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Abstract—Location-aware smart phones support various
location-based services (LBSs): users query the LBS server
and learn on the fly about their surroundings. However,
such queries give away private information, enabling the
LBS to identify and track users. We address this problem
by proposing the first, to the best of our knowledge, user-
collaborative privacy preserving approach for LBSs. Our
solution, MobiCrowd, is simple to implement, it does not
require changing the LBS server architecture, and it does
not assume third party privacy-protection servers; still,
MobiCrowd significantly improves user location-privacy.
The gain stems from the collaboration of MobiCrowd-ready
mobile devices: they keep their context information in a
buffer, until it expires, and they pass it to other users
seeking such information. Essentially, the LBS does not
need to be contacted unless all the collaborative peers in the
vicinity lack the sought information. Hence, the user can
remain hidden from the server, unless it absolutely needs
to expose herself through a query. Our results show that
MobiCrowd hides a high fraction of location-based queries,
thus significantly enhancing user location-privacy. To study
the effects of various parameters, such as the collaboration
level and contact rate between mobile users, we develop
an epidemic model. Our simulations with real mobility
datasets corroborate our model-based findings. Finally,
our implementation of MobiCrowd on Nokia platforms
indicates that it is lightweight and the collaboration cost is
negligible.

I. INTRODUCTION

Smart phones, among other increasingly powerful mo-

bile computing devices, offer various methods of local-

ization. Integrated GPS receivers or positioning services

based on nearby communication infrastructure enable

users to position themselves fairly accurately. This gives

rise to a range of Location-Based Services (LBSs):

users can query an LBS server and obtain information

relevant to their current location and surroundings, that

is, contextual data about specific points of interest. The

value of LBSs is exactly in obtaining accurate and up-

to-date information on the fly.

The flip-side of getting on-site high-quality on-

demand information is the loss of users’ privacy: Each

time an LBS query is submitted, private information is

revealed. The user can be linked to her location, and mul-

tiple pieces of such information can be linked together;

thus, the profiling of users becomes possible. Clearly,

the user could forgo the LBS benefits; e.g., she could

download a large data volume and then search locally

about specific context information. But this would be

cumbersome, if not impractical, and it would be ineffi-

cient for obtaining information that changes dynamically

over time.

In order to obtain as much information as possible

about the LBS users, which will be mainly used for

sending targeted advertisement to the users, the service

providers track users over time using various techniques.

For example, the service provider can explicitly ask for

the users’ contact information. However, even if the LBS

does not perform any explicit user identification, it is

still possible to finger-print users of specific applications

[10], or de-anonymize them (i.e., infer their identity) by

using their IP addresses or location [23], and then trace

their whereabouts.

More importantly, independently of whether the user

is identified or not, placing too much trust in LBS

providers is undesirable. Indeed, the LBS operators may

be tempted to misuse the rich data they collect, or

they may, as opposed to cellular operators (who have

a contract with their users), share the data with third-

party companies that offer, for example, targeted adver-

tisements. Moreover, the LBS data repositories may be

targeted by attackers, who break into the LBS servers and

obtain logs of user queries. The result in all cases is the

same: user-sensitive data fall in the hands of untrusted

parties.

Tracking the user over time and space, and then

identifying her, implies not only loss of privacy for

the user but possibly other dire consequences such as

absence disclosure: learning that a user is away from

her home could allow a house break-in or blackmail [3].

As a result, the need to enhance privacy for LBS users

has been understood and several solutions have been

proposed. One approach could be to blur the location

information, e.g., by having the user’s smart phone

(or the privacy proxy) submit inaccurate samples to

the LBS server. However, obfuscation approaches (e.g.,

spatial/temporal cloaking introduced in [16]) which can

protect user location-privacy, degrade the user experience

if users need high privacy: e.g., LBS responses would be

inaccurate or untimely. Moreover, obfuscation cannot be

effective against absence disclosure [29]. Another ap-

proach could be to introduce a third party in the system,

acting between the user and the LBS: its role would be



to protect the users’ privacy. Such an intermediary proxy

server, between the user and the LBS, could anonymize

(and obfuscate) queries by removing any information

that identifies the user or her device [13], [25]. Or it

could blend one query with those of other users, so that

the LBS server always sees a group of queries [24].

However, such approaches only shift the problem: the

threat of an untrustworthy LBS server is addressed by

the introduction of a new third-party server. Some other

approaches require the LBS to change its operation, for

example, by mandating it to process modified queries

(submitted in different forms than actual queries of the

user), or that it needs to store data differently (e.g.,

encrypted or encoded, to allow private access [14]).

Any such centralized intervention or any substantial

changes to the LBS operation would be hard to adopt,

simply because the LBS providers would have little

incentive to fundamentally change their operation. Mis-

aligned incentives have been identified as the root of

many security problems [6]. Additionally, new proxy

servers become as attractive for attackers as centralized

LBSs. Hence, the lack of incentives and guarantees for

protecting the users’ location information, make these

approaches infeasible in practice.

In order to enhance the location privacy of LBS users

without any of the above-mentioned limitations, we pro-

pose here a new user-centric scheme. Mobile users con-

cerned about their location privacy are indeed the most

motivated entities to engage in protecting themselves.

