
Quantifying Location Privacy

Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre Hubaux
LCA, EPFL, Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract—It is a well-known fact that the progress of
personal communication devices leads to serious concerns
about privacy in general, and location privacy in particular.
As a response to these issues, a number of Location-Privacy
Protection Mechanisms (LPPMs) have been proposed during
the last decade. However, their assessment and comparison
remains problematic because of the absence of a systematic
method to quantify them. In particular, the assumptions about
the attacker’s model tend to be incomplete, with the risk of a
possibly wrong estimation of the users’ location privacy.

In this paper, we address these issues by providing a
formal framework for the analysis of LPPMs; it captures,
in particular, the prior information that might be available
to the attacker, and various attacks that he can perform.
The privacy of users and the success of the adversary in his
location-inference attacks are two sides of the same coin. We
revise location privacy by giving a simple, yet comprehensive,
model to formulate all types of location-information disclosure
attacks. Thus, by formalizing the adversary’s performance,
we propose and justify the right metric to quantify location
privacy. We clarify the difference between three aspects of the
adversary’s inference attacks, namely their accuracy, certainty,
and correctness. We show that correctness determines the
privacy of users. In other words, the expected estimation error
of the adversary is the metric of users’ location privacy. We
rely on well-established statistical methods to formalize and
implement the attacks in a tool: the Location-Privacy Meter that
measures the location privacy of mobile users, given various
LPPMs. In addition to evaluating some example LPPMs, by
using our tool, we assess the appropriateness of some popular
metrics for location privacy: entropy and k-anonymity. The
results show a lack of satisfactory correlation between these
two metrics and the success of the adversary in inferring the
users’ actual locations.

Keywords-Location Privacy; Evaluation Framework; Loca-
tion Traces; Quantifying Metric; Location-Privacy Meter

I. INTRODUCTION

Most people are now equipped with smart phones with
many sophisticated sensors and actuators closely related to
their activities. Each of these devices is usually equipped
with high-precision localization capabilities, based for ex-
ample on a GPS receiver or on triangulation with nearby
base stations or access points. In addition, the environment
is more and more populated by sensors and smart devices,
with which smart phones interact.

The usage of these personal communication devices,
although providing convenience to their owners, leaves an
almost indelible digital trace of their whereabouts. A trace
is not only a set of positions on a map. The contextual

information attached to a trace tells much about the in-
dividuals’ habits, interests, activities, and relationships. It
can also reveal their personal or corporate secrets. It can
expose the users to unwanted advertisement and location-
based spams/scams, cause social reputation or economic
damage, and make them victims of blackmail or even physi-
cal violence. Additionally, information disclosure breaks the
balance of power between the informed entity and the entity
about which this information is disclosed.

In the meantime, the tools required to analyze such
traces have made tremendous progress: sophisticated data
mining algorithms can leverage on fast growing storage and
processing power, facilitating, for example, the analysis of
multiple databases in parallel. This means that the negative
side-effects of insufficient location privacy are becoming
more and more threatening.

Users should have the right to control the amount of
information (about themselves) that is disclosed and shared
with others. This can be achieved in several ways. Users
can share a minimum amount of information, or share it only
with few trusted entities. Privacy policies can be put in place
to force organizations to protect their users’ privacy. Finally,
systems can be designed in a privacy-conscious manner, so
they do not leak information to untrusted entities.

This paper refers to the last ambition. However, our goal
here is not to design yet another location privacy protection
mechanism (LPPM), but rather to try to make progress on
the quantification of the performance of an LPPM. This is
an important topic, because (i) human beings are notoriously
bad estimators of risks (including privacy risks), (ii) it is the
only way to make meaningful comparisons between different
LPPMs and (iii) the research literature is not yet mature
enough on the topic.

Let us develop this last reason. In specific areas, sev-
eral contributions have been made to quantify privacy,
be it for databases [8], for anonymity protocols [3], for
anonymization networks [24], or for RFID privacy [25].
Yet, in the field of location privacy, notwithstanding many
contributions from different disciplines (such as databases,
mobile networks, and ubiquitous computing) for protecting
location privacy, the lack of a unified and generic formal
framework for specifying protection mechanisms and also
for evaluating location privacy is evident. This has led to the
divergence of (nevertheless interesting) contributions and,
hence, has caused confusion about which mechanisms are

more effective. The adversary model is often not appro-
priately addressed and formalized, and a good model for
the knowledge of the adversary and his possible inference
attacks is missing. This can lead to a wrong estimation of
the location privacy of mobile users. There is also often con-
fusion between the different dimensions of the adversary’s
performance in his attacks, notably the accuracy, certainty
and correctness of his estimation of the users’ traces.

