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Abstract— Decentralized and unstructured networks are be- (players in game theory) to choose one of two possible astion
coming more prevalent today (e.g. ad hoc networks). Like evg  Cooperate or Defect. The general scenario that we want to
network, they depend on the cooperation of their users to suive. a1 re s the following: Good users want to cooperate with
However, each user does not necessarily know who the others ther Good but not with Bad Bad th
are, or what their intentions are. Since there is no centralzed other >00d users, but not wi - ad users. bad users, on the
infrastructure, the users can only base their decision on waht other hand, want to cooperate with Good users. The Good are
they observe themselves. Ideally, they would like to coopate unaware of who is Good and who is Bad, but since the game
only with users that have common interests with them. is played repeatedly they can gradually detect the Bad ones.

_In this paper, we use a game theoretic model for the above \ys \yijl explore strategies that the Good users can follow to
situation. We assume there are only two kinds of users, Good .
detect and isolate the Bad ones.

(benign) and Bad (malicious). Good users receive a high game
theoretic payoff when they cooperate with other Good usershut Note that we will not be assuming collusion among the
a low payoff when they cooperate with Bad users. We propose Bad users, although this can be an extension of our model.
behavior rules (strategies)_to achieve equilibr_ia that enble as Also, our model for the Bad users means that they benefit
g oy, ffom staying hidden and cooperating for as long 25 possible

without getting caught. So, we do not cover situations wizere
single cooperation between a Bad and a Good user is enough,
e.g., to destroy the whole network.

In ad-hoc networks all nodes are equivalent, in the senseThe rest of the paper is organized as follows: In the
that they play the role of both user and router: they creatext section, we briefly present the work done on enforcing
their own data traffic, but they also forward the traffic otooperation in ad-hoc networks. In section Ill, we give a
other nodes. However, for the network to operate succégsfudetailed presentation of our model of the network and the
(i.e. to deliver the traffic to its intended destination) thedes specifics of the game played. After that, we analyze in sectio
need to cooperate. Seen from a selfish viewpoint, a node Nshe strategies and corresponding outcomes that can appea
no a priori incentive to cooperate. Actually, in a resourd@ the game. Section V shows some indicative simulations and
constrained network, as ad-hoc networks are envisioned,to Bompares to the analytical approach of section 1V, and @ecti
a node may have a serious counter incentive to cooperate. TWR concludes.
is, by dropping other users’ traffic, a node saves a conditeera
amount of energy. I

This is the model that most of the literature has focused on,
and many methods for providing incentives — or in any way A growing body of literature, a comprehensive overview of
enforcing cooperation — have been proposed. However, sowtgch is in [1], deals with circumstances under which the co-
users may actually be malicious. They are not interested aperation between nodes can be sustained. A model used often
preserving their own resources. They are merely intergatedn this literature (but also more generally in power control
destroying the operation of the network, by whatever meaad hoc networks [2]) is a game theoretical representation of
possible. They may be eavesdroppers who monitor traffic atiee users in the network (an exception is [3]). The players in
try to learn private information, or they may want to injecjame theory attempt to maximize an objective function which
malformed packets in the network (worms, etc.). In this casakes the form of a payoff. Users make choices and each user’s
a different approach is called for, since there is no ineentipayoff depends not only on his own choice, but also on those
that would entice them to cooperate. of the other users. Hence, in the wireless network context,

In this work, we are proposing a simple model for thea user’s payoff depends not only on whether he decides to
interaction of Good (benign) and Bad (malicious) users in@operate (by transmitting other users’ data) or not, bso al
network. Our model is based on game theory, and allows userswhether his neighbors will decide to cooperate.

