ∈ out(L′)

2. ∃B ∈ out(L′) : B 6∈ out(L)

We now prove the following two things:

• ∀C ∈ in(L) : C ∈ in(L′)
Let C ∈ in(L). By the definition of a reinstatement labelling (definition 5) this means
that every defeater of C is labelled out in L. But then (according to 1) every defeater of
C is also labelled out in L′. This, by the definition of a reinstatement labelling, means
that C is labelled in in L′.

• ∃D ∈ in(L′) : D 6∈ in(L)
Let B be an argument (taken from 2) such that B ∈ out(L′) and B 6∈ out(L). Then,
according to the definition of a reinstatement labelling, this means that some defeater
of B is labelled in in L′, but no defeater of B is labelled in in L. This means that
∃D ∈ in(L′) : D 6∈ in(L).

4 LABELLINGS VERSUS SEMANTICS 8

Using these two lemmas, we can now state and prove the main theorems.

Theorem 8. Let (Ar , def) be an argumentation framework and let L be a reinstatement
labelling such that out(L) is maximal. Then Lab2Ext(L) is a preferred extension.

Proof. Let L be a reinstatement labelling such that out(L) is maximal. Now, suppose that
Lab2Ext(L) is not a preferred extension. Then, by theorem 6, in(L) is not maximal. This
means that there exists some L′ such that in(L) (in(L′). By lemma 1 this also means that
out(L) (out(L′). But then out(L) would not be maximal. Contradiction.

Theorem 9. Let (Ar , def) be an argumentation framework and let Args be a preferred ex-
tension. Then L = Ext2Lab(Args) is a labelling such that out(L) is maximal.

Proof. Let Args be a preferred extension. Then, by theorem 7, Ext2Lab(Args) is a labelling
(L) such that in(L) is maximal. Now suppose that out(L) is not maximal. Then there exists
some reinstatement labelling L′ with out(L) (out(L′) By lemma 2, this also means that
in(L) ⊆ in(L′). But then in(L) would not be maximal. Contradiction.

4.5 Reinstatement labellings with maximal undec

A reinstatement labelling where undec is maximal coincides with the grounded extension.
This is stated by the theorems 10 and 11.

Theorem 10. Let (Ar , def) be an argumentation framework and L be a reinstatement la-
belling such that undec(L) is maximal. Then Lab2Ext(L) is the grounded extension.

Proof. (by contraposition) Suppose Lab2Ext(L) is not the grounded extension (GE). Then
it must be a strict superset of the grounded extension (which, by definition, is the smallest
complete extension). That is: GE (Lab2Ext(L). Let L′ = Ext2Lab(GE). From GE (

Lab2Ext(L) it follows directly that in(L′) (in(L). From lemma 1 it follows that out(L′) (

out(L). Therefore, it holds that undec(L) (undec(L′). But then undec(L) would not be
maximal.

Theorem 11. Let (Ar , def) be an argumentation framework and Args be the grounded ex-
tension in this framework. Then Ext2Lab(Args) is a reinstatement labelling where undec(L)
is maximal.

Proof. Let Args ′(6= Args) be an arbitrary complete extension. As the grounded extension is
the smallest complete extension, it follows that Args (Args ′. Let L = Ext2Lab(Args) and
L′ = Ext2Lab(Args ′). From Args (Args ′ it directly follows that in(L) (in(L′). This also
means (by lemma 1) that out(L) (out(L′). Therefore, it holds that undec(L′) (undec(L).
As this result holds for arbitrary Args ′(6= Args) (and therefore also for arbitrary L′(6= L)), it
holds that undec(L) is maximal.

4 LABELLINGS VERSUS SEMANTICS 9

4.6 Reinstatement labellings with minimal in

A reinstatement labelling with minimal in coincides with the grounded extension. This is
stated by the theorems 12 and 13.

Theorem 12. Let (Ar , def) be an argumentation framework and L be a reinstatement la-
belling such that in(L) is minimal. Then Lab2Ext(L) is the grounded extension.

