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ABSTRACT

In this paper we extend the work presented in [1], [2]
by quantifying the effects of in-band wormhole attacks on
Intrusion Detection Systems. More specifically, we pro-
pose a mathematical framework for obtaining performance
bounds of Byzantine attackers and the Intrusion Detection
System (IDS) in terms of detection delay. We formulate the
problem of distributed collaborative defense against coor-
dinated attacks in MANET as a dynamic game problem.
In our formulation we have on the one hand a group of
attackers that observe what is going on in the network
and coordinate their attack in an adaptive manner. On
the other side, we have a group of defending nodes (the
IDS nodes) that collaboratively observe the network and
coordinate their actions against the attackers. Using exten-
sions of the game theoretic framework of [3] we provide a
mathematical framework for efficient identification of the
worst attacks and damages that the attackers can achieve,
as well as the best response of the defenders. This approach
leads to quantifying resiliency of the routing-attack IDS
with respect to Byzantine attacks.

INTRODUCTION

In physics, a wormhole is a hypothetical shortcut through
space and time that connects two distant regions. In cyber
security, the term wormhole was recently adopted [4] to
describe an attack on Mobile Ad-hoc Network (MANET)
routing protocols in which colluding nodes create the
illusion that two remote regions of a MANET are directly
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connected through nodes that appear to be neighbors,
but are actually distant from one another. The illusory
shortcut is created by connecting the purported neighbors
using a covert communication mechanism. The wormhole
undermines shortest path routing calculations, allowing the
attacking nodes to attract traffic from other parts of the
network so that it is routed through them. The wormhole
thus creates two artificial traffic choke points that are
under the control of the attacker and can be utilized at
an opportune future time to degrade or analyze the traffic
stream.

Prior research on wormholes in MANETs has concen-
trated primarily on out-of-band wormholes, which covertly
connect purported neighbors via a separate communication
mechanism, such as a wireline network or additional RF
channel that is not generally available throughout the
network [4], [5]. This paper deals with in-band wormholes,
which covertly connect the purported neighbors via multi-
hop tunnels through the primary link layer. In-band worm-
holes are important for several reasons. First, because they
do not require additional specialized hardware, they can
be launched from any node in the network; as a result,
they may be more likely to be used by real adversaries.
Second, unlike out-of-band wormholes, which actually add
channel capacity to the network, in-band wormholes con-
tinually consume network capacity (i.e., waste bandwidth)
thereby inherently causing service degradation. Third, al-
though countermeasures for out-of-band wormholes seem
to depend on out-of-band mechanisms such as geographic
position information or highly synchronized clocks, coun-
termeasures for in-band wormholes may not.

In this paper we extend the work presented in [1], [2] by
quantifying the effects of in-band wormhole attacks on In-
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trusion Detection Systems. More specifically, we propose a
mathematical framework for obtaining performance bounds
of Byzantine attackers and the IDS in terms of detection
delay. We formulate the problem of distributed collabora-
tive defense against coordinated attacks in MANET as a
dynamic game problem. In our formulation we have on
the one hand a group of attackers that observe what is
going on in the network and coordinate their attack in
an adaptive manner. On the other side, we have a group
of defending nodes (the IDS nodes) that collaboratively
observe the network and coordinate their actions against the
attackers. Using the game theoretic framework [3] we will
identify worst attacks and damages that the attackers can
achieve, as well as the best response of the defenders. This
approach leads to quantifying resiliency of the routing-
attack IDS with respect to Byzantine attacks. Due to the
nature of wireless networks, where no notion of trust can
be assumed, we propose a voting mechanism for ensuring
robustness of our detection scheme.

IN-BAND WORMHOLE PHENOMENON

An adversary launching a wormhole attack may have
multiple objectives. By attracting traffic that would not
ordinarily flow through nodes controlled by the adversary,
the wormhole creates artificial traffic choke points that
can be utilized at an opportune future time, e.g., to delay,
damage, discard, or misroute packets. The choke points
also increase opportunities to analyze network traffic flows
and eavesdrop on any unprotected packet contents. In
addition, unlike out-of-band wormholes, which actually
improve the efficiency of the network by adding capacity,
in-band wormholes impose continuing costs, even while
“dormant”. This is because packets drawn into the in-
band wormhole are not routed along the shortest path.
They instead take unnecessarily long routes through a
covert tunnel, consuming network bandwidth (which may
be scarce) and delaying packet arrivals, while increas-
ing the likelihood of bit errors and congestion. MANET
routing protocols are vulnerable to wormhole attacks [4],
[6]. In OLSR, a proactive link state routing protocol for
MANETs, the status of 1-hop links is gathered through
the exchange of OLSR HELLO messages among 1-hop
neighbors. Topology Control (TC) messages are then used
to propagate link-state information to all other nodes.
From this information, nodes formulate next-hop routing
decisions based on the shortest-path computations using
symmetric links.

