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Abstract— As an important concept in network security, trust « locality: Trust information is exchanged locally through
is interpreted as a set of relations among agents particip@ig individual interactions.

in the network activities. Trust relations are based on prevwous . distributed computation: Trust evaluation is performed
behaviors of agents as well as on trust documents. We present . o '

our results on distributed trust management in MANET. The in a distributed manner.
trust information or evidence used to evaluate trustworthness  Trust management involves collecting, analyzing and pre-
is provided by peers, i.e. the agents that form the network. senting trust-related evidence, and making assessmedts an
We describe first a new trust document distribution scheme (ecisions regarding trust relationships between entitiea

based on swarm intelligence. Then we describe various mettle . . . .
for distributed trust evaluation and the associated trust @nd network [2]. In this work, we investigate various comporsent

mistrust) spreading dynamics. Under such dynamics the whel Of trust management: direct and indirect trust evidenaest tr
network evolves as the local interactions iterate from isalted evidence distribution and trust evaluation policies. RFert
trust islands to a connected trust graph. Our interest is to ds- more, self-organized networks rely on cooperation amomg pa
cover rules and policies that establish trust-connected reorks ticipating agents. We study how trust affects their coogiena
using only local interactions, to find the conditions under vhich and enables the network to function normally.

trust spreads to a maximum set, as well as the parameters (e.g - .

topology type) that speed up or slow down this transition. We !n a distributed trU_St maqaggment system, pieces of trust
analyze the dynamics induced by local interaction rules usig €vidence are stored in a distributed manner. In Sec. Il, we
algebraic graph theory and methods inspired from the statitical propose a scheme which efficiently distributes trust ewiden
physics of spin-glass materials. We describe and explainéiphase  tg places where they are mostly needed. Our scheme is idspire
transition phenomena that we have found in these evolutiondVe by the swarm intelligence paradigm, where agents mimic ants

model the interactions among agents as cooperative gamesadn . . . . .
show that trust can encourage agents to collaborate. We also looking for their food — the trust evidence in this contextrO

describe a model for trust evaluation that uses pairwise itmted Scheme is compared with another scheme based on Freenet,
graph games between the agents to create a trust reputation a distributed P2P file sharing system. The simulation result
with evolution coupled to the game dynamics. Finally we premnt  show that our scheme is more reliable and suitable for mobile
a new modeling framework for trust metric evaluation as linear environments

iterations over ordered semirings, by treating such evalutions as By defini luati le b d | | .
path problems in MANET. This allows us to formulate problems y defining a trust evaluation rule based on local voting,

of resilience of trust metrics and trust evaluation to attads. we study how trust spreads throughout the whole network in
Sec. lll. We first study a simple deterministic voting ruleurO
. INTRODUCTION analytic results on its convergence show that trust can baly

o ] __established if the number of headers in the network satisfies
Trust is interpreted as a set of relations among entitigg (ain conditions. Furthermore, the uncertainty of tissh-

participating in network activities [1]. In traditional tveorks, {roquced in the local voting rule by modelling it as an itetht
such as the Internet, sources of trust evidence are caeiialisiochastic process. The convergence of this process and the
control servers, such as trusted third parties (TTPs) atittau giationary distribution at the steady state are provided. W
tication servers (ASs). Thoge servers are trgsted andadl@il frther investigate the resulting trust values at the steshalte.

all the time. In contrast, wireless autonomic networks hay§ investigation gives several important conclusionshsas
neither fixed infrastructures, nor centralized controees. inhe choice of threshold and phase transition phenomenaeTho

In these networks, the sources of trust evidence are peggsyits provide a way to properly design a feasible evanati
i.e. the entities that form the network. We summarize thge.

