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Abstract— As an important concept in network security, trust
is interpreted as a set of relations among agents participating
in the network activities. Trust relations are based on previous
behaviors of agents as well as on trust documents. We present
our results on distributed trust management in MANET. The
trust information or evidence used to evaluate trustworthiness
is provided by peers, i.e. the agents that form the network.
We describe first a new trust document distribution scheme
based on swarm intelligence. Then we describe various methods
for distributed trust evaluation and the associated trust (and
mistrust) spreading dynamics. Under such dynamics the whole
network evolves as the local interactions iterate from isolated
trust islands to a connected trust graph. Our interest is to dis-
cover rules and policies that establish trust-connected networks
using only local interactions, to find the conditions under which
trust spreads to a maximum set, as well as the parameters (e.g.
topology type) that speed up or slow down this transition. We
analyze the dynamics induced by local interaction rules using
algebraic graph theory and methods inspired from the statistical
physics of spin-glass materials. We describe and explain the phase
transition phenomena that we have found in these evolutions. We
model the interactions among agents as cooperative games and
show that trust can encourage agents to collaborate. We also
describe a model for trust evaluation that uses pairwise iterated
graph games between the agents to create a trust reputation
with evolution coupled to the game dynamics. Finally we present
a new modeling framework for trust metric evaluation as linear
iterations over ordered semirings, by treating such evaluations as
path problems in MANET. This allows us to formulate problems
of resilience of trust metrics and trust evaluation to attacks.

I. I NTRODUCTION

Trust is interpreted as a set of relations among entities
participating in network activities [1]. In traditional networks,
such as the Internet, sources of trust evidence are centralized
control servers, such as trusted third parties (TTPs) and authen-
tication servers (ASs). Those servers are trusted and available
all the time. In contrast, wireless autonomic networks have
neither fixed infrastructures, nor centralized control servers.
In these networks, the sources of trust evidence are peers,
i.e. the entities that form the network. We summarize the
essential and unique properties of distributed trust management
in autonomic networks as opposed to traditional centralized
approaches:

• uncertainty and incompleteness: Trust evidence is pro-
vided by peers, and so it can be incomplete and even
incorrect.

• locality: Trust information is exchanged locally through
individual interactions.

• distributed computation: Trust evaluation is performed
in a distributed manner.

Trust management involves collecting, analyzing and pre-
senting trust-related evidence, and making assessments and
decisions regarding trust relationships between entitiesin a
network [2]. In this work, we investigate various components
of trust management: direct and indirect trust evidence, trust
evidence distribution and trust evaluation policies. Further-
more, self-organized networks rely on cooperation among par-
ticipating agents. We study how trust affects their cooperation
and enables the network to function normally.

In a distributed trust management system, pieces of trust
evidence are stored in a distributed manner. In Sec. II, we
propose a scheme which efficiently distributes trust evidence
to places where they are mostly needed. Our scheme is inspired
by the swarm intelligence paradigm, where agents mimic ants
looking for their food – the trust evidence in this context. Our
scheme is compared with another scheme based on Freenet,
a distributed P2P file sharing system. The simulation results
show that our scheme is more reliable and suitable for mobile
environments.

By defining a trust evaluation rule based on local voting,
we study how trust spreads throughout the whole network in
Sec. III. We first study a simple deterministic voting rule. Our
analytic results on its convergence show that trust can onlybe
established if the number of headers in the network satisfies
certain conditions. Furthermore, the uncertainty of trustis in-
troduced in the local voting rule by modelling it as an iterated
stochastic process. The convergence of this process and the
stationary distribution at the steady state are provided. We
further investigate the resulting trust values at the steady state.
Our investigation gives several important conclusions, such as
the choice of threshold and phase transition phenomena. Those
results provide a way to properly design a feasible evaluation
rule.