In this paper, leveraging on previous contributions in the
field of (location) privacy, we propose a generic theoretical
framework for modeling and evaluating location privacy. We
make the following contributions.
• We provide a generic model that formalizes the ad-

versary’s attacks against private location-information
of mobile users. In particular, we rigorously define
tracking and localization attacks on anonymous traces
as statistical inference problems.

• We rely on well-established statistical methods to eval-
uate the performance of such inference attacks. We for-
malize the adversary’s success and we clarify, explain
and justify the right metric to quantify location privacy:
The adversary’s expected estimation error.

• We provide a tool: the Location-Privacy Meter is devel-
oped based on our formal framework and is designed
for evaluating the effectiveness of various location-
privacy preserving mechanisms.

• We show the inappropriateness of some existing met-
rics, notably entropy and k-anonymity, for quantifying
location privacy.

The paper is organized as follows. In Section II, we
provide a detailed description of the framework we propose
for the quantification of LPPMs and show how location-
privacy threats can be defined and evaluated correctly. In
Section III, we introduce an instantiation of the framework
into an operational tool: Location-Privacy Meter. In Sec-
tion IV, we show the usage of the tool on evaluating LPPMs
and assessing existing location-privacy metrics. We discuss
the related work in Section V and conclude in Section VI.

II. THE FRAMEWORK

In this section, we present our framework for location
privacy. This allows us to precisely define location pri-
vacy and specify its relevant components and entities in
various settings and also to evaluate the effectiveness of
various location-privacy preserving mechanisms with respect
to different attacks. We define a location-privacy framework
(system) as a tuple of the following inseparable elements:
〈U ,A,LPPM,O,ADV,METRIC〉, where U is the set of
mobile users, A represents the set of possible actual traces
for the users, and LPPM stands for the location-privacy
preserving mechanism that acts on the actual traces a (a
member of A) and produces the observed traces o (a
member of O, which is the set of observable traces to
an adversary ADV). The adversary ADV is an entity who

U Set of mobile users
R Set of regions that partition the whole area
T Time period under consideration
A Set of all possible traces
O Set of all observable traces
U ′ Set of user pseudonyms
R′ Set of location pseudonyms
N Number of users
M Number of regions
T Number of considered time instants
N ′ Number of user pseudonyms
M ′ Number of location pseudonyms
f Obfuscation function
g Anonymization function
au Actual trace of user u
ou Obfuscated trace of user u
oi Observed trace of a user with pseudonym i
Au Set of all possible (actual) traces of user u
Ou Set of all possible obfuscated traces of user u
Oσ(u) Set of all observable traces of user u
Pu Profile of user u
φ(.) Attacker’s objective
X Set of values that φ(.) can take

Table I
NOTATIONS

implements some inference (reconstruction) attacks to infer
some information about a having observed o and by relying
on his knowledge of the LPPM and of the users’ mobility
model. The performance of the adversary and his success in
recovering the desired information about a is captured by an
evaluation metric METRIC. The success of the adversary
and the location-privacy of users are two sides of the same
coin, which are coupled together using METRIC.

In the following subsections, we present and specify all
the entities and components of our framework and illustrate
their inter-relationship. The tool that we have developed
according to the framework, Location-Privacy Meter, and
the theoretical details of the implemented methods will be
explained in Section III.

The summary of the notations is presented in Table I.
The framework is shown in Figure 1. Throughout the paper,
we use bold capital letters to denote random variables,
lower case letters to denote realizations of random variables,
and script letters to denote sets within which the random
variables take values. For example, a random variable X
takes values x in X . At times, the members of a set are also
sets, but the distinction will be clear from the context.