Our solution, called MobiCrowd, takes advantage of this

fact, making the privacy-sensitive users responsible for

their own privacy protection. Our approach requires no

change of the LBS server architecture and its normal op-

eration, it makes no assumption on the trustworthiness of

the LBS or any other third-party server, and it enhances

the privacy of mobile users in terms of both presence

and absence disclosure.

MobiCrowd achieves this improvement thanks to a

novel collaborative privacy-protection mechanism: ba-

sically, a user can avoid disclosing her location in-

formation, to the LBS server, if her device can have

its LBS queries answered by nearby peers (i.e., other

reachable user devices) that happen to have the sought

data. Clearly, MobiCrowd would be most effective when

there are many peers gathered at the same location.

Indeed, this clustering phenomenon has been observed in

human mobility studies [27]. Moreover, the places where

people gather are points of interest, where users are most

likely to ask an LBS for information. So, MobiCrowd

would be used exactly where it is most effective.

We analyze our scheme experimentally and analyti-

cally, proposing an epidemic model for the dynamics of

information sharing among users. The model captures

the effect of many users clustering at the same place,

and it can be used to test various “what-if” scenarios

about MobiCrowd. This is a novel approach to evalu-

ate a location-privacy preserving mechanism for mobile

networks: it acts on the parameters of their mobility

model rather than on some specific location traces. Thus,

we can study the effects of a mixture of parameters

and we can also identify the causes of high or low

location privacy in various settings. We then perform a

simulation on real mobility traces, and we show that the

conclusions from the experimental evaluation verify the

results derived from our model.

The threat of local observers sniffing the wireless

channel trying to infer users’ private information, is out

of the scope of this paper; such a threat could exist

with or without MobiCrowd and it can be alleviated

by frequently changing device identifiers (e.g., changing

MAC addresses for WiFi networks [18] similar to chang-

ing TMSI for GSM networks [5]). More importantly,

local observers would have a tedious task and still be

ineffective in collecting information: they would need

to be physically present next to any given victim user,

over long periods and across different locations. In

contrast, a centralized LBS can by default observe all

the queries of a user, which is why we focus on this

much greater threat in this paper. However, in order

to secure the scheme against untrustworthy users who

might disseminate invalid or outdated information, the

LBS information package (e.g., the set of points of

interest) is proposed to be self-verifiable (i.e., be digitally

signed by the server). In fact, this is the only change that

MobiCrowd imposes on the LBS operation.

Our scheme leverages capabilities of contemporary

smart phones: They can establish ad hoc and infrastruc-

ture connections (e.g., cellular base stations and Wi-Fi

access points). We build a mobile transparent proxy in

each device that protects the users’ location-privacy. Our

proxy, transparently located on-board the user’s device

and between the LBS client and the network, maintains

a buffer with location context information. This buffer

is checked for available data when the user submits a

query. If the valid and up-to-date data is not available,

our mobile proxy broadcasts the query (i.e., the type

of required information) to other nearby devices. If and

only if none of those neighbors can provide the requested

information, is the LBS queried. We have implemented

our scheme on the Nokia N800, N810 and N900 mobile

devices, and demonstrated it with the Maemo Mapper

(a geographical mapping software for points of interest)

[30]. Note that our approach can be ported to the

upcoming technologies that enable mobile devices to

directly communicate to each other via (potentially more

energy-efficient) Wi-Fi-based technologies [1], [2], [4]

that aim at constructing a mobile social network between

mobile users.



The rest of the paper is organized as follows. We

survey the related work in Section II. In Section III,

we state our model, the system assumption, and also the

problem addressed in this paper. We present our scheme

in Section IV, and then we develop an epidemic model

of the MobiCrowd operation in Section V. We evaluate

the effectiveness of MobiCrowd in Section VI, before

we conclude the paper in Section VII.

II. RELATED WORK

Techniques proposed to protect location privacy in

LBSs can be classified based on how they distort the

users’ queries before they arrive at the LBS server.

The queries can be anonymized (by removing users’

identities) or pseudonymized (by replacing users’ real

names with temporal identifiers called pseudonyms), or

they can be obfuscated (by generalizing or perturbing

the spatiotemporal information associated to the queries).

They can also be camouflaged by adding some dummy

queries, or be completely eliminated and be hidden

from the LBS [28]. Combinations of these methods have

been employed in the existing (centralized or distributed)

mechanisms. The interested reader is referred to [21],

[28] for a more in-depth survey of the research on

location privacy.

The mere anonymization of (especially the continu-

ous) queries does not protect users’ location privacy: the

queries of a user are correlated in space and time, hence,

the adversary can successfully link them by using target

tracking algorithms [17] or identify the real names of

the users [15], [20]. Changing user pseudonyms while

the users are passing through pre-defined spots, called

mix zones [7], makes it difficult to track the users along

their trajectories. However, as users must remain silent

inside the mix zones, so they cannot use the LBS, the

size of the mix zones is kept small in order to let users

benefit from the LBS. Thus, the unlinkability of users’

queries is limited and the adversary’s success is relatively

high, even if the mix zones are optimally placed [12].

Perturbing the query’s spatiotemporal information, in

addition to anonymization by a a third party (central

anonymity server), is proposed for obtaining a higher

level of privacy [13], [24]. The main drawback is the

reliance on a centralized third party that limits its prac-

ticality. The considerable degradation of the quality of

service imposed by the obfuscation methods is another

deterrent for such solutions. For example, in schemes

such as [13], the queries sent to the anonymity server

have to wait until enough anonymization can be achieved

for a group of users (k-anonymity). Similarly in [8], the

need to construct the cloaking regions and also to receive

the responses from the server through other users can

considerably degrade the service. Finally, most of the

obfuscation-based techniques are based on k-anonymity,

which has been shown inadequate to protect (location)

privacy [31], [32].