Autonomic networks rely on cooperation of participating
nodes for almost all their functions. However, because such
data forwarding consumes valuable (and scarce) battery power
and channel bandwidth without receiving any direct gain,
intermediate nodes would prefer not to cooperate. In order to
form the necessary infrastructure that makes multi-hop com-



munication achievable, cooperation enforcement mechanisms
are developed to cope with such selfish behavior of nodes
in ad hoc networks in Sec. IV. We provide conditions for
achieving collaboration among selfish users. Furthermore,the
trust mechanism is introduced to promote cooperation and
circumvent misbehaving nodes.

In Sec. V, we assume that trust is built up through repeated
interactions of the users within the protocol that is in effect in
the network. The next step is to use this trust in a transitive
way, i.e. somebody can benefit from the interactions of that
others have had in order to build “indirect” trust without direct
interactions. We present a game theoretic model for building
up trust values from interactions. Users are interacting strate-
gically, i.e. they are trying to maximize their own personal
gain. Through these interactions, their interacting partners can
estimate their trustworthiness. The result is a game thoretic
equilibrium from which no user can diverge without suffering
a loss. In this sense, the final estimates are robust. Moreover,
we present a linear system approach to aggregate these “direct”
estimates. We use a non-conventional algebraic framework,the
theory of semirings, to replace the regular multiplicationand
addition. We argue that this approach naturally fits the real
problem we are trying to attack. Furthermore, it can be used
as a general model for trust computation if different semiring
operators are used.

II. T RUST EVIDENCE DISTRIBUTION

In a distributed trust management system, pieces of trust
evidence cannot be provided by a centralized server. Such
a distributed manner of operation raises several problems.
For instance, where should a user look for trust evidence
he/she requests, and how could he/she efficiently obtain this
evidence?

The problem of evidence distribution shares many charac-
teristics of distributed peer-to-peer file sharing systems([3],
[4]). Inspired from P2P networks, Eschenauer [1] proposed a
trust establishment scheme based on Freenet [4], where pieces
of trust evidence are routed and searched using distributed
hash table (DHT). However, trust evidence distribution is not a
simple static “request routing” problem. First, the schememust
be adaptive to the mobility of nodes. Second is the security
issue. Since malicious nodes can simply drop any evidence
passing through them, the distribution scheme must carefully
select nodes and paths which are reliable. The most important
issue is to efficiently distribute trust evidence such that the
evidence searching cost can be significantly reduced.

Based on the above concerns, we introduce an Ant-Based
Evidence Distribution scheme (ABED) which arises from the
swarm intelligence paradigm. The main principle behind the
interaction in a swarm is calledstigmergy, such as pheromone
laying on the trails followed by ants. In our scheme, “ants” are
sent out searching for their food – trust evidence.Forward ants
are originated by requesters and choose next-hop nodes ac-
cording to the “pheromone deposit” at each intermediate node.
Upon discovery of the evidence, a backward ant is created. It
takes the requested evidence and traces the reverse route ofthe

forward ant. On its way it updates the pheromone deposit of
intermediate nodes and caches a copy of the evidence. In the
following, we discuss the important components of ABED.

• Hash function: similar as in [1], a global hash function
is used to map evidence identities into values, which are
called keys, and each key is linked to a particular node
in the network.

• Pheromone deposit: denoted byQijd for outgoing link
(i, j) and targetd. A higher Q-value represents higher
quality. Q-values are updated when backward ants are
received. Assumingqijd is the ratio of the number of
backward ants received to the number of forward ants
sent out through link(i, j) for the current request tod,
the update rule is

Qijd(n + 1) = (1 − γ)Qijd(n) + γqijd (1)

where γ is a pre-defined parameter between[0, 1].
The first term captures the evaporation procedure of
pheromone deposit.

• Routing table: each entry in the evidence routing table
corresponds to the hash value of an evidence piece, and
each value in the table, denoted aspijd, represents the
probability of an ant (searching for targetd) choosingj
as the next hop at nodei. pijd is a function ofQ-values.
The one we use is

pijd(n) =
(τij(n))α (Qijd(n))β

Zi(n)
, (2)

where τij is the quality of link (i, j) and Zi is a
normalization constant.