essential and unique properties of distributed trust meumant Autonomic networks rely on cooperation of participating
in autonomic networks as opposed to traditional centralizggges for almost all their functions. However, because such
approaches: data forwarding consumes valuable (and scarce) battergpow
« uncertainty and incompletenessTrust evidence is pro- and channel bandwidth without receiving any direct gain,
vided by peers, and so it can be incomplete and everiermediate nodes would prefer not to cooperate. In omler t
incorrect. form the necessary infrastructure that makes multi-hop-com



munication achievable, cooperation enforcement mechemnisforward ant. On its way it updates the pheromone deposit of
are developed to cope with such selfish behavior of nodesermediate nodes and caches a copy of the evidence. In the
in ad hoc networks in Sec. IV. We provide conditions fofollowing, we discuss the important components of ABED.
aChieVing collaboration among selfish users. Furthermbm, « Hash function: similar as in [1], a g|0ba| hash function

trust mechanism is introduced to promote cooperation and s ysed to map evidence identities into values, which are

circumvent misbehaving nodes. called keys, and each key is linked to a particular node
In Sec. V, we assume that trust is built up through repeated in the network.

interactions of the users within the protocol that is in efffie « Pheromone deposit: denoted IB);4 for outgoing link
the network. The next step is to use this trust in a transitive  (; ;) and targetd. A higher Q-value represents higher
way, i.e. Somebody can benefit from the interactions of that qua“ty Q_Va|ues are updated when backward ants are

others have had in order to build “indirect” trust withoutestt received. Assumingh.jd is the ratio of the number of
interactions. We present a game theoretic model for buldin - packward ants received to the number of forward ants
up trust values from interactions. Users are interactinafest sent out through linki, j) for the current request td,

gically, i.e. they are trying to maximize their own personal  the update rule is

gain. Through these interactions, their interacting pagrcan

estimate their trustworthiness. The result is a game thoret Qija(n +1) = (1 = 7)Qija(n) + v4ija 1)
equilibrium from which no user can diverge without sufferin where ~ is a pre-defined parameter betweéd 1].

a loss. In this sense, the final estimates are robust. Moreove  tnq first term captures the evaporation procedure of
we present a linear system approach to aggregate theset"dire pheromone deposit.

estimates. We use a non-conventional algebraic framewrek, Routing table: each entry in the evidence routing table

theory of semirings, to replace the regular multiplicatand corresponds to the hash value of an evidence piece, and
addition. We argue that this approach naturally fits the real each value in the table, denoted @s,, represents the
problem we are trying to attack. Furthermore, it can be used probability of an ant (searching for targé} choosing;

as a general model for trust computation if different semgjri as the next hop at nodep;,, is a function ofQ-values.
operators are used. The one we use is ’

Il. TRUSTEVIDENCE DISTRIBUTION (n) (75 (n))® (Qijd(n))ﬁ @
ijd\TV) = )
In a distributed trust management system, pieces of trust Pigd Zi(n)

evidence cannot be provided by a centralized server. Such \yhere 7;; is the quality of link (i,j) and Z; is a
a distributed manner of operation raises several problems. ,qrmalization constant.
For instance, where should a user look for trust evidence
he/she requests, and how could he/she efficiently obtam tpc{
evidence?

The problem of evidence distribution shares many char
teristics of distributed peer-to-peer file sharing systé[$

[4]- Inspired from P2P networks, Eschenauer [1] PrOPOSEC B narios. Furthermore, the inherent property of mul{ialtns

trust establishment scheme based on Freenet [4], Wher%plecdthe ant-based scheme makes it more resilient and reliable

. ; SN
of trust evidence are routed and searched_ using d'?’t”bu*\%ore details of the ABED scheme and the simulation results
hash table (DHT). However, trust evidence distributionasan .

can be found in [5].

simple static “request routing” problem. First, the schemust
be adaptive to the mobility of nodes. Second is the security I1l. DYNAMICS OF TRUST EVALUATION

issue. Since malicious nodes can simply drop any evidence . .

passing through them, the distribution scheme must cdyeful After obtaining the trust evidence, network users follow

select nodes and paths which are reliable. The most importgftain policies to evaluate the trustworthiness of teigets.
issue is to efficiently distribute trust evidence such tira t 1hiS procedure is called trust evaluation or trust comjpurat

evidence searching cost can be S|gn|f|_cantly reduced. A Network Model

Based on the above concerns, we introduce an Ant-Based _ L
Evidence Distribution scheme (ABED) which arises from the We model a network as a directed graphV. )" A
swarm intelligence paradigm. The main principle behind ttférected link from nodei to node, denoted 35(12,3)' cor-
interaction in a swarm is callestigmergy such as pheromoneresponds to thelirect trust relation that has on;* and the
laying on the trails followed by ants. In our scheme, “ants a Weight on the link represents the degree of confidenbes
sent out searching for their food — trust evider@ward ants ©n j, denoted ag;; € [—1,1]. We define the neighbor set of
are originated by requesters and choose next-hop nodes ac- _
cording to the “pheromone deposit” at each intermediatenod ‘¢ 1S called thetrust graph as opposed to the physical graph due to the

. . . c?mmunlcatlon constraints.