Adding dummy queries to the user actual queries

might help to confuse the adversary about the actual

user location. But generating effective dummy queries

that divert the adversary is a difficult task [9], as they

need to look like actual queries over space and time. An

optimum algorithm for generating dummy queries is an

open problem.

In all the above-mentioned mechanisms, there is al-

ways a trade-off between users’ privacy and the quality

of service they experience. The tension is maximized

when it comes to hiding queries from the LBS server.

Hiding a query from the server minimizes the revealed

user information, hence, maximizes her privacy with

respect to that query. Simply put, it is more effective

than the other three privacy protection methods, and

it protects users against both presence and absence

disclosure. This is what MobiCrowd provides: Hiding

from the server while receiving the query responses from

other peers.

Finally, there exist cryptographic approaches that re-

design the LBS: the service operator does not learn

much about the users’ queries while it can still reply to

their queries [14], or it can obtain imprecise information

about user location [11]. The lack of incentives for LBS

operators to change their business model and implement

these solutions, and their relatively high computational

overhead have made them impractical so far.

III. PROBLEM STATEMENT

A. System

We consider a network of location-aware wireless de-

vices, capable of ad hoc device-to-device communication

and of connecting to the wireless infrastructure (e.g.,

cellular and Wi-Fi networks). The users of such devices

leverage on the infrastructure to reach the LBS servers.

Users submit localized search queries, providing in prin-

ciple their current location and the type of information

(context, point of interest, etc) they are interested in.

The server replies to them, providing the latest requested

context information around the submitted location; e.g.,

on businesses, restaurants, gas stations, movie theaters,

ongoing events, or current street traffic. The frequency at

which users query the LBS varies depending on the type

of requested information, the dynamics of information

update in the LBS database, or the geographical region.

We assume that the information the LBS provides is

self-verifiable, i.e., users can verify that no entity (e.g.,

a compromised access point) changed the server reply

content.



B. Adversary

LBS servers concentrate information about all user

queries. Thus, an untrusted service provider could act as

a “big brother,” that is, it could monitor user whereabouts

and activities over time. An honest but curious service

provider could log the user interactions with the server

and share them with other (untrusted) entities for mon-

etary gain, e.g., for targeted advertisement. Moreover,

the concentration of users’ locations and other private

information can attract criminals, who could break into

the service provider network and steal this private in-

formation (with various malicious intentions). It is thus

clear that location privacy is threatened by the LBS

itself, which, at best, facilitates adversarial access to the

user queries (and thus their locations and related private

information). In such a setting, the adversary can be

categorized as a passive global long-term observer, based

on the terminology proposed in [28].

Inference attacks on the observed queries are classified

into two tightly-related categories: tracking and identi-

fication attacks. Such attacks can lead to two types of

location-privacy breaches: presence and absence disclo-

sure. In other words, the adversary can learn that a user

is at a given location, or that she is absent from certain

locations, e.g., her home.

The more queries the adversary observes, the higher

its location inference attack success will be. Less in-

formation about user locations makes it harder for the

adversary to reconstruct their actual trajectories and to

identify their real names. This is why protection mech-

anisms try to reduce the adversary’s information. But,

unfortunately, doing so reduces the quality of service

for the user.

C. Design Objectives

Overall, we seek to design a practical and highly ef-

fective location-privacy preserving mechanism for LBSs.

The nature of existing threats, outlined above, is the

determining factor of our design objectives. The LBS

business model itself can be at odds with the need to

protect user privacy: LBS providers may actually need

to profile users’ activities, so that they can use such

knowledge for various monetary purposes. As a result,

the LBS operator may have no incentive to implement

privacy-preserving mechanisms. In contrast, many users

can be sensitive about their privacy. For this reason,

our first design objective is to not rely on architectural

changes of the LBS; any such changes (for example, us-

ing private information retrieval techniques [11]) would

be impractical and highly unlikely to be adopted.

Moreover, relying on centralized trusted third parties

(e.g., central anonymity servers) to provide privacy en-

hancing mechanisms can be as hard as having trusted

LBS operators. In fact, as already mentioned, this would

only shift the problem and such assumed trusted third

parties would be new points of failure: once compro-

mised, all users’ information would be leaked to the

adversary. This leads to our second design objective:

no reliance on any third party server to provide pri-

vacy protection. In fact, we would like to place the

privacy protection exactly where there is incentive and

motivation, that is, on the side of the users themselves.

We also want to achieve a high user privacy without

sacrificing LBS quality of service by relying on users’

collaboration.

IV. OUR SCHEME

Based on the stated design objectives, we propose a

novel location-privacy preserving mechanism for LBSs.

To take advantage of the high effectiveness of hiding user

queries from the server, which minimizes the exposed

information about the users’ location to the server, we

propose a mechanism in which a user can hide in the

mobile crowd while using the service.

The rationale behind our scheme is that users who

already have some location-specific information (origi-

nally given by the service provider) can pass it to other

users who are seeking such information. They can do so

in a wireless peer-to-peer manner, and in this way protect

each other from privacy attacks that the adversary could

perpetrate. Simply put, information about a location can

“remain” around the location it relates to and change

hands several times before it expires. Our proposed

collaborative scheme enables many users to get such

location-specific information from each other without

contacting the server, hence minimizing the disclosure

of their location information to the adversary.