The attacker creates the wormhole illusion by forwarding
OLSR control messages (e.g., HELLO and TC messages)
between remote nodes through a wormhole tunnel, or
more simply, the two remote colluding nodes can falsely

Fig. 1. In-band wormhole collapse

advertise a 1-hop symmetric link between them without
exchanging OLSR control messages. The false link infor-
mation is propagated to other nodes across the network via
the broadcast of TC messages, broadening the impact of the
false information. The result is the creation of two routing
“black holes”, one at each endpoint of the tunnel. Other
packets are then attracted by each black holes “gravity” and
are forwarded by the attackers through the tunnel, creating
the wormhole. An in-band wormhole can fall victim to
its own success, as the disruption in network routing
caused by the attack can also affect the routing of tunneled
wormhole traffic, causing the wormhole to collapse upon
itself. An in-band wormhole collapses when its tunnel
endpoints cannot continue to forward control messages
between remote network regions. Fig. 1 shows the collapse
of the in-band wormhole tunnel. In this example, attackers
180 and 183 establish an in-band wormhole by forwarding
and rebroadcasting the OLSR control messages from nodes
189 and 186 creating the illusion that nodes 189 and 186
are 1-hop neighbors. TC message broadcasts propagate the
false link information beyond 1 hop. The result affects the
shortest path routing computations of other nodes in the
wormhole path, such as node 178. Normally, wormhole
traffic should be tunneled between attackers 180 and 183.
However, node 178 computes the shortest path for traffic
to node 183 as going back through node 180. As a result,
the wormhole collapses upon itself.

One way to avoid tunnel collapse is by using one or
more additional colluding nodes along the tunnel path as
application layer relays. For example, if node 185 in Fig. 1
were a colluding node, node 180 would address tunneled
traffic to 185 rather than 183. As a result, when node 178
attempted to forward tunneled traffic to its (now closer)
destination, it would determine that 179 should be the next
hop, rather than 180, thereby avoiding the routing loopback
and consequent tunnel collapse. When the tunneled traffic
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arrived at node 185, it would readdress the packets to the
tunnel endpoint, node 183.

MOTIVATION

As it has been pointed out, in-band wormholes represent
a significant threat to the functionality of wireless networks
due to the fact that packets drawn into the in-band worm-
hole are not routed through the advertised shortest path.
Consequently, if no detection mechanism is present, it’s in
the interest of the adversaries to create longer tunnels and
cause greater delays in the network. On the other hand, if a
detection mechanism is present, the adversary faces a trade-
off. If he decides to create a long tunnel, he causes greater
damage to the network, but on the other hand, the risk
of detection increases. We now see that the most suitable
approach to this problem is utilization of game-theoretic
tools.

On the other hand, the IDS needs to choose a detection
test that enables misbehavior detection with minimum
delay (on-line detection is desirable). This gives rise to the
sequential detection problem. A sequential decision rule
consists of a stopping time, which indicates when to stop
observing, and a final decision rule that indicates which
hypothesis (i.e, occurrence or not of misbehavior) should
be selected. A sequential decision rule is efficient if it can
provide reliable decision as fast as possible. It has been
shown by Wald [7] that the decision rule that minimizes
the expected number of required observations to reach a
decision over all sequential and non-sequential decision
rules is the Sequential Probability Ratio Test (SPRT).

The basic feature of attack and misbehavior strategies
is that they are entirely unpredictable. In the presence
of such uncertainty, it is meaningful to seek models and
decision rules that are robust, namely they perform well for
a wide range of uncertainty conditions. One useful design
philosophy is to apply a min-max formulation and identify
the rule that optimizes worst-case performance over the
class of allowed uncertainty conditions.

In a wireless network, information about the behavior of
nodes can become readily available to immediate neighbors
through direct observation measurements. If these measure-
ments are compared with their counterparts for normal pro-
tocol operation, it is then contingent upon the detection rule
to decide whether the protocol is normally executed or not.
A min-max formulation translates to finding the detection
rule with the minimum required number of observations
to reach a decision for the worst instance of misbehavior.
Clearly, such a scheme would guarantee a minimum level
of performance which is the best minimum level possible
over all classes of attacks.