Upon discovery of the _eV'dence’ a backward ant is created. EA trust relation from to j does not necessarily mean thiatusts;. Trust
takes the requested evidence and traces the reverse rdhte ofelations include distrust (i.e. negative opinions) asl.wel

We simulated ABED using the discrete time network simu-
tor ns-2. We compared ABED with the Freenet based scheme
roposed in [1]. Our results show that ABED outperforms
fe Freenet-based scheme. In particular, ABED finds the
Cpgst solution much faster, which is highly desired in mobile



nodei, N;, as the set of nodes that are directly connected ¥0,cn; cjisj(k). At each iteration, assume that the voting
i. result is binary ands; is decided by the threshold rule, i.e.,
Nodes in the network are assumed to be either GOOD @fk+1) = 1 if m;(k) > nands;(k+1) = —1if m;(k) <.

BAD, denoted byt; = 1 or —1 for nodei. The vectorl' = So our stochastic threshold rule is defined as:
[t1,...,tn] is called thetrue trust vector. Trust evaluation ebsi (k+1)(mi(k)—n)

is to estimate the trustworthiness of nodes. Let vedtor Pr[si(k +1)lm;(k)] = 20 (5)
[s1,...,sn] be the estimated trust vector. 4f = 1, we call !

nodei trusted, which is a subjective concept. The confiden¥éereZ; (k) is the normalization factor arfd> 0 is a constant
value ¢;; is the degree of confidence nodéas on nodej, representing thelegree of certaintyA small b represents a
wherec;; € [~1,1]. highly uncertain scenario. Then we have the following ressul
Suppose nodéis the target of trust evaluation. The naturafor the stochastic voting rule defined abovey} i (0, c0), we

approach is to aggregate all its neighbors’ opinions. We c&Rve that the voting rule converges to the steady state with a
this approach #cal voting rule in which votes are neighbors’ unique stationary distributions = “~——.

c-values on the target. Furthermore, opinions from nodels wit The stationary distributionrs can be easily linked to the
high (estimated) trust values are more credible, so theyldholsing model and spin glass model in statistical physics. The
carry larger weights. Therefore we define the local votirig rulsing model describes interaction of magnetic moments or

as the following iterated rule “spins” of particles. In the Ising modek; is the orientation
) of the spin at particlé. s; = 1 or —1 indicates the spin atis
si(k+1) = f(cjisj(k)]j € Ni)- (3)  “up” or “down” respectively. The rich literature in staiisal

Thus the trust evaluation can be considered agymamic physics help us to understand our voting model at the steady
processwhich evolves with time. Our interest is to study th&tate.
evolution of the estimated trust vectdr, its values at the We studied the probability of correct estimation & t:),
equilibrium and whetherS can correctly estimate the trustdenoted asfe,.c¢ at the steady state. One interesting ob-
vectorT at the steady state. servation is thephase transition phenomenatserved when

1) Deterministic voting rule: Guided by the above rea-the t_hresholdr; = 0. Phase transitions have beer_w exte_nsively
soning, we first design a simplteterministicrule based on Studied by physicists. In [7], the authors theoreticallydstd

weighted voting. The matrix form of this rule is written as: Phase transitions in spin glass models, and introduced the
replica symmetry method to solve them analytically. Based