A. Scheme Details

In order to better understand our model and solution,

consider that the whole area covered by the roaming

mobile users is divided into non-overlapping regions.

Users can obtain context information associated to the

region they find themselves in, e.g., obtain a list of

businesses or services (and their latest status), or streets

and intersections (and their traffic information). Users

submit their queries when in place.

In this paper, without loss of generality, we focus

on a single information type provided by the LBS

(e.g., street traffic information, or oil prices in nearby

gas stations, or a list of close-by restaurants). Clearly,

users are interested in multiple types of location-based

contextual information. The LBS server is responsible

for compiling off-line the latest information for each

region and for being ready to respond to the user query.

The integrity and authenticity of the server responses is

protected. This can be done in different ways; in our

system, the user device verifies a digital signature of the



LBS on each reply using the LBS provider’s public key.

As a result, each piece of context information is self-

verifiable: a compromised access point or mobile device

cannot degrade the experience of users by altering replies

or disseminating expired information.

Each piece of information associated with a given

region has an expiration time (which is attached to the

information and protected with the digital signature),

after which the information is no longer valid. Every

mobile device maintains a buffer in which location-

specific information associated with regions is stored.

This buffer keeps the replies the user obtains from the

server or other peers. As long as a piece of information

is not expired, it is kept in the buffer.

Each user with valid information about a region

is termed informed user. Users interested in getting

location-specific information about a region are called

information seekers of that region. A seeker, essentially

a user that does not have the sought information in

her buffer, first broadcasts her query to her neighbors

through the wireless ad hoc interface of the device. We

term this a local query.

Any of the receivers of such a local query may respond

to it, by what we term a local reply, as long as it has the

information its peer seeks. However, an informed device

will not necessarily respond to any received query: this

will happen if the device is both informed and willing to

collaborate. We design our system with this option for

its users; the collaborative status may be set explicitly

by the user or automatically recommended or set by

the device. Simply put, having each user collaborate a

limited number of times (a fraction of the times she

receives a local query from her neighbors), or during

a randomly selected fraction of time, balances the cost

of helping other peers and caters to the needs of each

user. In practice, this is equivalent to the case where only

a fraction of users collaborate.

By obtaining a local reply, the seeker is now informed

while, more importantly, her query has remained hidden

from the service provider. No privacy-sensitive informa-

tion has been exposed to the server and the user has

obtained the sought service. Of course, in case there is

no informed user around the seeker to assist her, she has

no choice but to contact the server directly. In essence, a

subset of users in every region have to contact the LBS

to get the updated information, and the rest of the users

benefit from the peer-to-peer collaboration. Intuitively,

the higher the proportion of hidden user queries, the

higher her location privacy will be.

V. THE EPIDEMIC MODEL

The performance of our system depends on various pa-

rameters, such as the frequency of contacts and the level

of collaboration between users, the rate of query genera-

tion, etc. We now describe a model for MobiCrowd, with

the help of which we can directly see the effect of various

parameters on desired performance metrics. Observing

the effect of the parameters helps when designing a

system and testing “what-if” scenarios. For example, we

can immediately see the level of collaboration required to

achieve a desired privacy level or how the privacy level

will change if the users make queries more frequently

or less frequently.

We draw an analogy between our system and epidemic

phenomena: location-context information spreads as an

infection from one user to another, depending on the

user state (seeking information, having valid information,

etc.). For example, a seeker becomes “infected” when

meeting an “infected” user, that is, a user with valid

information.

We want a model that describes transitions between

and keeps track of the various states a user is in at each

point in time. However, the complexity of keeping track

of each individual user state is prohibitive. Therefore,

we make use of the mean field approximation [22],

which focuses on the fraction of users in each state;

these fractions are collectively called the network state.

The approximation applies when the number of users

is large and each individual interaction contributes a

vanishingly small change to the network state. Also,

the approximation requires a random contact pattern

among users, rather than a spatially correlated pattern,

and random contacts are not far from reality when users

are clustered in the same area.

The mean field approximation tells us that the time

evolution of the fraction of users in each state can

be described with increasing accuracy, as the number

of users grows, by a system of Ordinary Differential

Equations (ODEs). By studying the system of ODEs, we

find to what steady state(s) the network may converge

to. Similar models have been used in epidemics [19], in

worm propagation in wireless [33] networks, and also in

research on forwarding/gossiping protocols [34].

To keep the presentation simple we focus on one type

of context information, that is, we consider a single av-

erage information lifetime. No loss of generality results

from this, because, to model a complete system with

multiple types of information, we can merge multiple

versions of this model, one for each type.

A. MobiCrowd: Model States and System of ODEs

As mentioned earlier, users move in an area par-

titioned into multiple regions. The state of context

knowledge within a region intuitively corresponds to

the disease status in an epidemic. In general, a user’s

knowledge state would be multi-dimensional, because

it is different for each region. Hence, for each region



we would have an associated epidemic model, with the

same structure but different parameters. However, the

state of knowledge about a region is unrelated to the

knowledge about other regions, so different regions can

be analyzed separately. We focus on a single region, with

users entering and exiting it, and we describe the states

and the dynamics of our epidemic model for that single

region. The mobility of users with respect to a region

is modeled using three parameters: β that is the average

number of times a user have a proximity contact with

other users at a time instant within a region, µ that is the

average number of users who enter a region at a time

instant, and λ that is the average number of users who

leave a region at a time instant. The parameters of the

epidemic model are listed in Table I.