Proof. Let L be a reinstatement labelling such that in(L) is minimal. Now, suppose Args =
Lab2Ext(L) is not the grounded extension. Then, according to the definition of the grounded
extension (definition 3) there must be some complete extension Args ′ with Args ′ with Args ′ (

Args . Let L′ = Ext2Lab(Args ′). Then in(L′) (in(L). But then in(L) would not be
minimal. Contradiction.

Theorem 13. Let (Ar , def) be an argumentation framework and Args be the grounded ex-
tension in this framework. Then Ext2Lab(Args) is a reinstatement labelling where in(L) is
minimal.

Proof. Let Args be the grounded extension. Let L = Ext2Lab(Args). Now, suppose in(L) is
not minimal. Then there exists some L′ with in(L′) (in(L). Now, let Args ′ = Lab2Ext(L′).
It now holds that Args ′ (Args . But then Args would not be a grounded extension. Contra-
diction.

4.7 Reinstatement labellings with minimal out

A reinstatement labelling with minimal out coincides with the grounded extension. This is
stated by the theorems 14 and 15.

Theorem 14. Let (Ar , def) be an argumentation framework and L be a reinstatement la-
belling such that out(L) is minimal. Then Lab2Ext(L) is the grounded extension.

Proof. Let L be a reinstatement labelling such that out(L) is minimal. Then, according to
lemma 1 in(L) is also minimal. Then, by theorem 12, Lab2Ext(L) is the grounded extension.

Theorem 15. Let (Ar , def) be an argumentation framework and Args be the grounded ex-
tension in this framework. Then Ext2Lab(Args) is a reinstatement labelling where out(L) is
minimal.

Proof. Let Args be the grounded extension. Let L = Ext2Lab(L). Then, by theorem 13,
in(L) is minimal. Then, by lemma 2, out(L) is also minimal.

4.8 Reinstatement labellings with minimal undec

The last remaining case to be examined is the one of reinstatement labellings where undec is
minimized. We show that this does not coincide with any of Dung’s standard semantics.

There is a one-way relation between reinstatement labellings with minimal undec and
preferred extensions, as is stated in the following theorem.

Theorem 16. Let (Ar , def) be an argumentation framework and L be a reinstatement la-
belling such that undec(L) is minimal. Then Lab2Ext(L) is a preferred extension.

4 LABELLINGS VERSUS SEMANTICS 10

Proof. (reductio ad absurdum) Suppose Args = Lab2Ext(L) is not a preferred extension.
Then there exists an admissible set Args ′ that is a strict superset ofArgs (Args (Args ′). Now
consider Ext2Lab(Args ′) = L′. Obviously, it holds that in(L) (in(L′). This also implies
(lemma 1) that out(L) (out(L′). From the facts that in(L) (in(L′) and out(L) (out(L′),
it follows that undec(L′) (undec(L). But then undec(L) is not minimal. Contradiction.

Unfortunately, it doesn’t work the other way around. If Args is a preferred extension, then
it is not necessarily the case that Ext2Lab(Args) is a reinstatement labelling where undec(L)
is minimal. This is shown in the following example.

Example 1. Let Ar = {A,B,C,D,E} and let A defeat B, B defeat A, B defeat C, C defeat
D, D defeat E, and E defeat C (see also figure 2). Here, there exists two preferred extensions:
E1 = {B,D} and E2 = {A}. As E1 is also a stable extension, it holds that Ext2Lab(E1) yields
a labelling (say L) with undec(L) = ∅. However, Ext2Lab(E2) yields a labelling (say L′) with
undec(L′) = {C,D,E}. So, even though E2 is a preferred extension, Ext2Lab(E2) is not a
reinstatement labelling in which undec is minimal.

E

A B
C

D

Figure 2: A preferred extension does not necessarily imply minimal undec.

Before continuing with our analysis, we first state two helpful lemmas.

Lemma 3. Let (Ar , def) be an argumentation framework and Args be a complete extension.
Let L = Ext2Lab(Args). Then:

1. in(L) = Args

2. out(L) = Args+

3. undec(L) = Ar\(Args ∪Args+)

Proof. This follows directly from the definition of Ext2Lab (definition 6).