A. Mobile Users

We consider U = {u1, u2, ..., uN} a set of N mobile users
who move within an area that is partitioned into M distinct
regions (locations) R = {r1, r2, ..., rM}. See Figure 2 for
an example of partitioning an area into regions. Time is
discrete, and the set of time instants when the users may
be observed is T = {1, ..., T}. The level of space and time
granularity depends on the precision that we want, on the
size of the area, and on the total length of the observation

u1

u2

uN

…

1 2 3 4 T

Users

Timeline:

Actual Traces (vectors of actual events)

1

…

1 2 3 4 T

Nyms

Timeline:

Observed Traces (vectors of observed events)

2

N

LPPM

uN

u1

Training Traces (vectors of noisy/missing events)

…

ri

rj

Cij

Transition Cnt Matrices

KC

ri

rj

Pij

Users’ Profiles
MC Transition Matrices

uN

u1

Reconstruction A
ttack

Figure 1. Elements of the proposed location-privacy framework. The users produce actual traces, which are then anonymized and obfuscated by the LPPM
to produce anonymous observed traces. The attacker uses a set of training traces to create, via the knowledge construction (KC) mechanism, a mobility
profile for each user in the form of a Markov Chain transition probability matrix. Having the user mobility profiles and the observed traces, the adversary
tries to reconstruct (infer) the actual traces. The only element of the framework not shown here is the metric that evaluates the success of the adversary’s
reconstruction attack by comparing the results of the attack with the users’ actual traces.

period. For example, regions can be of a city/block size, and
two successive time instants can be a day/hour apart.

The spatiotemporal position of users is modeled through
events and traces. An event is defined as a triplet 〈u, r, t〉,
where u ∈ U , r ∈ R, t ∈ T . A trace of user u is a T -size
vector of events au = (au(1), au(2), ..., au(T)). The set of
all traces that may belong to user u is denoted by Au. Notice
that, of all the traces in Au, exactly one is the true trace that
user u created in the time period of interest (t = 1...T); this
one is called the actual trace of user u, and its events are
called the actual events of user u. The set of all possible
traces of all users is denoted by A = Au1×Au2×. . .×AuN

;
the member of A that was actually created by the N users
is denoted by a, so it is also the set of actual traces.

B. Location-Privacy Preserving Mechanisms

Mobile users share their location with possibly untrusted
entities in various location-based services, or may unwill-
ingly expose their location to curious eavesdropping entities
through the wireless channel. In addition to these types of
sharing, their location traces can be made public for research
purposes. In all these scenarios, an adversarial entity can
track the users over the observation period, unless their
actual traces are properly modified and distorted before
being exposed to others, i.e., before becoming observable.
The mechanism that performs this modification in order
to protect the users’ location-privacy is called a Location-

Privacy Preserving Mechanism (LPPM).
LPPMs can be implemented in different manners and ar-

chitectures: online vs. offline, and centralized vs. distributed.
In the offline manner, all the traces are available to the
LPPM, for example in a database, whereas in the online
manner, the modification is performed on-the-fly while users
visit new regions as time progresses. The modification can
be performed in the centralized architecture by a trusted
third party (mostly known as the central anonymity server
or privacy proxy) as opposed to being done by the users or
on their mobile devices in a distributed architecture, where
modifications are (mostly) done independently from each
other. Next, we abstract away these details and provide a
generic model for LPPMs.

A location-privacy preserving mechanism LPPM receives
a set of N actual traces, one for each user, and modifies them
in two steps. In the obfuscation process, the location of each
event is obfuscated, i.e., replaced by a location pseudonym
in the set R′ = {r′1, ..., r′M ′}. In the anonymization process,
the traces are anonymized, i.e., the user part of each trace is
replaced by a user pseudonym in the set U ′ = {u′1, ..., u′N ′}.
Notice that each region may be obfuscated to a different
location pseudonym each time it is encountered, whereas
each user is always obfuscated to the same user pseudonym
(as in this paper we focus on evaluating users’ location-
privacy from their location traces). Also, note that the
information used by an LPPM to obfuscate an event varies

1312

1918

11

17

252423 26

20

14

765 8

10

16

22

4

9

3

21

15

21

27

28 29

Figure 2. Example of locations and obfuscation. The area within which
users move is divided into M = 29 regions. Consider user u whose actual
location is region r12 at a given time t. Different obfuscation methods will
replace r12 with a different location pseudonym r′ ∈ R′: r′ = {14} in
the perturbation method, r′ = {12, 15, 26} in the adding dummy regions
method, r′ = {9, 10, 11, 12, 13, 14, 15} in the reducing precision method,
and r′ = ∅ in the location hiding method.

depending on its type and architecture. For example, an
online mechanism in the distributed architecture only looks
at the current event for obfuscation, whereas an online
mechanism in the centralized architecture can consider all
so-far generated events from all of the users at the time of
obfuscating the current event.