Seeker: Users who are inside the region and are

interested in obtaining information (i.e., have requested

the information but not yet received it) are in the Seeker

state. Once they have it, they move into the Informed

state. Users can receive information from other Informed

users in the region, or from the server, the ultimate

source of information.

Informed: Users who have information about the

region are in the Informed state. If they are inside the

region, they (called Informed Insiders) accept to spread

the information at each contact with a Seeker with

probability φ. This is because the information spreading

process imposes some communication cost on Informed

users and, hence, they do not always collaborate. If they

are outside the region, we assume they (called Informed

Outsiders) do not spread the information (as nobody asks

for it). The information that the Informed users have,

whether they are inside or outside the region, expires

with rate δ and the users become Removed.

Removed: Users who do not have information and

are not interested in obtaining information are in the

Removed state. We distinguish between Insider Removed

and Outsider Removed users. An Insider Removed user

becomes a Seeker if the user becomes interested in

obtaining information about the region. We assume that

outsiders have to enter the region to become interested.

We denote by S(t), I(t), I∗(t), R(t), and R∗(t),
respectively, the fraction of Seeker, Informed Insider,

Informed Outsider, Removed Insider, and Removed Out-

sider users of a given region at time t. The network state

y(t) is the vector of these values. The time dependence

will not be explicitly given in the rest of the paper. The

system of equations that models the evolution of the

network state is

S + I + I∗ +R+R∗ = 1 (1a)

d

dt
S = γR− (βφI + ω)S (1b)

d

dt
I = (βφI + ω)S − δI + µI∗ − λI (1c)

d

dt
I∗ = −δI∗ + λI − µI∗ (1d)

d

dt
R = −γR+ δI + µR∗ − λR (1e)

d

dt
R∗ = δI∗ − µR∗ + λR (1f)

0 ≤ S, I, I∗, R,R∗ ≤ 1. (1g)

We write this system succinctly as d
dt
y = F (y). We

study the stationary regime of the system, i.e., the regime

where, for t −→ ∞, the network state does not change

with time. In particular, we look for equilibrium points of

the system, i.e., network states at which d
dt
y = 0. Setting

F (y) = 0 and solving for y, we reach the following

nonlinear system:

I =
ωS

a− βφS
(2a)

I∗ =
λ

µ+ δ
I (2b)

R =
βφI + ω

γ
S (2c)

R∗ =
1

µ

(

λδ

µ+ δ
I + λ

βφI + ω

γ
S

)

(2d)

βφS2 − cS + a = 0, (2e)

where

a = δ

(

1 +
λ

µ+ δ

)

(3)

c = a+ βφ+ ω

(

1 +
λ

µ+ δ
(1 +

δ

µ
) +

a

γ
(1 +

λ

µ
)

)

.

(4)

Having expressed all variables in terms of S, we need

to solve the quadratic equation (2e) for S, keeping in

mind that any solution has to satisfy 0 ≤ S ≤ 1.

The value of S0 can be found from the quadratic

formula:

S0 =
1

2βφ

(

c−
√

c2 − 4aβφ
)

(5)

Then, we can substitute S0 into (2a)-(2d) to find out the

other values I0, I
∗
0 , R0, R

∗
0.

So, we found the only admissible equilibrium point

of the network. We now give a sufficient condition

for this point to be locally asymptotically stable, that

is, all system trajectories starting near enough to the

equilibrium point will eventually converge to it without

wandering too far away in the meantime. This condition



S(t) Seeker users at time t
I(t) insider Informed users at time t
I∗(t) outsider Informed users at time t
R(t) insider Removed users at time t
R∗(t) outsider Removed users at time t
λ rate of exiting the region per time unit
µ rate of entering the region per time unit
β contact rate per user per time unit
γ avg request rate per user per time unit

1/ω avg waiting time before contacting the server
1/δ information avg lifetime
φ avg collaboration probability

TABLE I
LIST OF THE SYMBOLS USED IN THE EPIDEMIC MODEL

is that the Jacobian matrix of the system, evaluated at the

equilibrium point, has eigenvalues with strictly negative

real parts. Note that, instead of using the differential

equation for R∗, we substitute R∗ = 1−S− I− I∗−R
and compute the Jacobian of an equivalent system with

only the 4 variables S, I, I∗, R. The Jacobian J(S, I) is








−βφI − ω −βφS 0 γ
βφI + ω βφS − δ − λ µ 0

0 λ −µ− δ 0
−µ δ − µ −µ −γ − λ− µ









(6)

which, as we see, is only a function of S and I . The

eigenvalues of J(S, I) evaluated at the equilibrium point

can be found by solving the 4th order equation

|J(S0, I0)− xI4| = 0 (7)

for x, where I4 is the 4×4 unit matrix. As we have men-

tioned, if all the solutions have a strictly negative real

part, then the equilibrium point is locally asymptotically

stable.

Moreover, if all the solutions have a strictly negative

real part, the equilibrium point persists under small

perturbations of the system. That is, if v(y) is any smooth

vector field on R
4, then for sufficiently small ǫ the

equation
d

dt
y = F (y) + ǫv(y) (8)

has an equilibrium point near the original one, and the

equilibrium point of the perturbed system is also locally

asymptotically stable.