Lemma 4. Let (Ar , def) be an argumentation framework and let L be a reinstatement la-
belling. Let Args = Lab2Ext(L). Then:

1. Args = in(L)

2. Args+ = out(L)

3. Ar\(Args ∪Args+) = undec(L)

Proof.

1. This follows directly from the definition of Lab2Ext (definition 6).

4 LABELLINGS VERSUS SEMANTICS 11

2. This follows from 1 and the definition of a reinstatement labelling (definition 5).

3. This follows from 1 and 2, together with the fact that a reinstatement labelling is a
total function (it assigns exactly one label from {in, out, undec} to each argument).

Labellings in which undec is minimized can be seen as produced by an agent that is eager
to take a position (in or out) on as many arguments as possible. It is not too difficult to
specify what these would look like as a Dung-style semantics.

Definition 7. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. Args is called
a semi-stable extension iff Args is a complete extension where Args ∪Args+ is maximal.

The following two theorems state that semi-stable semantics indeed coincides with rein-
statement labellings in which undec is minimal.

Theorem 17. Let (Ar , def) be an argumentation framework and L be a reinstatement la-
belling such that undec(L) is minimal. Then Args = Lab2Ext(L) is a semi-stable extension.

Proof. This follows directly from lemma 4 and definition 7.

Theorem 18. Let (Ar , def) be an argumentation framework and Args be a semi-stable exten-
sion. Then L = Ext2Lab(Args) is a reinstatement labelling such that undec(L) is minimal.

Proof. This follows directly from lemma 3 and definition 7.

An interesting property of semi-stable extensions is the following.

Theorem 19. Let (Ar , def) be an argumentation framework. If there exists a stable exten-
sion, then the semi-stable extensions coincide with the stable extensions.

Proof. Suppose there exists a stable extension Args . Let L = Ext2Lab(Args). From Theorem
5 it follows that undec(L) = ∅. As a semi-stable extension minimizes undec (Theorem 18),
the fact that Args has empty undec means that in the particular argumentation framework
(Ar , def) every semi-stable extension should have empty undec. This means that in (Ar , def)
every semi-stable extension is a stable extension. The fact that every stable extension is a
semi-stable extension follows from the fact that the empty set is the minimal element w.r.t.
set-inclusion.

It should be mentioned that theorem 19 does not hold when semi-stable semantics is
replaced by preferred semantics. That is, it is not the case that if there exists a stable
extension, the preferred extensions coincide with the stable extensions (see figure 2 for a
counterexample). Semi-stable semantics is thus very close to stable semantics (closer than,
for instance, preferred semantics) without the traditional disadvantage of stable semantics
(the potential absence of extensions).

The idea of semi-stable semantics is not entirely new. It is quite similar to Verheij’s
concept of an admissible stage extension, which fits within Verheij’s general approach of using
stages to deal with the issue of argument reinstatement [17].

Definition 8. An admissible stage extension is a pair (Args , Args+) where Args is an ad-
missible set of arguments and Args ∪Args+ is maximal.

4 LABELLINGS VERSUS SEMANTICS 12

Theorem 20. Let (Ar , def) be an argumentation framework and Args ⊆ Ar. (Args ,Args +)
is an admissible stage extension iff Args is a semi-stable extension.

Proof. We basically have to prove the following (definitions 8 and 7):
Args is an admissible set where Args ∪Args+ is maximal iff
Args is a complete extension where Args ∪Args+ is maximal.
“=⇒”:
A complete extension is a stronger condition than an admissible set, so we only need to prove
that an admissible set Args where Args ∪ Args+ is maximal is also a complete extension.
Suppose this is not the case. Then there must be an argument B 6∈ Args that is defended
by Args . This means that every argument C that defeats B is defeated by an argument in
Args . Therefore, B 6∈ Args+ (otherwise Args would not be conflict-free). This means that
Args ∪ {B} is conflict-free and self-defending, and thus an admissible set. But this would
mean that Args is not an admissible set for which Args ∪Args+ is maximal. Contradiction.
“⇐=”:
An admissible set is a weaker condition than a complete extension. We therefore only need
to prove that maximality still holds under this weaker condition. Suppose that Args ∪Args+

would not be maximal. This means there exists an admissible set Args ′ such that (Args ′ ∪
Args ′+)) (Args ∪Args+). From “=⇒” it follows that Args ′ would be a complete extension.
But then Args would not have been a complete extension where Args ∪ Args+ is maximal.
Contradiction.