S(k+1) = D~'CS(k). (4)  on this method, very good approximations of critical values

where D is a diagonal matrix representing the in-degree GA D€ derived. The discovery of phase transition in oungoti
each node. We studied its convergence property and invelfi€ IS Quite surprising given that the rule itself is veryple.
gate the spreading of trust as the system reaches the ste4gyc mPortantly, the fact that a small change in the paramet
state. To determine the trustworthiness of nodes, we ap%ﬂvht result in a diametrically opposite performance of our
a threshold rule when the above voting rule converges. L “”9 rule proyes_the necesery of doing more analysesreefo
s; = limy,_. s;(k). Nodei is trusted ifs; >  and not trusted @PPlying any distributed algorithms. _ _

if s; < 1. In our paper [8], we also studied the impacts of different

Our analytic result indicates that < 1, i.e., trust can adversary models and network topologies on our evaluation

not be established, which shows the difficulties of designifiulé- Please refer to this paper for more details.

algorithms in self-organized distributed networks. Inartb IV. COLLABORATION AND TRUST

overcome the problem, we introduce the notionhefders , . L
which are entities that are always trusted by some nodes witH{\UtonomIc networks rely on cooperation of participating
trust valuel. Define the average votes provided by headefodes for almost all their functions, for instance, to route

for nodei asb;. We have the following result: given that thedata between source and destination pairs that are outside

threshold of trustworthiness is, the number of headers for®ach others communication range. However, because such
each node must satisfy data forwarding consumes valuable (and scarce) battergipow

and channel bandwidth without receiving any direct gain,
B1 > L(D - V)1 intermediate nodes would prefer not to cooperate. In oraler t
1= form the necessary infrastructure that makes multi-hop-com
This result provides a method to design a trust-connecteflinication achievable, cooperation enforcement mechnanis
network. For a detailed discussion of the deterministi@locare developed to cope with such selfish behavior of nodes in
voting rule, please refer to [6]. autonomic networks.
The conflict between cooperation and cost naturally leads
to game-theoretic studies. In our work, the interactionsrgn
As we have discussed, uncertainty of opinions by peemsdes are modeled asooperative gamesin cooperative
is inevitable for autonomic networks. Thus we introducgames, players forrooalitionsto obtain the optimum payoffs.
randomness into our rule. Define the weighted supik) = We investigated conditions under which a grand coalition

B. Stochastic Voting Rule



that includes all players together is formed. Furthermae, V. TRUSTBUILDING AND TRUST INFERENCE
introduce trust as a mechanism to help form a grand coalitig\n

in the context of cooperative games. Non-Cooperative Game Theory for Trust Building

Since nodes only communicate with their physical neigh- Letthe grapr(J_\f, £) modela netwprk ofinteracting users.
bors, the interactions among neighbors can be modeled '€ S€t Of users isV, and edges exist between the pairs of
games on graphs. This area of research has a lot in comnjaSe who directly interact forming the sét Each user
with statistical mechanics of complex systems with gan{i#S @ype ti € {G, B}, either Good or Bad, ar11d knows
theoretic interactions. The Ising model and the more complBIS OWn type, but does not know the other users’ types. The

spin glass model can be also interpreted as cooperativesgarf§/9hPorhood ofi € N is denotedl'(i) = {j € Nlij €
In the Ising model, each particle selects its own spin 5} Time is discrete and the network operates synchronously
maximize its own payoff, defined as the following according to some abstract protocol which the users have the

freedom to follow or break. The intuition is that followinge
protocol means making oneself available for communication
Ri= | Jysis; | /T. (forwarding other users’ packets, etc.), whereas breattieg
JEN; protocol means shutting off all communications. At eachetim

A system with highl” means that particles are conservative arl@stant each usere N decides whether he is going to follow
not willing to change, while the one with lo® has aggressive the protocol (C for Cooperate) or not (D for Defect). This
particles. Therefore, a collection of local decisions ke decision is denoted; € {C, D} for userq, it is observed by
the total energy of the interacting particles. This inspiem @ll neighbors, and may depend on past observed actions.
approach where trust is used as an incentive for cooperationAfter all users choose their actions € {C, D}, user
The value ofs; represents whether nodeis wiling to ¢ € V receives a payofft; that depends on his own and his
cooperate or nots¢ = 1 or —1). .J;; can be interpreted asneighbors’ actions, as well as his typ&; = R;(d'r(iui; ti)-

the worth of player;j to playeri, which can be a function of Each user is trying to maximize his payoff by choosing his ac-
the trust relations betweerandj. Then each node decides tdion appropriately. This may involve randomizing betwelee t

cooperate or not based on benefit from cooperation and trty4@ available actions. Let;(«;|t;) be the probability that user
values of its neighbors 1 chooses action; when he is of type;. For now, we assume