|I. INTRODUCTION

. RELATED WORK



The literature is not considering malicious users, only-sel IV. ANALYSIS
ish, and there is no degree of selfishness that can appraximat;, simplify the analysis, we will concentrate on a star

the payoffs of our Bad users. For example, Félegyhaziadub 15104y network, where the central node is a Good user,

and Butty'an_[l] assume that the payof_f function of a user ig, 4 his neighbors ar& Good users and Bad (Fig. 1). We
non-decreasing in the throughput experienced by the user. Qsgme that the central node knows that he has exactly one
Bad users do not care about their data belng transm|ttec_i. d neighbor, but he does not know who that is. Note that the
the same reason, the model proposed by Urpi, Bonuccelli, agd, 1o n010gy assumption is not unrealistic, since thiscty
Giordano [4] does not apply (as the authors themselves POiRL s ation (from the point of view of the central node) reve
out). Other relevant work is [5], [6], [7]. in a general network. We will also see that the assumption tha
only one Bad user exists can be removed without significant

Hl. SYSTEM MODEL conceptual change in the analysis.

The network is modeled as an undirected gréph (V, E),
whereV is the set of nodes anfl is the set of edges. The
nodes represent the users of the network. Each user can
of Good or Bad type, and the sets of Good and Bad ust
are, respectivelyygs ¢ V andVg Cc V, Vg U Vg = V,

Ve N Ve = (. An edge(i,j) means that usersand j can
communicatej is then said to be a neighbor ¢f(i € N;),
and vice versaj( € N;). Also, the edges are weighted: The
weight J;; of an edge is+1 if both ¢ and j are Good, and
—1if one is Good and the other is Bad. We assume there ¢
no links between Bad users. Good users do not know who
Good and who is Bad, but Bad users do. Good users do |
even know how many Bad users there are.

The network operates in rounds= 1,2,..., and at each
round¢ each user chooses an actioa!: C' (for Cooperate)
or D (for Defect). PlayingC' corresponds to making onesell
available for communication (e.g. sending/receiving Hate.
Playing D corresponds to shutting down all communications
to and from the user. After all users have chosen an action,

each user Iearng his neighbors’ actions (i.e. which neighbo Note from the System Model discussion that Good users
played which action), and his own payolf for that round, Wh'conly learn the total payoff they receive after each round an

depends only on his own action and these of his neighbol[]%t the per-link payoffs they receive due to their interaasi
Note that a user’s payoff is known only to him, and is nev

ted to oth If 2 Good is able to tell that i flith individual neighbors. So, they cannot immediately tel
reported to others. If a Good user is able to tell that a pa € which of their neighbors are Good and which are Bad, but they

neighbor of his is Bad, then he can sever_the I|r]k tha_t jol get some information about the types of their neighbors.
them, so as not tp be affecte_d b_y that neighbor's actions 1N what follows, we will describe strategies for the Good and
the future. In Section IV, we will discuss how Good users cal g players that form a Nash equilibrium. For the most part,
detect Bad ones. we will be seeing things either from the central Good user’s

¢ )
At lroufr:d t, theb pay?ffvi (:jf a G%%d usetzhwh(l) pladﬁ]e_dC’ point of view, or from the point of view of the Bad user. Since
equals the number of Good neighbors who playedninus in a general network all Good nodes will see themselves in the

the number of Bad neighbors who playéd(for convenience, e of 4 central node in a (local) star topology, we are lagki

aj = 1 for €, ando for D): for strategies that are symmetrical with respect to Goodnod
¢ ¢t That is, we want all the Good nodes to follow the same rules
v = Z Jija;a;. (1) :

_ when choosing what to play.

JEN: Assume that the central Good ugdras memory of the past
This reflects the preference of Good nodes to cooperate wihtistory (own and neighbor moves, as well as received payoffs
other Good nodes and not with Bad ones. A Good user whet C N/ (resp.DN}) be the subset afs neighbors that play
playedD receives a zero payoff regardless of the actions of tidé (resp.D) at roundt. We assume thatplaysC' at roundt,
neighbors. This means that he risks no losses, but he hassna’s payoff at roundt is |CN/| if the Bad user played,
gain, he learns nothing about his neighbors, and his neighbor |CN/| — 2 if the Bad user played’ (Remember that &'
learn nothing about him. The payoff of a Bad user who playsom a Good user gives-1, whereas from a Bad user it gives
C is equal to the number of his Good neighbors who playedl.). So, just by looking at his payoff, the central Good user
C (remember that a Bad user has only Good neighbors). $aan deduce whether the Bad user playeéar D at round
it is the negative of!. t. The Bad user is then known to be either in the Géf! or

Fig. 1. Star topology. Bad user is shaded.



in DN}. Without loss of generality, let's assume that the Bad
user played”.