4.9 Overview

From the previous discussion, it is clear that there exists a connection between the various
forms of reinstatement labellings on one hand and the various Dung-style semantics on the
other hand. This connection is summarized in table 1.

restriction Dung-style linked by
reinst. labellings semantics theorems

no restrictions complete semantics 1 and 2

empty undec stable semantics 4 and 5

maximal in preferred semantics 6 and 7

maximal out preferred semantics 8 and 9

maximal undec grounded semantics 10 and 11

minimal in grounded semantics 12 and 13

minimal out grounded semantics 14 and 15

minimal undec semi-stable semantics 17 and 18

Table 1: Reinst. labellings versus Dung-style semantics.

There also exists a partial ordering between the various Dung-style semantics. Every stable
extension is a semi-stable extension, every semi-stable extension is a preferred extension, every
preferred extension is a complete extension, and every grounded extension is a complete
extension. This is graphically depicted in figure 3.

5 SEMANTICS REVISITED 13

preferred

stable

grounded

complete

semi−stable

Figure 3: An overview of the different semantics.

5 Semantics Revisited

In essence, a reinstatement labelling can be seen as a subjective but reasonable point of view
that an agent can take with respect to which arguments are in, out or undec. Each such
position is internally coherent in the sense that, if questioned, the agent can use its own
position to defend itself. It is possible for the position to be disagreed with, but at least one
cannot point out an internal inconsistency. The set of all reinstatement labellings therefore
stands for all possible and reasonable positions an agent can take.

When determining the overall justified arguments, two approaches are possible: the scep-
tical and the credulous one. Under the credulous approach, an argument is justified iff there
is at least one reasonable position (= reinstatement labelling) where it is labelled in. Under
the sceptical approach, an argument is justified iff it is in in every reasonable position; that is,
a reasonable agent cannot deny that the argument is in. As reinstatement labellings coincide
with complete extensions (as was explained in section 4.1), it would seem that credulous and
sceptical inference could be modelled by applying complete semantics.

It is interesting to compare complete semantics with some current approaches. Let us
consider the example of figure 4

A

B

C D

Figure 4: A floating argument.

In the case of the argumentation framework of figure 4 there are three reinstatement
labellings, as stated in figure 5.

D: in D: undecC: out
B: out

C: undec
B: undecA: in

C: out D: in
A: undec

L1 L2 L3

A: out B: in

Figure 5: Three reinstatement labellings.

When all reinstatement labellings are taken into account (such is the case in complete
semantics) then A, B and D are credulously justified, whereas no arguments are sceptically
justified.

5 SEMANTICS REVISITED 14

It is interesting to compare this approach with preferred semantics, which has been the
subject of much recent research [19, 7, 6]. As was explained earlier, a preferred extension
coincides with a reinstatement labelling in which the set of arguments labelled in is maximal.
In case of figure 4, for instance, the relevant labellings are only L1 and L3; thus, L2 is ruled
out (see figure 6).

D: in D: undecC: out
B: out

C: undec
B: undecA: in

D: in
A: undec

C: out

L1 L2 L3

A: out B: in

Figure 6: Preferred semantics rules out particular labellings.

What preferred semantics essentially does is to rule out zero or more reinstatement la-
bellings before determining which arguments are credulously or sceptically justified. Under
the sceptical approach, this can lead to more conclusions becoming justified. In the case of
figure 4, for instance, argument D is sceptically justified under preferred semantics but not
under complete semantics.