. - that the users do not collaborate, so these probabilities ar
In cooperative games, players form coalitions to obtaln

the optimum payoffs. A coalitionS is a subset ofN' in independent. The function (-|¢;) is called astrategyfor ¢ and

which all nodes cooperate. The characteristic functi¢f) It C_I‘_ahn take fo;ervaIuesfif(fC|GL)J, U"'(llle%’ U"'(SlB)’U"'(lle)'
is interpreted as the maximum paydfcan get without the and ﬁ. eﬁgechf)orga{oi 02r se;{ ween € uses §ratagy
cooperation of the rest of the playeks\ S. Then in the Ising IS nelg (1) =12.....k} useoy, ..., 0} Is:
model, the characteristic function for every coalition tfyers Ry(Grayont) =

S C N is set as B B ~ B
Z o1 (a1 |t1)dra) (drltray) Ri(drayo, )

v(S) =Y Ri= > Jy— > Ji gy, €{C, D}

€S i,jES k¢ S,ieS

We want to find a Nash equilibrium. A Nash equilibrium
is a set of strategie&r;,05,...,0%) such that no user can
unilaterally increase his own payoff by changing his stygte

There are different concepts of stable solutions in coepekghen everybody else’s strategy remains the same.
tive games, such as the core, stable sets, and the nucl&olus. Each user type is private, i.e. known only to himself. There
particular, we studied theore, in which all players cooperate s only a prior probability for the types of his neighbors.eTh
with their neighbors. However, the core does not alwaystexigorresponding notion of equilibrium is a Bayes-Nash equi-
So we studied the conditions under which the core existsan tfibrium, where each user maximizes his payoff in expectatio
cooperative game. Furthermore, we studied how negotiatigwier not just the strategies of his neighbors, but also dweir t
can help to form the grand coalition that includes all playertypes.

The trust management system can be used as an incentivd/e now take into account the repetitive nature of the game.
for collaboration. Nodes who refrain from cooperation gdtach user remembers all past actions of himseifi his
lower trust values, and will be eventually penalized beeaugeighbors We define as thei-round history the collection:
other nodes tend to cooperate only with highly trusted ondg! " = {@",...,@'}. So, in general, the strategy function
After adding trust into the aforementioned network forroati at time n depends on the observed history up to time- 1
game, the conditions of the existence of core are relax&$. well as the type of the player:

We showed that by introducing a trust mechanism, all nodes . 1.n—1

. . L O'Z—O'Z(|H ,ti>.
are induced to collaborate without any negotiation. Foranor
information on trust and games, the reader is referred to oLie history is used to update the probabily(t; = G|a}---")
work [9] and [10]. that Userj is Good given the actions he has played so far. This

Our object is to find what form or policy fof;; can induce all
(or most) nodes to cooperate, i.e., to maximize the coalitio



probability in turn influences the actions that are chosefidy A semiringis an algebraic structureS(®, ®), where S is
neighbors at the next round, since from the point of view ef tta set,& is commutative and associative, is associative and
neighbors the probability that will play action a’ at round distributes overs (a, b, c € S):
nis Pr(t; = G)o(a?t; = G) + Pr(t; = B)o(al|t; = B).
Note( that s)toEir{g| the V\)/hole (h{story)w(odlljj requi)re un- oOb=0&a (@@b)@c=a®(®c)
bounded memory, so we may limit the users’ ability to recallt ®b) ® c=a® (b®c) (aGb)®c=(a®c)d(a®c).
observations to some fixed number of rounds. One appro%@emiring G,
would be for the users to remember what happened onlyr%
the previous(n — 1) round. Another approach would be tog
summarize the history with the help ofiaite lengthstatistics
vector (for example posterior probabilities); then comesid a <bandd b = a®d 2bdb anda®d bR V'.

strategiess; that are functions only of these statistics instea S . ) N
of the entire historyH1---1. R semiring is called idempotent whefu € S : a ® a = a.

- A Based on intuitive concepts about trust establishment, we

Apart from finding the Bayes-Nash equilibrium, we also : : S

. L T - can expect the binary operators to have certain properties i
examine the possibility of computing it in a distributed why - ) s .