Formally, an obfuscated event is a triplet 〈u, r′, t〉, where
u ∈ U , r′ ∈ R′, and t ∈ T . As before, an obfuscated
trace of user u is a T -size vector of obfuscated events ou =
(ou(1), ou(2), ..., ou(T)). The set of all possible obfuscated
traces of user u is denoted by Ou.

An obfuscation mechanism is a function that maps a trace
au ∈ Au to a random variable Ou that takes values in the
set Ou. The probability density function of the output is f :

fau(ou) = Pr{Ou = ou|Au = au}. (1)

For the obfuscation, the LPPM covers various methods
that reduce the accuracy and/or precision of the events’
spatiotemporal information:

• perturbation (adding noise)
• adding dummy regions
• reducing precision (merging regions)
• location hiding

These methods probabilistically map a region in an event
to a location pseudonym in R′. For these methods, it suffices
that the set R′ be the power set of R, i.e., R′ ≡ P(R).
Figure 2 illustrates different obfuscation functions.

An anonymization mechanism is a function Σ chosen
randomly among the functions that map U to U ′. The random
function Σ is drawn according to a probability density
function g:

g(σ) = Pr{Σ = σ}. (2)

In this paper, we will consider only one anonymization
mechanism: random permutation. That is, the set U ′ is

{1, 2, . . . , N}, a permutation of the users is chosen uni-
formly at random among all N ! permutations and each user’s
pseudonym is his position in the permutation.

A location-privacy preserving mechanism LPPM is a
pair (f, g). Given a set of actual traces {au1 , ..., auN

}, the
mechanism LPPM applies f to obfuscate each trace, thus
generating a set of obfuscated traces {ou1 , ..., ouN

}, which
are instantiations of the random variables {Ou1 , ...,OuN

}. It
then applies g on that set, thus generating a set of obfuscated
and anonymized traces {oσ(u1), oσ(u2), ..., oσ(uN)}, where
σ(·) is an instantiation of the random function Σ.

Now, we can summarize the operation of the LPPM with
the following probability distribution function that gives the
probability of mapping a set of actual traces a ∈ A to a set
of observed traces o ∈ O = O1 ×O2 × . . .×ON :

LPPMa(o) = Pr
{
∩Ni=1OΣ(ui) = oσ(ui)| ∩

N
i=1 Aui

= aui

}
(3)

Broadly speaking, the aim of the adversary is to invert
this mapping: Given o, he tries to reconstruct a.

C. Adversary

In order to evaluate an LPPM accurately, we must model
the adversary against whom the protection is placed. Hence,
the adversary model is certainly an important, if not the most
important, element of a location-privacy framework. An
adversary is characterized by his knowledge and attack(s).
A framework should specify how the adversary obtains and
constructs his knowledge, how to model his knowledge and
what attacks he performs in order to reconstruct users’
location-information.

The adversary is assumed to know the anonymization
and obfuscation probability distribution functions f and
g. The adversary may also have access to some training
traces (possibly noisy or incomplete) of users, and other
public information about locations visited by each user, such
as their home and workplace. From this information, the
adversary constructs a mobility profile Pu for each user
u ∈ U . In Section III-B, one way of constructing the
adversary’s knowledge is explained in detail as part of the
location-privacy meter tool.

J
J
J
JJ

T R

U

Given the employed LPPM (i.e., f and g), the users’
profiles {(u, Pu)}u∈U , and the set of observed traces
{o1, o2, ..., oN} that are produced by the LPPM, the attacker
runs an inference (reconstruction) attack and formulates his
objective as a question of the U−R−T type. Schematically,
in such a question, the adversary specifies a subset of users,
a subset of regions and a subset of time instants, and asks
for information related to these subsets. If the adversary’s

objective is to find out the whole sequence (or a partial
subsequence) of the events in a user’s trace, the attack is
called a tracking attack. The attacks that target a single
event (at a given time instant) in a user’s trace, are called
localization attacks. These two categories of attacks are
examples of presence/absence disclosure attacks [21]: they
infer the relation between users and regions over time. In
contrast, if the physical proximity between users is of the
adversary’s interest, we call the attack a meeting disclosure
attack (i.e., who meets whom possibly at a given place/time).