We simulated ABED using the discrete time network simu-
lator ns-2. We compared ABED with the Freenet based scheme
proposed in [1]. Our results show that ABED outperforms
the Freenet-based scheme. In particular, ABED finds the
best solution much faster, which is highly desired in mobile
scenarios. Furthermore, the inherent property of multiplepaths
in the ant-based scheme makes it more resilient and reliable.
More details of the ABED scheme and the simulation results
can be found in [5].

III. D YNAMICS OF TRUST EVALUATION

After obtaining the trust evidence, network users follow
certain policies to evaluate the trustworthiness of their targets.
This procedure is called trust evaluation or trust computation.

A. Network Model

We model a network as a directed graphG(V, E)1. A
directed link from nodei to nodej, denoted as(i, j), cor-
responds to thedirect trust relation thati has onj2 and the
weight on the link represents the degree of confidencei has
on j, denoted ascij ∈ [−1, 1]. We define the neighbor set of

1G is called thetrust graph, as opposed to the physical graph due to the
communication constraints.

2A trust relation fromi to j does not necessarily mean thati trustsj. Trust
relations include distrust (i.e. negative opinions) as well.



nodei, Ni, as the set of nodes that are directly connected to
i.

Nodes in the network are assumed to be either GOOD or
BAD, denoted byti = 1 or −1 for nodei. The vectorT =
[t1, . . . , tN ] is called thetrue trust vector. Trust evaluation
is to estimate the trustworthiness of nodes. Let vectorS =
[s1, . . . , sN ] be the estimated trust vector. Ifsi = 1, we call
nodei trusted, which is a subjective concept. The confidence
value cij is the degree of confidence nodei has on nodej,
wherecij ∈ [−1, 1].

Suppose nodei is the target of trust evaluation. The natural
approach is to aggregate all its neighbors’ opinions. We call
this approach alocal voting rule, in which votes are neighbors’
c-values on the target. Furthermore, opinions from nodes with
high (estimated) trust values are more credible, so they should
carry larger weights. Therefore we define the local voting rule
as the following iterated rule

si(k + 1) = f (cjisj(k)|j ∈ Ni) . (3)

Thus the trust evaluation can be considered as adynamic
processwhich evolves with time. Our interest is to study the
evolution of the estimated trust vectorS, its values at the
equilibrium and whetherS can correctly estimate the trust
vectorT at the steady state.

1) Deterministic voting rule:Guided by the above rea-
soning, we first design a simpledeterministicrule based on
weighted voting. The matrix form of this rule is written as:

S(k + 1) = D−1CS(k). (4)

whereD is a diagonal matrix representing the in-degree of
each node. We studied its convergence property and investi-
gate the spreading of trust as the system reaches the steady
state. To determine the trustworthiness of nodes, we apply
a threshold rule when the above voting rule converges. Let
si = limk→∞ si(k). Nodei is trusted ifsi ≥ η and not trusted
if si < η.

Our analytic result indicates thatsi ≪ 1, i.e., trust can
not be established, which shows the difficulties of designing
algorithms in self-organized distributed networks. In order to
overcome the problem, we introduce the notion ofheaders,
which are entities that are always trusted by some nodes with
trust value1. Define the average votes provided by headers
for nodei as bi. We have the following result: given that the
threshold of trustworthiness isη, the number of headers for
each node must satisfy

B1 ≥
η

1 − η
(D − V )1.

This result provides a method to design a trust-connected
network. For a detailed discussion of the deterministic local
voting rule, please refer to [6].