. - addition to those required by the semiring structure. Since
should be noted that there might be more than one equilibria, . ; :
) ) o X ari opinion should deteriorate along a path, we require the
in which case a distributed algorithm may converge to aly\ owing for the @ operator(a, b € S):
one. Not all equilibria give the same payoffs to all players. 9 P e ’
We would like to reach an equilibrium that gives the highest a®b=a,b.
possible payoff to the Good users.

@, ®) with a partial order relation< that is
notone with respect to both operators is callecbatered
emiring(S, ®, ®, X):

Regarding aggregation across paths with ¢heperator, we

B. Trust Inference Using Semirings generally expect that opinion quality will improve, sincew

We view the trust inference problem as a generalizdéve multiple opinions. If the opinions disagree, the more
shortest path problem on a weighted directed gréigl, £) confident one will weigh heavier. In a fashion similar to the
(trust graph). The vertices of the graph are the users/entiti@perator, we require that the operator satisfiega, b € S):
in the network. A weighted edge from vertéxto vertex
corresponds to thepinionthat entityi, also referred to as the
issuer has about entityj, also referred to as thearget The In our proposed semiring, the opinion spac&is- [0, 1] x
weight function isw(i,j) : V x V. — S, whereS is the [0,1] Our choice for thex and® operators is:
opinion space.

a®b>a,b.

Each opinion consists of two numbers: test value, and ~ (fik: Cit) @ (thjscrj) = (tintrj, C’ikc’fﬂ’)_ (6)
the confidencevalue. The former corresponds to the issuer’s - (5 c) iy > ef
estimate of the target's trustworthiness. For example,gh hi (t]},c77) @ (87, c0?) = (7 c7) iy < (7)
trust value may mean that the target is an ally (in a military (ti; chi) if ¢ =ci7

setting). The confidence value corresponds to the accurfacy
the trust value assignment. A high confidence value means tha
the issuer has interacted with the target for a long time, an
no evidence for malicious behavior has appeared. Opiniog
with a high confidence value are more useful in making tru
decisions.

ere(t;;, c;;) is the opinion that has formed about along
pathp:, andt;; = max(t};, 7).
his semiring computes the trust distance along the most
nfident trust path to the destination. This distance is-com
6 ted along a single path, since theoperator picks exactly

one path. Other paths are ignored, so not all availableriméer

us-ggiocgcr)fng];n%ué 6}2% rr?scgrileesc’) 'ngt%:\?;oer?&;rj;%ziri &6n is being taken into account. One of the advantages ts tha
P ' P if the trust value turns out to be high, then a trusted path to

or,)lmor}s_along a pa_lth, €. AS opinion fo_r B is combined W'”Ehe destination has also been discovered. Also, fewer gessa
B’s opinion for C into one indirect opinion that A should

, . re exchanged for information gathering.
have for C, based on B’s recommendation. The other opera?obur aim gi]s to evaluate the gerformgnce of the proposed

(denoted®) combines opinions across paths, i.e. A's indirecst

- . : . L emiring (or other semirings) with respect to their resistéa
opinion for X through pattp; is combined with A's indirect to attacgke(rs gs) P

opinion for X through patlp, into one aggregate opinion that The first issue is modeling the attacker’s capabilities. Afe ¢
reconciles both. Then, these operators can be used in aade Ive node attacks edge attacks, or both. Frrode attack
framework for solving path problems in graphs, providecythe[he attacker can cﬁoose ahynodés and modify the Weighics

S?t'Sfty certa|||n dmathem_a_hcal properties, i.e. form an taigee (opinions) on any outgoing edges, including adding new edge
structure cafled a semiring. - In a k-edge attack, the attacker can change the weights on any
. The alm_ls t9 CF’mp”te th? aggregate opinion from a Sour%eedges. However, no new edges can be added. Obviously, a
i 10 a destinatiory along alli — j pathsp. k-node attack is at least as powerful ask-&dge attack. In

dij = @w(p). general, when the attacker can simultaneously de:-aode

» attack and g-edge attack, we call this an y attack.
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VI. CONCLUSION

The conclusion goes here.
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