The nature of wireless networks does not assume exis-
tence of trust mechanisms, i.e. each protocol participant is
equally likely to be good or bad. The approach proposed in
[1], [2] suggests a mechanism based on voting by majority
rule. If the voting is implemented by majority rule, all votes
are treated equally, which makes it clear what the attackers
strategy should be: They should always vote the opposite
of the truth. In other words, whether they are seen to be
outliers in the voting process or not, there is no difference.
They can attempt to swing the vote without any fear of
repercussions. As a consequence, whenever the malicious
voters happen to be in the majority, they would definitely
win the vote.

Motivated by this observation, we extend the voting
model with a mechanism to punish users who often vote
in the minority, and reward those often in the majority by
reducing or increasing the weight of their votes, respec-
tively. Assuming that the legitimate users are in general,
but not always, the majority of the voters, they will be
rewarded more often than the malicious ones. So, even if
many malicious voters happen to be in a neighborhood,
they will not necessarily outvote the legitimate users.

MIN-MAX ROBUST MISBEHAVIOR DETECTION

In this section we present our approach for misbehavior
detection in the presence of a single wormhole in the OLSR
routing protocol.

Problem motivation and sequential detection

The basis of our proposed detection scheme is a sequen-
tial detection test that is implemented at an observer node.
The objective of the detection test is to derive a decision as
to whether or not a misbehavior occurs as fast as possible
(with the least possible number of observation samples).

The probability of false alarm PFA and the probability
of missed detection PM constitute inherent tradeoffs in a
detection scheme, in the sense that a faster decision un-
avoidably leads to higher values of these probabilities while
lower values are attained with the expense of detection
delay. For given values of PFA and PM , the detection test
that minimizes average number of required observations
(and thus the average delay) to reach a decision among
all sequential and non-sequential tests for which PFA and
PM do not exceed the predefined values above is Wald’s
Sequential Probability Ratio Test (SPRT) [7]. When SPRT
is used for sequential testing between two hypotheses
concerning two probability distributions SPRT is optimal
in that sense as well [3].

SPRT collects observations until significant evidence in
favor of one of the two hypotheses is accumulated. After
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each observation at the k-th stage, we choose between
the following options: accept one or the other hypothesis
and stop collecting observations, or defer decision for the
moment and obtain observation k+1. In SPRT, there exist
two thresholds a and b that aid the decision. The figure
of merit at each step is the logarithm of the likelihood
ratio of the accumulated sample vector until that stage.
For the case of testing between hypotheses H0 and H1

that involve continuous probability density functions f0

and f1, the logarithm of likelihood ratio at stage k with
accumulated samples x1, . . . , xk is

Sk = ln
f1(x1, . . . , xk)
f0(x1, . . . , xk)

, (1)

where fi(x1, . . . , xk) is the joint probability density func-
tion of data (x1, . . . , xk) based on hypothesis Hi, i = 0, 1.
If the observation samples are statistically independent

Sk =
k∑
j=1

Λj =
k∑
j=1

ln
f1(xj)
f0(xj)

, (2)

with fi(·) the probability density function of hypothesis
Hi, i = 0, 1. The decision is made based on the following
criteria. If Sk ≥ a, H1 is accepted. If Sk < b, H0 is
accepted. Otherwise, if b ≤ Sk < a the decision making
is postponed until another observation sample is collected.
Thresholds a and b depend on the specified values of PFA
and PM .

We can now see that the main idea of our approach
is to place emphasis on the class of attacks that incur
larger gain for the attacker (attacks that have the most
devastating effect on the network performance). Besides,
if we assume that the detection of an attack is followed by
communication of the attack event further in the network
so as to launch a network response, it would be inefficient
for the algorithm to consider less significant attacks and
initiate responses for them. Instead, it is meaningful for
the detection system to focus on countering the most
significant attacks.

Min-max robust detection approach : Definition of uncer-
tainty class

Previously, we stressed the sequential nature of our
approach and the implicit need to consider most significant
attacks. The approach should also cope with the encoun-
tered (statistically) uncertain operational environment of a
wireless network, namely the random nature of protocols
and the unpredictable misbehavior or attack instances.
Hence, it is desirable to rely on robust detection rules that
would perform well regardless of uncertain conditions. In
this work, we adopt the minimax robust detection approach

where the goal is to optimize performance for the worst-
case instance of uncertainty. More specifically, the goal is
to identify the least favorable operating point of a system
in the presence of uncertainty and subsequently find the
strategy that optimizes system performance when operating
at that point. In our case, the least favorable operating point
corresponds to the worst-case instance of an attack and
the optimal strategy amounts to the optimal detection rule.
System performance is measured in terms of number of
required observation samples to derive a decision.