In Section VI, we show that all the eigenvalues

have strictly negative real part for the range of system

parameters we consider; hence, the equilibrium point is

stable, and it persists under small perturbations.

B. Baseline scenario: No collaboration

To be able to isolate the effect of collaboration, we

study the case where there is no collaboration among

users: A user who becomes interested checks her buffer,

and if the content is not there, she immediately contacts

the server. Thus, there are no S users in the model for

this case:

I + I∗ +R +R∗ = 1 (9a)

d

dt
I = γR+ µI∗ − (λ+ δ)I (9b)

d

dt
I∗ = λI − (µ+ δ)I∗ (9c)

d

dt
R = δI + µR∗ − (λ+ γ)R (9d)

d

dt
R∗ = δI∗ + λR− µR∗ (9e)

0 ≤ I, I∗, R,R∗ ≤ 1. (9f)

We compute the equilibrium point of the system, and

study its stability as before.

VI. EVALUATION

We evaluate the effectiveness of MobiCrowd in hid-

ing user queries from the server, thus protecting their

location privacy. First, we define a measure of the user

privacy. Next, we simulate MobiCrowd on a dataset of

realistic mobility traces and we compare the simulation

results with the numerical results obtained from the epi-

demic model. Finally, we describe our implementation

of MobiCrowd on the Nokia devices, and we present

measurement results.

A. Privacy Gain

We quantify the privacy in a given region as the

fraction of queries per time unit that are not observed

by the server. This measure is inversely proportional

to the adversary’s success rate in performing inference

attacks on the observed queries. This metric shows the

reduction in the amount of information the adversary

obtains from the users’ queries compared to the case

where users directly contact the server for each query.

1) MobiCrowd with no collaboration (relying on

the buffer): In the case of no collaboration among users,

which we use as a baseline scenario, the users can

retrieve the information either from their buffer, or from

the server. Only the I users have the information in their

buffers, whereas the R users are forced to contact the

server when they become interested. The I users ask

queries at a total rate of γI , and the R users at a total

rate of γR. Therefore, the privacy gain in this case is

PG0 = I/(I +R) (10)

where I and R are computed from (9).

2) MobiCrowd with collaboration: When the users

collaborate with probability φ > 0, queries can also

be answered by peers, which happens at a total rate

of βφIS. Queries are answered by the server at a total



rate of ωS. The total rate of asked queries is, as before,

γR+ γI . Therefore, the privacy gain in this case is

PGφ = 1−
ωS

γR+ γI
=

βφIS + γI

γR+ γI
. (11)

Observe that βφIS is always smaller than γR (see

Eq. (2c)), so the privacy is at most equal to 1, as it

should be. The values of S, I and R are computed from

(2).

B. Simulation Setup

In order to validate our model, we compare our nu-

merical evaluations with simulation results. The location

traces that we use belong to 509 randomly chosen

mobile users (vehicles) from the epfl/mobility dataset at

CRAWDAD [26]. We set the time unit of the simulation

to 5 minutes and we consider the users’ locations at

integer multiples of the time unit, hence synchronizing

all the traces. We consider a division of the Bay Area

into 10 × 25 equal-size regions. Two nodes in a region

are considered to be neighbors of each other if they

are within 100m of each other (using WiFi). We run

our simulation for 100 times on the mobility traces and

compute the average of the results.

For each region, we compute λ, µ, and β from the data

set. These values are plugged into the epidemic model in

order to find the solutions of (2) and (9). We compute the

privacy gain according to the simulation and the numeri-

cal analysis for φ = {0.2, 1}, 1/δ = {1, 4, 7, ..., 28}, and

γ = {0.1, 0.2, ..., 1}. The average waiting time before

contacting the server 1/ω is set to 1. For all combinations

of these parameters, the eigenvalues of the Jacobians of

(1) and (9) are negative, which indicates the stability of

the equilibrium points of our epidemic model in these

cases.

As it is not possible to plot the results for all the

regions, we compute, as a representative example, the

privacy gain in one region, located in downtown San

Francisco. It has a higher concentration of points of

interest, and 90 users are present in it on average. The

rate µ of entering the region is 4.18 users per time unit,

and the exiting rate λ is 4.22 users per time unit. The

average contact rate β is 51.89 per user per time unit. In

order to put the results from this region in perspective,

we also measure the privacy of users across their entire

trajectory, spanning multiple regions.

In the simulation we quantify the privacy gain using

directly the definition (fraction of queries hidden from

the LBS server), and for the numerical evaluation we

use (10) and (11). We still use the notation PG0 and

PGφ to refer to the location privacy gain of using Mo-

biCrowd, without collaboration and with collaboration

φ, respectively.
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Fig. 1. User location privacy for the region under study (in downtown
San Francisco). The first row illustrates privacy of users without
collaboration, when they only rely on buffering information. The
second and the third rows show user privacy using MobiCrowd, for
different collaboration factors φ = 0.2 and φ = 1, respectively. The
left column shows the numerical results whereas the right column
shows the simulation results.

C. Results

Fig. 1 illustrates the users’ location-privacy using

MobiCrowd with and without collaboration (PGφ and

PG0) in the studied region. The results of simulation and

numerical evaluation are displayed side by side, in order

to enable us to verify the validity of our epidemic model.