In the next round {4+ 1), if the Bad user playg’ again,
theni can deduce that he is in the intersect@v! NC N} ™.
If he playsD, then he is inC'N}! N DN/*'. This sequence of
sets (the sequence bfding sets, the initial of which isN;)
is non-increasing, but the Bad user will only be detected if
it converges to a singleton set. If the behavior of the Good
users is deterministic, then the Bad user can imitate a Gooc
user, and he will never be discovered. However, if the Good
nodes choose their actions in a randomized manner, they ar
no longer predictable.

Neighbors = 5+1

Minimum: %:4.871

p=1/e

Expected Rounds to Detection (to)

We will look at the simplest possible randomization: each o ‘ ‘ ‘ ‘
Good user play> with probability p independently at each 0 2 robaniy of Cooperaton () - !
round. We want to compute the probabilijpythat maximizes
the central Good user’s payoff. Given an infinite sequence of Fig. 2. Expected number of rounds until detection.

round payoffs{vf,t = 1,2,...}, the game payoff for user

is v, = (1—0)> 2,8 ! The parameted,0 < § < 1,

signifies the relative importance of current payoffs comagar In this calculation, however, we have neglected the fadtttie

to later payoffs. In game theoretic literature (e.g. [8])iSt central Good user also plays with probability p. When he
calleddiscount factor and is often associated with the patiencplaysD he will not be able to make any observations about his
of a player. For example, i5 — 0, then only a few initial neighboring nodes, so thB-rounds will be wasted as far as
round payoffs practically dominate the game payoff. On ttaetection is concerned. The above calculadtgi the number
contrary, wheny — 1 all rounds are equivalent. In our casepf observations that are needed to detect the Bad useiCA

0 could correspond to how long the Good user thinks that thell be played once every rounds, so the correct expected
network will keep operating. To be precisgcould be seen time of detection will be

as the probability that the network will collapse at time 1 1 log, (N + 1)
, given that it has been operating up to and including ttme to(p) = = - (—log,(N +1)) = ——2——=,  (5)
To compute the payoff, we split the network evolution into p p

two stages: pre-detection and post-detection of the Bad usdown in Fig. 2 forV = 5. We can calculate that the expected
The Good users start by playirdg with probability p, and we number of rounds to detection is minimized for= % Itis
assume that the Bad user always playsWe will see that then equal taf = eIn(N +1).
this is the best that the Bad user can do. The expected petooking at Eq. (3b), we observe thatpN — 1) (the
round payoff for the central Good useis pre-detection payoff) is always smaller thavi (the post-
" " " detection payoff). This seems to imply that the Good user’s
Elvs] = Pria; = C}J%; Jij Pria; = €} =p(pN —1). (2) payoff is maximized wher® is maximized, i.e. wheny is

. o minimized. But this is not the case, although it is not easy
After the Bad user has been detected, the link to him is sdvetg gee analytically. The idea is that whéris small enough

and the Good nodes are free to playforever. So, the central st g very close to zero even fap = t;. As a resulty; is
Good user's payoff isV from then on {-1 from each one of yractically equal top(pN — 1), and it is maximized whep
the N Good neighbors). Assuming that the Bad user is caugltyaximized. i.e. fop — 1.

after the actions of rount, the total game payoff fof is To study the behavior of;(p) for different values of the

to e discount factow we perform numerical computations. First of
vi(0,p, N) = (1 — 5){2 5" 'p(pN — 1) + Z 8'"'N}  all, the payoff increases monotonically withThis is because,
t=1 t=to+1 regardless of the value gf, being more patient gives more
(32) weight to the post-detection payoff, which is high&f yersus
= (1—-6")p(pN — 1) + "N (3b) p(pN —1)). We can also see that the Good users can guarantee
= §"(N —p(pN — 1)) + p(pN — 1) (3c) a payoff of N —1 (4 in this case) by choosing very close

to 1. Even though the pre-detection period can become very
large, the pre-detection payoff is close 8o— 1. But we will
see that in some cases, the Good can do better than that.