A basic notion in minimax approaches is that of a saddle
point. A strategy (detection rule) d∗ and an operating point
(attack) f∗ in the uncertainty class form a saddle point if:

1) For the attack f∗, any detection rule d other than
d∗ has worse performance. Namely d∗ is the optimal
detection rule for attack f∗ in terms of the minimum
number of required observations.

2) For the detection rule d∗, any attack f other than f∗

gives better performance. Namely, detection rule d∗

has its worst performance for attack f∗.
Implicit in the minimax approach is the assumption

that the attacker has full knowledge of the employed
detection rule. Thus, it can create a misbehavior strat-
egy that maximizes the number of required samples for
misbehavior detection delaying the detection as much as
possible. Therefore, our approach refers to the case of an
intelligent attacker that can adapt its misbehavior policy so
as to avoid detection. One issue that needs to be clarified
is the structure of this attack strategy. Subsequently, by
deriving the detection rule and the performance for that
case, we can obtain an upper bound on performance over
all possible attacks.

Minimax robust detection approach: Derivation of the
worst-case attack

The objective of a detection rule is to minimize the
number of the required observation samples N so as
to derive a decision regarding the existence or not of
misbehavior. The performance of a detection scheme is
quantified by the average number of samples E[N ] needed
until a decision is reached, where the average is taken with
respect to the distribution of the observations. This number
is a function of the adopted decision rule d and the attack
p.d.f f , that is

E[N ] = φ(d, f). (3)

Let D denote the class of all (sequential and non-
sequential) statistical hypothesis tests for which the false
alarm and missed detection probabilities do not exceed
some specified levels PFA and PM respectively. In the
context of the min-max robust detection framework, the
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problem is to optimize performance in the presence of a
worst-case attack, that is find

E[N ]∗ = min
d∈D

max
f∈Fε

φ(d, f) , (4)

assuming that finite number of samples are needed (other-
wise the “min-max” notation should change to “inf-sup”).
We proceed to a formal definition of a saddle point.

Definition 1: A pair (d∗, f∗) is called a saddle point of
the function φ if

φ(d∗, f) ≤ φ(d∗, f∗) ≤ φ(d, f∗) ∀d ∈ D, ∀f ∈ Fε. (5)
A saddle point (d∗, f∗) of φ consists of a detection test

d∗ and an attack distribution f∗. Equation (5) is a formal
statement of properties 1 and 2 that were mentioned in the
previous section. In order to facilitate solution of problem
(4), we find the saddle point of φ. First, recall that the
optimal detection test in the sense of minimizing expected
number of samples needed for detection is SPRT. This
means that SPRT is the test d∗ ∈ D, such that for a fixed
(but unknown) attack f we have φ(d∗, f) ≤ φ(d, f) for
all other tests d ∈ D. The inequality above also holds for
f = f∗, and hence the second inequality in (5) has been
established.

We now prove the first inequality. Assuming that SPRT
is used, we seek an attack distribution f∗ such that
φ(d∗, f∗) ≥ φ(d∗, f) for all other attacks f ∈ Fε. In
order to find f∗, we need an expression for the required
average sample number (ASN) E[SN ] of SPRT. From
Wald’s identity [7] and [3] the following expression for
E[SN ] is obtained:

E[N ] =
E[SN ]
E[Λ]

=
aPD + b(1− PD)

E
[
ln f(X)

f0(X)

] (6)

where a and b are the thresholds of SPRT, a =
ln 1−PM

PFA
and b = ln PM

1−PFA and f0(x) denotes the distri-
bution of normal operation and the expectation of denomi-
nator is with respect to the unknown attack distribution f .
Since aPD+b(1−PD) is a constant for the given IDS, the
problem of finding the attack that maximizes the required
number of observations reduces to the problem:

min
f

∫
f(x) ln

f(x)
f0(x)

dx (7)

subject to the constraints,∫
f(x)dx = 1 and

∫
xf(x)dx ≤M. (8)

The first constraint exists since f is a pdf and the second
one is because f ∈ FM . By applying the Karush-Kuhn-
Tucker (KKT) conditions, we find that the function f∗ has
the form

f∗(x) = f0(x)e−λ−1e−µx, µ > 0, (9)

where λ and µ are the Lagrange multipliers that correspond
to the constraints.