The fact that under preferred semantics, reinstatement labelling L2 is ruled out can be
seen as odd. L2, after all, is a perfectly valid reinstatement labelling. The fact that it is ruled
out under preferred semantics means that those who defend preferred semantics must have
some reason to justify this. This reason should state why L2 is “wrong” or “irrelevant”, thus
making it possible to ignore L2. One such reason could be (theorems 6 and 7) “L2 should
be ignored because the set of in-labelled arguments is not maximal.” This reason does not
appear to be a very strong one.

A more pragmatic reason in favor of preferred semantics is the issue of floating conclusions
and floating arguments. Suppose the following information is available: (1) Lars’s mother is
Norwegian, (2) Lars’s father is Dutch, (3) Norwegians like ice-skating and (4) Dutch like
ice-skating. We can now construct two arguments that defeat each other: (A) Lars likes
ice-skating because he’s Norwegian and (B) Lars likes ice-skating because he’s Dutch. Under
sceptical complete semantics, the proposition that Lars likes ice-skating is not justified, despite
the fact that, intuitively, it should be. Under sceptical preferred semantics, on the other hand,
the proposition that Lars likes ice-skating is justified. At a first sight, this seems to illustrate
a clear advantage of preferred semantics to complete semantics.

If we take a closer look, however, the situation becomes more complex. This is because
the issue of whether or not Lars likes ice-skating depends on whether or not the principle
of excluded middle is regarded as valid. In monotonic logic, the validity of a statement
p ∨ ¬p depends on the number of truth-values. Whereas in a two-valued logic (where each
proposition is either true or false in a given model) the proposition p ∨ ¬p is usually
regarded as valid, it is not regarded as valid in, for instance, three-valued logics [16, 10].
Similarly, for one of the two conflicting arguments A and B to be regarded as valid (or
justified), one should require that an argument is either in or out, resulting in a two-valued
reinstatement labelling (without undec). In section 4.2, it was shown that this essentially
boils down to stable semantics. Stable semantics, however, suffers from the problem that for
some argumentation frameworks, no stable extensions exist. Consequently, it is not always
possible to have a reinstatement labelling with only in and out. A third possibility (undec)

6 SUMMARY AND DISCUSSION 15

is needed. Therefore, the principle of the excluded middle, as an absolute criterion, should
be rejected.1 For those who nevertheless feel that the principle of the excluded middle should
perhaps not hold at all times, but at least as much as possible (thus not completely ruling
out undec but merely minimizing it), semi-stable semantics would seem a more appropriate
choice than preferred semantics.

Given the observation that the principle of complete semantics can be given a decent
philosophical justification, it is interesting to examine how complete semantics could be im-
plemented. Fortunately, it turns out that both sceptical and credulous complete semantics
have relatively easy and well-documented proof procedures.

As for sceptical semantics, an argument is in each complete extension iff it is in the
grounded extension.

Theorem 21 ([8]). Let {CE1, . . . , CEn} be the set of complete extensions and GE be the
grounded extension. Let A be an argument. It holds that A ∈ GE iff A ∈ CE1 ∩ . . . ∩ CEn.

As for credulous semantics, an argument is in some complete extension iff it is in some
admissible set.

Theorem 22. Let CE1, . . . , CEn be the set of complete extensions and AS1, . . . , ASm be the
set of admissible sets. Let A be an argument. It holds that ∃CEi ∈ {CE1, . . . , CEn} : A ∈ CEi

iff ∃ASj ∈ {AS1, . . . , ASm} : A ∈ ASj.

Proof.
“−→”:
Suppose A is in some complete extension CEi. AS F (CEi) = CEi, it holds that Args is
admissible. Therefore, A is in some admissible set.
“←−”:
Suppose A is in some admissible set ASj . Then there also exists a maximal admissible set
Args ′ such that ASj ⊆ Args ′. By definition, this maximally admissible set is a preferred
extension. Furthermore, every preferred extension is also a complete extension [8]. This
means that A is also in some complete extension.

The fact that sceptical complete semantics coincides with grounded semantics, and cred-
ulous complete semantics coincides with credulous preferred semantics is advantageous, as
these have relatively straightforward and well-studied proof procedures. Proof procedures
for grounded semantics are given in [15, 2], and proof procedures for credulous preferred
semantics are given in [19, 5].