B. Stochastic Voting Rule

As we have discussed, uncertainty of opinions by peers
is inevitable for autonomic networks. Thus we introduce
randomness into our rule. Define the weighted summi(k) =

∑

j∈Ni
cjisj(k). At each iteration, assume that the voting

result is binary andsi is decided by the threshold rule, i.e.,
si(k+1) = 1 if mi(k) ≥ η andsi(k+1) = −1 if mi(k) < η.
So our stochastic threshold rule is defined as:

Pr [si(k + 1)|mi(k)] =
ebsi(k+1)(mi(k)−η)

Zi(k)
. (5)

whereZi(k) is the normalization factor andb > 0 is a constant
representing thedegree of certainty. A small b represents a
highly uncertain scenario. Then we have the following results:
for the stochastic voting rule defined above, ifb ∈ (0,∞), we
have that the voting rule converges to the steady state with a
unique stationary distributionπS = ebU(S)

Z .
The stationary distributionπS can be easily linked to the

Ising model and spin glass model in statistical physics. The
Ising model describes interaction of magnetic moments or
“spins” of particles. In the Ising model,si is the orientation
of the spin at particlei. si = 1 or −1 indicates the spin ati is
“up” or “down” respectively. The rich literature in statistical
physics help us to understand our voting model at the steady
state.

We studied the probability of correct estimation (si = ti),
denoted asPcorrect at the steady state. One interesting ob-
servation is thephase transition phenomenonobserved when
the thresholdη = 0. Phase transitions have been extensively
studied by physicists. In [7], the authors theoretically studied
phase transitions in spin glass models, and introduced the
replica symmetry method to solve them analytically. Based
on this method, very good approximations of critical values
can be derived. The discovery of phase transition in our voting
rule is quite surprising given that the rule itself is very simple.
More importantly, the fact that a small change in the parameter
might result in a diametrically opposite performance of our
voting rule proves the necessity of doing more analyses before
applying any distributed algorithms.

In our paper [8], we also studied the impacts of different
adversary models and network topologies on our evaluation
rule. Please refer to this paper for more details.

IV. COLLABORATION AND TRUST

Autonomic networks rely on cooperation of participating
nodes for almost all their functions, for instance, to route
data between source and destination pairs that are outside
each other’s communication range. However, because such
data forwarding consumes valuable (and scarce) battery power
and channel bandwidth without receiving any direct gain,
intermediate nodes would prefer not to cooperate. In order to
form the necessary infrastructure that makes multi-hop com-
munication achievable, cooperation enforcement mechanisms
are developed to cope with such selfish behavior of nodes in
autonomic networks.

The conflict between cooperation and cost naturally leads
to game-theoretic studies. In our work, the interactions among
nodes are modeled ascooperative games. In cooperative
games, players formcoalitionsto obtain the optimum payoffs.
We investigated conditions under which a grand coalition



that includes all players together is formed. Furthermore,we
introduce trust as a mechanism to help form a grand coalition
in the context of cooperative games.

Since nodes only communicate with their physical neigh-
bors, the interactions among neighbors can be modeled as
games on graphs. This area of research has a lot in common
with statistical mechanics of complex systems with game
theoretic interactions. The Ising model and the more complex
spin glass model can be also interpreted as cooperative games.
In the Ising model, each particle selects its own spin to
maximize its own payoff, defined as the following

Ri =





∑

j∈Ni

Jijsisj



 /T.

A system with highT means that particles are conservative and
not willing to change, while the one with lowT has aggressive
particles. Therefore, a collection of local decisions reduces
the total energy of the interacting particles. This inspires an
approach where trust is used as an incentive for cooperation.
The value of si represents whether nodei is willing to
cooperate or not (si = 1 or −1). Jij can be interpreted as
the worth of playerj to playeri, which can be a function of
the trust relations betweeni andj. Then each node decides to
cooperate or not based on benefit from cooperation and trust
values of its neighbors

In cooperative games, players form coalitions to obtain
the optimum payoffs. A coalitionS is a subset ofN in
which all nodes cooperate. The characteristic functionv(S)
is interpreted as the maximum payoffS can get without the
cooperation of the rest of the playersN \S. Then in the Ising
model, the characteristic function for every coalition of players
S ⊂ N is set as

v(S) =
∑

i∈S

Ri =
∑

i,j∈S

Jij −
∑

k/∈S,i∈S

Jij .