Interestingly, the result above shows that the worst-case
attack distribution f∗ in terms of maximizing number of re-
quired samples has exponential density. Since φ(d∗, f∗) ≥
φ(d∗, f) for all f ∈ FM , we proved the left inequality in
(5). We have now shown that the pair (d∗, f∗), where d∗

is SPRT and f∗(x) is the exponential density constitute a
saddle point of φ. This means that the so-called min-max
equality holds and we can interchange the order of min
and sup in the optimization problem above [8]. Then, the
problem

max
f∈Fε

min
d∈D

φ(d, f) (10)

has the same solution with (4). As a side remark, note
that the derived exponential pdf has maximum differential
entropy over all pdf’s in the class FM . This result is
expected since the adversary’s goal is to maximize the
uncertainty under given settings so as to prolong detection.

Application for detection of wormholes

In OLSR, or any other routing protocol, the distributions
of hop count or end-to-end delay during the legitimate pro-
tocol operation are not known a priori. In order to be able
to apply the proposed framework, we need to empirically
estimate the legitimate hop count and corresponding end-
to-end delay distributions in the setting when no adversary
is present. It is important to emphasize that the obtained
distributions are not universal, i.e. they need to be obtained
separately for each network. Furthermore, if significant
topology changes happen after a certain period of time, a
new legitimate distribution needs to be obtained. For now
we assume that no significant topology and traffic changes
occur in a pre-specified time interval. In addition to that, we
assume the existence of a central authority that constantly
monitors the network and decides whether a new legitimate
distribution needs to be obtained. In order to illustrate
the proposed detection mechanism we refer to Fig. 2. In
this scenario, nodes A and D are chosen as monitoring
nodes that obtain the end-to-end delay distributions (and
perform the SPRT) and ensure the fairness of the voting
process. We assume that an intelligent attacker avoids the
brute force strategy. The initial problem formulation in [2]
assumed that the adversaries randomly choose the tunnel
length (in this case B-E-F-G-C) although the advertised
length is always 1 hop (B-C). SPRT detects this type of
misbehavior very efficiently due to the fact that nodes A
and D observe significant difference in end-to-end delay
in the presence of the wormhole. We then assume that the
adversary plays a game with the detection system. The
adversary’s goal is to maximize his gain, i.e. to attract as
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Fig. 2. Example of an in-band wormhole

much traffic as possible, which is done by advertising the
shortest route and then creating long wormhole tunnels in
order to cause significant performance degradation in the
network. On the other hand, he wants to avoid detection
for as long as possible in the light of the min-max robust
approach. For that reason the adversary may delay creation
of the wormhole for a certain period of time until he is able
to form a tunnel of desirable length. In our case, we per-
formed a simple experiment, where the monitoring nodes
expected end-to-end delay that corresponded to 3 hops
(monitoring node 1 - wormhole start point - wormhole end
point - monitoring node 2). Instead the adversary created
a 12-hop tunnel. Consequently, the corresponding end-to-
end delay distributions for legitimate protocol operation (3
hops) and adversarial setting (12 hops) were significantly
different, which resulted in SPRT detection after only 1
sample. Hence, the adversary may want to wait until he is
able to create a tunnel that is, for example, 3-hops long.
In this setting, the adversary gains in terms of delayed
detection, but loses in terms of attracted traffic and duration
of the attack (since the wormhole of optimal length may
not always be created).

Due to the nature of collaborative attacks, the detection
of Byzantine attacks needs to be performed in a distributed
manner. We assume that the central authority decides on a
set of nodes that are used for monitoring and detection. All
chosen nodes perform the SPRT as the measurements are
obtained and detect changes in end-to-end delay between
them (and hop count). The outcomes of these tests are
reports on the status of the network, that is, whether a
wormhole has been detected or not. If a wormhole is
detected, the report includes the other endpoint of the path
which is affected by the wormhole. These reports are sent
to a global or regional center, which can then perform
correlation analysis between the reports in order to localize
the wormhole. For example, if the paths between all the
endpoints that report a wormhole share an edge, then that

edge is likely to be a wormhole.