Since the Good users are playi@gwith probabilityp at every tWFor a fixed value oft the effect of an increase gf is

. e . ofold: First, the payoff during the pre-detection periizd
round, the size of th_e hiding set.|s rgducgd by a factop Ofincreased. Second, jfincreases frond to 1, then the number
every round. Sincey is the detection time, it has to be that e

of rounds until detection (the length of the pre-detection
pO(N+1)=1=t)=— log,, (N +1). (4) period) decreases. But jf increases beyonél, the length of

We will now calculate the expected value &f with the
following argument. Since the Bad user is always playing
his hiding set aftet rounds isN; N\CN}! NCN?N---NCN}.
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Fig. 4. Small values of: 0 < § < 0.9, step 0.05; 0.91. Fig. 6. Medium values o6: 0.92, 0.93, 0.94.
the pre-detection period increases. payoff is too small, so the total payoff is close @ When

It seems there are three distinct types of behavior fprapproached, the detection time is again too large (hence
different intervals of§ (Fig. 3). Whené is small, the payoff the observed drop in post-detection payoff). But now the pre
increases monotonically with (Fig. 4). This happens becausealetection payoff is close to its maximum value &f— 1, so
a small § implies thaté®® =~ 0, and v; ~ p(pN — 1) the total payoff goes up again and becomes equaVte 1
which increases monotonically wifh So, if the Good user is for p = 1.
very impatient, then the post-detection payoff is too higavi Whend is medium (Fig. 6), the maximum payoff is again
discounted to make any difference, even if the Bad userattained forp = 1, as in the smalb case. However, unlike
detected in the shortest number of roungjs= eIn(N +1)). the smallé case, the payoff does not increase monotonically
All the Good can do in this case is increase the pre-detectiaith p. There is a local maximum for values pfaround0.5,
payoff as much as possible by settingo 1. which is caused by the same reasons as in the largase,

Whené is large (Fig. 5),6% is approximately equal ta, although not as pronounced.
sov; ~ N (the post-detection payoff, which is the maximum The conclusion is that, for a given value @fthe maximum
possible value of the total payoff) regardlesspofA value of payoff is achieved either for a probability of cooperatipn
0 close tol means that the Good users don’t mind waiting; sequal to 1, or for some value around.5. The first case
provided that the detection happens in finite time, the faydfappens when the Good users are impatient (sialbnd
is very close taV. This is reflected in Fig. 5 where the payoffso the post-detection period is too far into the future for
is almost constant for a wide range of valuesppfand the them to care. Which means that all their gains are going
maximum is attained for values gfthat are around.5 and to come from the pre-detection period, therefore the best
definitely away froml. However, whernp is too close to0 policy for them is to maximize the pre-detection period gayo
then the detection time is too large, and the pre-detectipfp N — 1). The second case happens wlieis large enough



for the post-detection payoff to be weighted more heavily
than the pre-detection payoff. The maximum around is
happening because the post-detection payoff is maximized f
p= % ~ 0.37 (the value ofp that maximizeg‘°), but does not
drop significantly for somewhat larger values @f The pre-
detection payoff is, however, monotonically increasinghwi
p, and until aroung = 0.5 it more than compensates for the
slight drop in the post-detection payoff. After that, thespo
detection payoff starts dropping faster than the pre-dietec
can increase.