Our object is to find what form or policy forJij can induce all
(or most) nodes to cooperate, i.e., to maximize the coalition.

There are different concepts of stable solutions in coopera-
tive games, such as the core, stable sets, and the nucleolus.In
particular, we studied thecore, in which all players cooperate
with their neighbors. However, the core does not always exist.
So we studied the conditions under which the core exists in the
cooperative game. Furthermore, we studied how negotiation
can help to form the grand coalition that includes all players.

The trust management system can be used as an incentive
for collaboration. Nodes who refrain from cooperation get
lower trust values, and will be eventually penalized because
other nodes tend to cooperate only with highly trusted ones.
After adding trust into the aforementioned network formation
game, the conditions of the existence of core are relaxed.
We showed that by introducing a trust mechanism, all nodes
are induced to collaborate without any negotiation. For more
information on trust and games, the reader is referred to our
work [9] and [10].

V. TRUST BUILDING AND TRUST INFERENCE

A. Non-Cooperative Game Theory for Trust Building

Let the graphG(N, E) model a network of interacting users.
The set of users isN , and edges exist between the pairs of
those who directly interact forming the setE. Each useri
has a type ti ∈ {G, B}, either Good or Bad, and knows
his own type, but does not know the other users’ types. The
neighborhood ofi ∈ N is denotedΓ(i) = {j ∈ N |ij ∈
E}. Time is discrete and the network operates synchronously
according to some abstract protocol which the users have the
freedom to follow or break. The intuition is that following the
protocol means making oneself available for communication
(forwarding other users’ packets, etc.), whereas breakingthe
protocol means shutting off all communications. At each time
instant each useri ∈ N decides whether he is going to follow
the protocol (C for Cooperate) or not (D for Defect). This
decision is denotedαi ∈ {C, D} for useri, it is observed by
all neighbors, and may depend on past observed actions.

After all users choose their actions~α ∈ {C, D}N , user
i ∈ N receives a payoffRi that depends on his own and his
neighbors’ actions, as well as his type:Ri = Ri(~αΓ(i)∪i, ti).
Each user is trying to maximize his payoff by choosing his ac-
tion appropriately. This may involve randomizing between the
two available actions. Letσi(αi|ti) be the probability that user
i chooses actionαi when he is of typeti. For now, we assume
that the users do not collaborate, so these probabilities are
independent. The functionσi(·|ti) is called astrategyfor i and
it can take four valuesσi(C|G), σi(D|G), σi(C|B), σi(D|B).

The expected payoff for User 1 when he uses strategyσ1

and his neighborsΓ(1) = {2, . . . , k} useσ2, . . . , σk is:

R1(~σΓ(1)∪1, t1) =
∑

~αΓ(1)∪1∈{C,D}k

σ1(α1|t1)~σΓ(1)(~αΓ(1)|~tΓ(1))R1(~αΓ(1)∪1, t1)

We want to find a Nash equilibrium. A Nash equilibrium
is a set of strategies(σ∗

1 , σ∗
2 , . . . , σ∗

N ) such that no user can
unilaterally increase his own payoff by changing his strategy
when everybody else’s strategy remains the same.

Each user type is private, i.e. known only to himself. There
is only a prior probability for the types of his neighbors. The
corresponding notion of equilibrium is a Bayes-Nash equi-
librium, where each user maximizes his payoff in expectation
over not just the strategies of his neighbors, but also over their
types.

We now take into account the repetitive nature of the game.
Each user remembers all past actions of himselfand his
neighbors. We define as then-round history the collection:
H1...n = {~αn, . . . , ~α1}. So, in general, the strategy function
at time n depends on the observed history up to timen − 1
as well as the type of the player:

σi = σi(·|H
1...n−1, ti).