VOTING

The Model

We assume that time is discrete, and progresses in
rounds. At each round, a wormhole either exists or not.
Good and Bad users are required to vote on the existence
or otherwise of a wormhole. A vote can be either “T”
(truth) or “L” (lie), according to whether the user reports
truthfully or not. The vote of user i at round n is denoted
by xni . With each user, a trust value ti is associated, which
is the weight that its vote carries.

We focus on voting for a single link. Voting can be
done independently for multiple links. However, coupling
may occur through the trust values (which are bound to a
specific user, for all the links that he is voting on).

After all eligible users vote on the link (eligibility is
determined through the 3-hop path requirement [2]), the
outcome is decided by the procedure outlined by finding
independent paths, and weighing the votes by the trust
values. The result of the n-th round vote, “P” or “N”, is
denoted by Xn. If xni = Xn, then ti is increased, otherwise
it is decreased.

The payoffs of the Bad users are as follows: They receive
M > 0 if the decision of the intrusion detection system is
false (either false positive or false negative), and −M if the
decision is correct. This can change if they gain more from
hiding a wormhole than from successful false accusation
of Good users (or vice versa).

We assume that the Good users always vote correctly.
This assumption depends on the “first layer” detection
algorithm, the output of which could, in principle, be
erroneous. So, in future work we could lift this assumption.
Since the Good users always vote correctly, there is a total
quantity of trust that is placed on the correct decision. The
Bad users do not know this total trust; they only have
an estimate of it, in the form of a probability distribution
function, and it is changing at each round. Also, the Bad
users do not know how many more chances they will have
to vote, that is, how much longer the network will keep
operating. For this reason the current payoffs are more
important than payoffs expected in the future.

The Bad users’ dilemma is between risking voting
against a large sum of trust values versus waiting for future
rounds when it may be more convenient to try and swing
the vote. If they vote against a large sum of trust values and
lose, their own trust value will decrease, so the situation
may be worse for the Bad users next round. So, initially,
they will probably want to build up trust and use it when
the circumstances are more favorable.
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Solution Methodology

We can view the above game as a stochastic game, and
actually as stochastic dynamic programming. The control
(input) is the vote xni (“T” or “L”) of the Bad user (or the
collective votes of the Bad users) at round n, and the state
is (tni , T

n) which are the trust value of user i at round n
(or the sum of trust values of all Bad users eligible to vote
for that link), and the total trust value of the Good users
at round n. The output (reward) is the payoff of the Bad
user(s), which is deterministic given the state and the input.
The trust value tn+1

i is also a deterministic function of the
state and the input. However, Tn may change randomly to
a new value that captures the uncertainty of the Bad users
with respect to the sum of trust values that they will face.
We can introduce a drift which would be positive if the
Good users won the previous vote, and negative otherwise.
Mobility can also be captured within the random change of
Tn, since, if the users move, Tn+1 will be the sum of trust
values of a different set of users. That is, at each round, a
Bad user faces a different set of Good ones. The uncertainty
with respect to the duration of the network operation can
be captured with an appropriate discounting factor for the
payoffs.

Therefore, having a complete formulation of the problem
as stochastic dynamic programming, we can use the rele-
vant theory (e.g., [9]) to find the optimal Bad user policy.

CONCLUSIONS AND FUTURE WORK

This work represents the first step towards quantifying
resiliency of the IDS with respect to Byzantine attacks.
We provide a mathematical framework based on game
theory and statistics that: (i) forces an intelligent attacker
to apply less aggressive strategies in order to avoid being
detected; (ii) enables the IDS to determine the worst-case
scenario with respect to system losses and (iii) performs
detection with the SPRT, which has low complexity and
the smallest detection delay among all sequential tests.
We have presented a voting mechanism to improve the
reliability of the IDS against malicious users who try to
subvert the decisions of the IDS. The malicious users can
no longer blindly lie all the time, because they will be
quickly discredited, and their vote will no longer count.
Using well established theory, we can find the optimal
policy that they should follow, and their associated payoff.

In this work we illustrated the inefficiency of brute force
attacks in the presence of the SPRT-based IDS, which
provides motivation for further extension of this work. We
intend to investigate more complex scenarios in the future
and find the least favorable adversarial setting that still
incurs sufficient gain on the attacker’s side and estimate
the corresponding detection delay. In addition to that, we

intend to implement the voting mechanism in our testbed
for in-band wormhole detection, and incorporate actual
empirical mobility traces into the dynamic programming
algorithm. We also plan to make the user votes not just
binary (“T” or “L”), but real numbers from 0 to 1, in order
to include the possibility of partial detection (detection with
some uncertainty) on the part of Good users.
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