The qualitative and also quantitative match between the

simulation and the model enables us to rely on our

epidemic model to evaluate users’ location-privacy in a

very computationally efficient way in complex scenarios

dealing with large networks.

All the plots confirm a general pattern of privacy gain

increase as the information lifetime or the request rate

increases. With either kind of increase, users retrieve

with higher probability non-expired information either

from their own buffer or from their peers; hence, a higher

fraction of their queries will be hidden from the LBS.

Moreover, the privacy gain for long lifetimes and low

request rate values (i.e., long intervals between requests)

appears to be more or less the same as the privacy gain

for short lifetimes and high request rate values (i.e.,

short intervals between requests), as indicated by the
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Fig. 2. Overall users’ location-privacy using MobiCrowd across all
regions, obtained by simulation.

vaulted shape of the privacy gain contours. Also, adding

collaboration to the buffering technique in MobiCrowd

increases the fraction of hidden queries even for a

collaboration factor of φ = 0.2.

We observe these patterns in Fig. 1 which shows very

high correlation between our epidemic model with the

simulation of MobiCrowd on a realistic dataset. Even

quantitatively, both sets of graphs match to a great extent.

This proves the validity of our model in estimating users

privacy gain even for the real scenarios where the contact

rate between users changes over time.

Fig. 2 shows the simulation results for the users’

privacy across their entire trajectory (over all the regions

they visit) averaged over all the users. As we expect,

increasing the collaboration probability increases user

privacy, and the dependence on the information lifetime

and the request rate is as we observed before in Fig. 1.

In Fig. 3, we see, again for the overall user privacy, the

relative additional privacy gain we obtain by combining

collaboration and buffering, compared to relying only

on buffering. The relative added value of collaboration

is computed as (PGφ − PG0)/PG0. So, for example,

0.5 on the plot means 50% increase in privacy gain.

We observe, first of all, that higher collaboration

(going from φ = 0.2 to φ = 1) implies higher relative

added value. What is more interesting, however, is that

the relative privacy gain of collaboration increases as we

go from the high-lifetime, high-request-rate part to the

short-lifetime, small-request-rate part. In the former part,

the effect of buffering dominates the privacy gain: The

information does not expire quickly, so users retrieve it

from their buffers, and so collaboration does not add

much. Still, we observe relative gains of 10% even for

low collaboration probability φ = 0.2. In the latter

part, however, the effect of collaboration dominates the

achieved privacy, as buffering does not help much when

the information lifetime is short: Increasing collaboration

from 0.2 to 1 results in an increase of up to 500%.

Summing up, buffering and collaboration complement

each other in increasing user location-privacy.

The delay until receiving a response may be higher

or lower with MobiCrowd: it depends on the implemen-
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Fig. 3. Overall users’ relative location-privacy gain of collaboration
with respect to buffering in MobiCrowd across all regions, i.e.,
(PGφ − PG0)/PG0, obtained by simulation.

tation of the LBS, its workload at the time the query

is sent, the available transmission capacity of the smart-

phones, and, above all, it depends on the state of the

information in their buffer. In Section VI-D, we provide

some information about the communication delay of

MobiCrowd on Nokia devices.

D. Implementation

We implemented MobiCrowd on three different Nokia

mobile devices (N800, N810, and N900). We built a

mobile privacy proxy that runs in each device. The

proxy does not require any modification of the supported

applications and it is transparent to their operation. The

prototype works with the Maemo Mapper LBS and

MobiCrowd acts as a HTTP transparent proxy to which

the client traffic is redirected. Note that knowing the

format of the LBS queries and the data format of the

server replies is enough to adapt MobiCrowd to new LBS

applications (i.e., to parse the user queries and check

whether the answer is in the buffer). Our implementation

in Python (including the proxy module, ad-hoc network-

ing module, and the server interface module) is 600 lines

of code and the memory utilization does not exceed 3%
of the total memory of the used devices.

We performed measurements to estimate the delay to

obtain a peer response. The setting was a lab environ-

ment with 5 devices, 3 out of which were randomly

chosen to collaborate each time. There were four POIs,

and the size of the responses was 600 bytes. We av-

erage measurements over 100 queries. In our setting,

the mobiles accessed the LBS server over a cellular

link (e.g., GSM), and they communicated with other

mobiles via the WiFi interface. The average delay was

0.17sec. We also note that cryptographic delays are (for

a typical OpenSSL distribution) low: the weakest of

the three devices, the N800, can verify more than 460

RSA signatures per second (1024 bit), or 130 signature

verification per second (for 2048 bit modulus); this

implies that digitally signed LBS response can be easily

handled by the devices to protect against malicious peers.

A popular technique that enhances privacy against lo-



cal eavesdroppers is to change the identifiers frequently.

For example, in cellular networks the network operators

are in charge of changing the TMSI when users move

from one location area (a set of adjacent cells) to another.

Thus, cellular networks make use of network-issued

pseudonyms to protect the location-privacy of their users

[5]. MobiCrowd-ready mobile devices can also mimic

this defense (as has already been proposed for wireless

networks, e.g., [18]). They can change their identifiers

(e.g., the MAC addresses) as often as desired, even while

in a single point-of-interest area. This would essentially

root out any threat by any curious local observer. Even

in the case of a stalker, it would not be possible to link

the successive identifiers of a device to that device, as

multiple users’ identifiers will be mixed together. The

only remaining option for the stalker is to maintain visual

contact with the target user, but defending against this

threat is clearly orthogonal to our problem.