The history is used to update the probabilityPr(tj = G|a1...n
j )

that Userj is Good given the actions he has played so far. This



probability in turn influences the actions that are chosen byj’s
neighbors at the next round, since from the point of view of the
neighbors the probability thatj will play action an

j at round
n is Pr(tj = G)σ(an

j |tj = G) + Pr(tj = B)σ(an
j |tj = B).

Note that storing the whole history would require un-
bounded memory, so we may limit the users’ ability to recall
observations to some fixed number of rounds. One approach
would be for the users to remember what happened only in
the previous(n − 1)st round. Another approach would be to
summarize the history with the help of afinite lengthstatistics
vector (for example posterior probabilities); then consider
strategiesσi that are functions only of these statistics instead
of the entire historyH1...n−1.

Apart from finding the Bayes-Nash equilibrium, we also
examine the possibility of computing it in a distributed way. It
should be noted that there might be more than one equilibria,
in which case a distributed algorithm may converge to any
one. Not all equilibria give the same payoffs to all players.
We would like to reach an equilibrium that gives the highest
possible payoff to the Good users.

B. Trust Inference Using Semirings

We view the trust inference problem as a generalized
shortest path problem on a weighted directed graphG(V, E)
(trust graph). The vertices of the graph are the users/entities
in the network. A weighted edge from vertexi to vertex j
corresponds to theopinion that entityi, also referred to as the
issuer, has about entityj, also referred to as thetarget. The
weight function isw(i, j) : V × V −→ S, whereS is the
opinion space.

Each opinion consists of two numbers: thetrust value, and
the confidencevalue. The former corresponds to the issuer’s
estimate of the target’s trustworthiness. For example, a high
trust value may mean that the target is an ally (in a military
setting). The confidence value corresponds to the accuracy of
the trust value assignment. A high confidence value means that
the issuer has interacted with the target for a long time, and
no evidence for malicious behavior has appeared. Opinions
with a high confidence value are more useful in making trust
decisions.

The core of our approach lies in the two operators that are
used to combine opinions: One operator (denoted⊗) combines
opinions along a path, i.e. A’s opinion for B is combined with
B’s opinion for C into one indirect opinion that A should
have for C, based on B’s recommendation. The other operator
(denoted⊕) combines opinions across paths, i.e. A’s indirect
opinion for X through pathp1 is combined with A’s indirect
opinion for X through pathp2 into one aggregate opinion that
reconciles both. Then, these operators can be used in a general
framework for solving path problems in graphs, provided they
satisfy certain mathematical properties, i.e. form an algebraic
structure called a semiring.

The aim is to compute the aggregate opinion from a source
i to a destinationj along all i → j pathsp.

dij =
⊕

p

w(p).

A semiring is an algebraic structure (S,⊕,⊗), whereS is
a set,⊕ is commutative and associative,⊗ is associative and
distributes over⊕ (a, b, c ∈ S):

a ⊕ b = b ⊕ a (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (a ⊗ c).

A semiring (S,⊕,⊗) with a partial order relation� that is
monotone with respect to both operators is called anordered
semiring(S,⊕,⊗,�):

a � b anda′ � b′ =⇒ a ⊕ a′ � b ⊕ b′ anda ⊗ a′ � b ⊗ b′.

A semiring is called idempotent when∀a ∈ S : a ⊕ a = a.
Based on intuitive concepts about trust establishment, we

can expect the binary operators to have certain properties in
addition to those required by the semiring structure. Since
an opinion should deteriorate along a path, we require the
following for the⊗ operator(a, b ∈ S):

a ⊗ b � a, b.

Regarding aggregation across paths with the⊕ operator, we
generally expect that opinion quality will improve, since we
have multiple opinions. If the opinions disagree, the more
confident one will weigh heavier. In a fashion similar to the⊗
operator, we require that the⊕ operator satisfies(a, b ∈ S):

a ⊕ b � a, b.