6 Summary and Discussion

In this paper, we showed it is possible to describe Dung’s standard semantics in terms of rein-
statement labellings, which provide an intuitive and relatively simple way of dealing with the
issue of reinstatement. We also showed how reinstatement labellings can be used to pinpoint
the exact differences between Dung’s standard semantics. Using a systematic analysis of rein-
statement labellings, we were also able to specify an additional form of semantics (semi-stable

1Another issue where the principle of the excluded middle does not hold in most formalisms for defeasible
reasoning is in handling disjunctive information. If {p ∨ q} ⊆ P and {p ⇒ r; q ⇒ r} ⊆ D then in most
formalisms for defeasible reasoning, r is not justified, although intuitively it should be, if one accepts the
principle of the excluded middle.

6 SUMMARY AND DISCUSSION 16

semantics) and showed how this semantics fits into the overall picture (figure 3). We then
reexamined the various semantical approaches and made a case for grounded semantics for
sceptical entailment and credulous preferred semantics for credulous entailment.2

One of the researchers who has done some work on the relation between reinstatement
labellings (“status assignments”) and Dung’s various semantics is Prakken. In particular,
Prakken proves (in his own terms and particular formalization) that reinstatement labellings
without undec correspond to stable extensions, and that reinstatement labellings with maxi-
mal in correspond to preferred extensions [14]. It was the work of Prakken that served as an
inspiration for the more thorough analysis in this paper.

Other recent work on reinstatement labellings has been done by Jakobovits and Vermeir
[12]. Their definition of a labelling, however, is different than ours. First of all, they allow
for an argument to be labelled in, out, both in and out, or neither in or out. Furthermore,
their main reinstatement postulate is different.

Definition 9 ([12], syntax and formulation adjusted). L is a labelling iff:

• ∀A ∈ Ar : (L(A) = out ≡ ∃B ∈ Ar : (Bdef A ∧ L(B) = in)) and

• ∀A ∈ Ar : (L(A) = in ⊃ ∀B ∈ Ar : (Bdef A ⊃ L(B) = out)).

The difference between definition 9 and the earlier presented definition 5 is that the former
does not require an argument of which all defeaters are out to be labelled in. This is quite
strange, since it also means that an argument that has no defeaters at all is not required to
be labelled in. To some extent, this problem is repaired for complete labellings, in which each
argument is labelled either in, out or both.

The overall aim of Jakobovits and Vermeir is to come up with a semantics that is different
from Dung’s. Jakobovits and Vermeir justify their approach by discussing a number of small
examples. However, the general approach of using examples in order to justify a particular
formalism has some important downsides. To illustrate our main point, consider the following
example provided in [12].

Example 2.
A: If the bacteria in the patient’s blood is not of type X then it must be of type Y.
B: If the bacteria in the patient’s blood is not of type Y then it must be of type X.
C: If the patient does not have bacterial infection then giving antibiotics to the patient is
superfluous.
D: If it is not superfluous to give the patient antibiotics then the antibiotics should be
prescribed.

Example 2 is represented in the argumentation framework of figure 7.
Jakobovits and Vermeir argue that the correct outcome should be that argument D is

justified. However, it is quite easy to provide another example, with essentially the same
structure, where the desired outcome is totally different.

2This also implies that we do not support the approach of sceptical preferred semantics, as is for instance
examined by [7]. We reject sceptical preferred semantics for reasons discussed in the previous section. We
do, however, support the approach of credulous preferred semantics, as this coincides with credulous complete
semantics.

REFERENCES 17

A

B
C D

Figure 7: The argumentation framework of example 2 and 3.

Example 3.
A: The suspect killed the victim by stabbing him with a knife.
B: The suspect killed the victim by shooting him with a gun.
C: The suspect is innocent.
D: The suspect should go to jail.

This essentially gives the same argumentation framework as figure 7. However, an analysis
of this case yields a different outcome. As essentially none of the witness statements is without
doubt, none of them can serve as a good reason to refute the innocence of the suspect, and
the conclusion that suspect should go to jail is definitely not an intuitive or desired one.