Finally, our implementation allows the user to tune

parameters (e.g., collaboration level).

VII. CONCLUSION

We propose a novel approach to enhance the pri-

vacy of LBS users, aiming against service providers

who could extract information from their LBS queries

and misuse it. We develop and evaluate MobiCrowd, a

scheme that allows LBS users to reduce their exposure

while they continue to receive the location context infor-

mation they need. MobiCrowd achieves this by leverag-

ing on peer collaboration: the user can get information

from nearby users and can thus avoid getting exposed

to the LBS server. Users, as opposed to the LBS server,

have both the incentive and the capability to safeguard

their privacy, thus they should be the ones responsible for

it. Our analysis shows a significant improvement thanks

to MobiCrowd, whose light-weight implementation we

demonstrate in three mainstream portable devices.

ACKNOWLEDGMENT

The authors would like to thank Ehsan Kazemi for

his valuable comments on the submitted manuscript.

This work was supported (in part) by the National

Competence Center in Research on Mobile Information

and Communication Systems (NCCR-MICS), a center

supported by the Swiss National Science Foundation

under grant number 5005-67322.

REFERENCES

[1] FlashlinQ: A Clean Slate Design for Ad Hoc Networks.

[2] NIC: Nokia Instant Community.

[3] Pleaserobme: http://www.pleaserobme.com.

[4] Wi-Fi Direct: http://www.wi-fi.org/wi-fi direct.php.

[5] 3rd Generation Partnership Project. 3GPP GSM R99. In
Technical Specification Group Services and System Aspects.

[6] R. Anderson and T. Moore. Information Security Economics–and
Beyond. Advances in Cryptology-CRYPTO 2007.

[7] A. R. Beresford and F. Stajano. Mix zones: User privacy in
location-aware services. In PERCOMW, 2004.

[8] C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial
cloaking algorithm for anonymous location-based service. In GIS,
2006.

[9] R. Chow and P. Golle. Faking contextual data for fun, profit, and
privacy. In WPES, 2009.

[10] P. Eckersley. How unique is your web browser? In PETS, 2010.

[11] I. G. U. H. Femi Olumofin, Piotr K. Tysowski. Achieving
efficient query privacy for location based services. In PETS,
2010.

[12] J. Freudiger, R. Shokri, and J.-P. Hubaux. On the optimal
placement of mix zones. In PETS, 2009.

[13] B. Gedik and L. Liu. Location privacy in mobile systems: A
personalized anonymization model. In ICDCS, 2005.

[14] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L.
Tan. Private queries in location based services: anonymizers are
not necessary. In SIGMOD, 2008.

[15] P. Golle and K. Partridge. On the anonymity of home/work
location pairs. In Pervasive, 2009.

[16] M. Gruteser and D. Grunwald. Anonymous usage of location-
based services through spatial and temporal cloaking. In Mo-

biSys, 2003.

[17] B. Hoh and M. Gruteser. Protecting location privacy through
path confusion. In SECURECOMM, 2005.

[18] T. Jiang, H. J. Wang, and Y.-C. Hu. Preserving location privacy
in wireless lans. In MobiSys, 2007.

[19] W. O. Kermack and A. G. McKendrick. A contribution to the
mathematical theory of epidemics. Proc R Soc Lond A, 1927.

[20] J. Krumm. Inference attacks on location tracks. In Pervasive,
2007.

[21] J. Krumm. A survey of computational location privacy. Personal

Ubiquitous Comput., 2009.

[22] T. G. Kurtz. Approximation of population processes. Society for
Industrial and Applied Mathematics, 1981.

[23] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao. Privacy vul-
nerability of published anonymous mobility traces. In MobiCom,
2010.

[24] J. Meyerowitz and R. Roy Choudhury. Hiding stars with
fireworks: location privacy through camouflage. In MobiCom,
2009.

[25] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper:
query processing for location services without compromising
privacy. In VLDB, 2006.

[26] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser.
CRAWDAD data set epfl/mobility (v. 2009-02-24). Downloaded
from http://crawdad.cs.dartmouth.edu/epfl/mobility.

[27] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser. A
prsimonious model of mobile partitioned networks with cluster-
ing. In COMSNETS, 2009.

[28] R. Shokri, J. Freudiger, and J.-P. Hubaux. A unified framework
for location privacy. In HotPETS, 2010.

[29] R. Shokri, J. Freudiger, M. Jadliwala, and J.-P. Hubaux. A
distortion-based metric for location privacy. In WPES, 2009.

[30] R. Shokri, P. Papadimitratos, and J.-P. Hubaux. Mobicrowd: A
collaborative location privacy preserving lbs mobile proxy. In
MobiSys - Demo Session, 2010.

[31] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P.
Hubaux. Quantifying location privacy. In SP, 2011.

[32] R. Shokri, C. Troncoso, C. Diaz, J. Freudiger, and J.-P. Hubaux.
Unraveling an old cloak: k-anonymity for location privacy. In
WPES, 2010.

[33] G. Theodorakopoulos, J.-Y. Le Boudec, and J. S. Baras. Dynamic
network security deployment under partial information. In
Allerton - Invited Paper. 2008.

[34] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. Performance
modeling of epidemic routing. Comput. Netw., 2007.