In our proposed semiring, the opinion space isS = [0, 1]×
[0, 1] Our choice for the⊗ and⊕ operators is:

(tik, cik) ⊗ (tkj , ckj) = (tiktkj , cikckj) (6)

(tp1

ij , cp1

ij ) ⊕ (tp2

ij , cp2

ij ) =







(tp1

ij , cp1

ij ) if cp1

ij > cp2

ij

(tp2

ij , cp2

ij ) if cp1

ij < cp2

ij

(t∗ij , c
p1

ij ) if cp1

ij = cp2

ij

,(7)

where(tp1

ij , cp1

ij ) is the opinion thati has formed aboutj along
the pathp1, andt∗ij = max(tp1

ij , tp2

ij ).
This semiring computes the trust distance along the most

confident trust path to the destination. This distance is com-
puted along a single path, since the⊕ operator picks exactly
one path. Other paths are ignored, so not all available informa-
tion is being taken into account. One of the advantages is that
if the trust value turns out to be high, then a trusted path to
the destination has also been discovered. Also, fewer messages
are exchanged for information gathering.

Our aim is to evaluate the performance of the proposed
semiring (or other semirings) with respect to their resistance
to attackers.

The first issue is modeling the attacker’s capabilities. We can
have node attacks, edge attacks, or both. In ak-node attack,
the attacker can choose anyk nodes and modify the weights
(opinions) on any outgoing edges, including adding new edges.
In a k-edge attack, the attacker can change the weights on any
k edges. However, no new edges can be added. Obviously, a
k-node attack is at least as powerful as ak-edge attack. In
general, when the attacker can simultaneously do anx-node
attack and ay-edge attack, we call this anx, y attack.



The second issue is to quantify the damage that the attacker
causes. An honest user computes trust values for everybody
else. and the attacker wants to change the computed trust value
for a destination (or as many destinations as possible) as much
as possible. So, we calculate the difference between the trust
values computed before and after the attack. The damage of
the attack can be the sum of the differences, or the maximum
of the differences.

Given the trust topology and the weights, what is the
maximum damage that anx, y attack can cause? This relates
to the robustness of a given trust graph. Now, assume that
the Designer of the network can choose the weights on the
edges. What is the best choice, i.e. the one that minimizes
the damage that the Attacker can cause? If the Designer and
Attacker choose simultaneously weights and edges to attack,
what will the outcome be?

Crucial in the above discussion is the connection between
the weighted topology and the outcome of the trust compu-
tation. To analyze this connection and make it more explicit,
we treat the outcome of the computation as the steady state of
a linear system where the state is the vector of opinions of a
nodes for every other node, andA is the weighted adjacency
matrix of the graph.

x = Ax ⊕ b

where the matrix multiplications and additions are in the
semiring arithmetic.

The vectorb is used to set the opinions about certain nodes
to a fixed value. For example,s’s opinion about himself
should be the “highest” possible, and should never change.
Similar things can hold for the opinion about other nodes. The
existence of a set of pre-trusted nodes may help to compute
better trust paths (higher confidence).

The idea motivating the use of this approach is that we
can study the properties of the trust computation algorithm
by studying specific properties of the matrixA. Baccelli,
Cohen, Olsder, and Quadrat [11] have made considerable steps
towards linking the analysis of the linear system with the
properties ofA in the case where the operators involved are
max for ⊕, and+ (regular addition) for⊗. We want to transfer
these results to other operators that make more sense for trust.

The algorithm properties that we want to analyze are:

• conditions of convergence (vs. oscillation)
• solution of the system (steady state)
• speed of convergence
• effect of pre-trusted nodes (vectorb)

For more information, the reader is referred to our work
[12], [13], [14].

VI. CONCLUSION

The conclusion goes here.
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