The main point here is that some researchers try to justify a particular design decision by
giving an abstract example (like figure 7) an informal meaning (like example 2 or example
3) and then arguing that the outcome of the abstract example should be in line with the
“intuitive” outcome of the informal example. Although this approach has been applied by
various researchers in the past, it has also been criticized [18, 2] for its inherent ad-hoc nature.

It is the author’s opinion that a better justification for the design of a particular logical
formalism can be found in postulates, as these have a more general nature than separate
examples. And for reasons explained earlier, we feel that definition 5 can serve as a more
intuitive and acceptable postulate for reinstatement than definition 9. It is the author’s firm
opinion that Dung’s traditional semantics have a solid basis and that one should have very
good reasons for adjusting them.

References

[1] ASPIC-consortium. Deliverable D2.5: Draft formal semantics for ASPIC system, June
2005.

[2] M. Caminada. For the sake of the Argument. Explorations into argument-based reasoning.
Doctoral dissertation Free University Amsterdam, 2004.

[3] M. Caminada. Collapse in formal argumentation systems. Technical Report UU-CS-
2005-023, Utrecht University, 2005.

[4] M. Caminada and L. Amgoud. An axiomatic account of formal argumentation. In
Proceedings of the AAAI-2005, pages 608–613, 2005.

[5] C. Cayrol, S. Doutre, and J. Mengin. Dialectical Proof Theories for the Credulous
Preferred Semantics of Argumentation Frameworks. In Proceedings of the 6th European
Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU-2001), volume 2143 of LNAI, pages 668–679. Springer-Verlag, 2001.

REFERENCES 18

[6] Y. Dimopoulos, B. Nebel, and F. Toni. Finding Admissible and Preferred Arguments Can
be Very Hard. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR-2000), pages 53–61, 2000.

[7] S. Doutre and J. Mengin. On sceptical versus credulous acceptance for abstract argu-
ment systems. In Proceedings of the 9th European Conference on Logics in Artificial
Intelligence (JELIA-2004), pages 462–473, 2004.

[8] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[9] G. Governatori, M.J. Maher, G. Antoniou, and D. Billington. Argumentation semantics
for defeasible logic. Journal of Logic and Computation, 14(5):675–702, 2004.

[10] R. Hähnle. Advanced many-valued logic. In D. Gabbay and F. Günthner, editors,
Handbook of Philosophical Logic, volume 2, pages 297–395. Kluwer Academic Publishers,
Dordrecht/Boston/London, second edition, 2001.

[11] J. Horty. Argument construction and reinstatement in logics for defeasible reasoning.
Artificial Intelligence and Law, 9:1–28, 2001.

[12] H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal
of logic and computation, 9(2):215–261, 1999.

[13] H. Prakken. Intuitions and the modelling of defeasible reasoning: some case studies. In
Proceedings of the Ninth International Workshop on Nonmonotonic Reasoning (NMR-
2002), pages 91–99, Toulouse, France, 2002.

[14] H. Prakken. Commonsense reasoning. Technical report, Institute of Information and
Computing Sciences, Utrecht University, 2004. Reader.

[15] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

[16] A. Urquhart. Basic many-valued logic. In D. Gabbay and F. Günthner, editors, Hand-
book of Philosophical Logic, volume 2, pages 249–295. Kluwer Academic Publishers, Dor-
drecht/Boston/London, second edition, 2001.

[17] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argu-
mentation stages. In J.-J.Ch. Meyer and L.C. van der Gaag, editors, Proceedings of the
Eighth Dutch Conference on Artificial Intelligence (NAIC’96), pages 357–368, Utrecht,
1996. Utrecht University.

[18] G. A. W. Vreeswijk. Studies in defeasible argumentation. PhD thesis at Free University
of Amsterdam, 1993.

[19] G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argument games for pre-
ferred semantics. In Proceedings of the 7th European Workshop on Logic for Artificial
Intelligence (JELIA-00), number 1919 in Springer Lecture Notes in AI, pages 239–253,
Berlin, 2000. Springer Verlag.