Why does the Bad user have to pléayall the time? If he
plays what most Good play, he prolongs the time of detection.
If he playsC, he gains payoff. Ip was chosen by the Good to : ‘ ‘ ‘ E
be larger than}—, then these two considerations of the Bad user ° o2 pmba%iﬁtyofc@ope?aﬁon ® o8 !
would both concur to playing'. However, the maximizing
may be less thar% for some values of, so it might make Fig. 7. Comparison: Simulation against computation resdittr § =
sense for the Bad user to pldy once in a while so as to hide 0-2,0.91,0.97
a bit longer.

We will see that playingD never increases the Bad user’s . . .
payoff, and it can even decrease it. Suppose the currem@id?he diagram for each value pfthat the 5|mulat|(_)n was dor!e.
set is X, and the Bad play®. If the central Good play®, We see that, except for thb_: 0.2 case, there is a disparity
nothing changes. If the central Good playshe observes who not acc_ounted for_by thg variance .|nt.erval. On the other _hand
plays D and who plays”, so by looking at the payoff he candualitatively the simulations are S|m!lar to the computas.
tell what the Bad played. The new hiding setisny C x, Ford = 0.2 they are almost identical, fof = 0.91 the
i.e. smaller than¥, the Bad has gained nothing in the currepgimulation curve is monotonically increasing achieving it

period, and because of the discount facidihe payoff of a Maximum atp = 1 (similarly to the computation), and for
= 0.97 the maximum is attained long befope= 1, after

C has become smaller. So, in effect, the Bad player is faciﬁ%_ ) | !
the exact same situation he was facing before, only he isfvich the payoff drops, just as the computation predicts.

a smaller hiding set, and the benefit ofCais smaller. This
allows us to conclude that the best thing the Bad can do is
play C' from the first round until he is detected. Hence, the The case of multiple Bad users in the neighborhood of
strategies “alway€” for the Bad and ¢ with probabilityp” @ Good user is not much different in essence (there is still
(for the maximizing value of) for the Good form a Nash the concept of a hiding set), although the calculations grow
equilibrium. Noone can do better by unilateral deviation. longer. Even if the Good user does not exactly know how
many Bad neighbors he has, he can discover after each round
V. SIMULATION FOR THE STAR TOPOLOGY how many Bad users were among the cooperators. Since the

Another observation is that we have assumed that tR@t Of cooperators changes in every round, the Good user
detection is happening at exactly the expected time. TI§@n utilize t_he information he gathers after each round to
translates to an incorrect computation of the expected fpaygventually pinpoint who the Bad users are. For example, if
v;. Using equation (3c) to calculate the payaff(¢)) for atime @ Set of cooperators has just one extra member compared to
of detection equal td, the expected payoff over all possiblé’mOther set, then the type of that extra member (Good or Bad)

times of detection (but for a fixed value pj is can be immediately determined by comparing the payoffs in
the two cases. Of course, this process requires extra memory

E[vi(t)] = E[§'|(N — p(pN — 1)) + p(pbN —1).  (6) capabilities on the part of the Good user (to “remember” what
happened in the past rounds).

The ¢-discounted payoff function is not the only possible

SPH(N —p(pN — 1)) +p(pN —1) = (7) choicle to r?a!cula?e the payﬁff of t_hel_repeated(?ame. Tyvgzthe
to popular choices in game theoretic literature (for precis
TN =p(pN = 1)) +p(pN — 1). ®) nitions, see [8]) are the average payoffilr_..o & >, %),

To estimate how far from the truth we are, we performeahd the plain sum of payoffdifnr_, Zthl v!). Any one
some indicative simulations. Shown in figure 7 are the companf the three could be used for our game. We chosedthe
isons of the computations to the simulations for three \@ludiscounted because the parameteran be interpreted as the
of § : 0 =0.2,0.91,0.97. These were chosen as representatiygobability that the network will continue existing for (at
values from each one of the three intervalsdofvhere the least) one more round, given that it has existed so far. More
behavior of the payoff function changes. Each simulatios warecisely/ is the subjective estimate of the Good users for that
repeated 00 times and the mean and variance are depicted pnobability. More emphasis is given to upcoming gains than

Payoff (v)

V1. EXTENSIONS

What we have computed, however, is
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