An example of a very general tracking attack is the one
that aims to recover the actual trace of each user. That is,
it targets the whole set of users and the whole set of time
instants, and it asks for the most likely trace of each user, or
even for the whole probability distribution of traces for each
user. More specific objectives can be defined, which lead
to all sorts of presence/absence/meeting disclosure attacks:
Specify a user and a time, and ask for the region where the
user was at the specified time; specify a user and a region,
and ask for the times when the user was there; specify a
subset of regions, and ask for the (number of) users who
visited these regions at any time.

In this paper, we provide an algorithm that implements the
most general tracking attack; with the results of this attack
at hand, many other objectives can be achieved. For some
specific types of objectives we design attacks that are much
faster and less computationally intensive than the general
attack. The details will be explained in Section III-D.

D. Evaluation

At a high level, the adversary obtains some obfuscated
traces o, and, knowing the LPPM and the mobility profiles
of the users, he tries to infer some information of interest
about the actual traces a. As we have mentioned, the possible
objectives of the adversary range from the very general (the
traces a themselves) to the specific (the location of a user at
a specific time, the number of users at a particular location
at a specific time, etc.).

Nevertheless, usually, neither the general nor the specific
objectives have a single deterministic answer. The actual
traces are generated probabilistically from the mobility pro-
files, and the observed traces are generated probabilistically
by the LPPM. So, there are many traces a that might have
produced the observed traces o. The same goes for the more
specific objectives: There are many regions where a user
might have been at a particular time. The output of the
attack can be a probability distribution on the possible out-
comes (traces, regions, number of users), the most probable
outcome, the expected outcome under the distribution on
outcomes (the average number of users), or any function
of the actual trace. We call φ(·) the function that describes
the attacker’s objective. If its argument is the actual trace a,
then its value φ(a) is the correct answer to the attack. X is

the set of values that φ(·) can take for a given attack (M
regions, N users, MT traces of one user, etc.).

The probabilistic nature of the attacker’s task implies that
he cannot obtain the exact value of φ(a), even if he has an
infinite amount of resources. The best he can hope for is
to extract all the information about φ(a) that is contained
in the observed traces. The extracted information is in the
form of the posterior distribution Pr(x|o), x ∈ X , of the
possible values of φ(a) given the observed traces o. We call
uncertainty the ambiguity of this posterior distribution with
respect to finding a unique answer – that unique answer need
not be the correct one; see the discussion on correctness later.
The uncertainty is maximum, for example, if the output of a
localization attack is a uniform distribution on the locations.
On the contrary, the uncertainty is zero if the output is a
Dirac distribution on one location.

Of course, the attacker does not have infinite resources.
Consequently, the result of the attack is only an estimate
P̂r(x|o) of the posterior distribution Pr(x|o). We call in-
accuracy the discrepancy between the distributions P̂r(x|o)
and Pr(x|o).

Neither the uncertainty metric nor the inaccuracy metric,
however, quantify the privacy of the users. What matters for
a user is whether the attacker finds the correct answer to his
attack, or, alternatively, how close the attacker’s output is to
the correct answer. Knowing the correct answer, an evaluator
of the LPPM calculates a distance (or expected distance)
between the output of the attack and the true answer. The
choice of distance depends on the attack; we give examples
in Section IV. We call this distance the correctness of the
attack, and we claim that this is the appropriate way to
quantify the success of an attack.

J
J
J
JJ

A
cc

ur
ac

y Certainty

Correctness

It is important that the accuracy and the certainty not
be mistaken to be equivalent to the correctness of the
attack. Even an attacker with infinite resources will not
necessarily find the true answer, as he might have observed
only an insufficient number of traces. But he will extract
all the information that is contained in the traces, so the
accuracy will be maximum. If the accuracy is maximum, and
simultaneously the observed traces point to a unique answer
– so the certainty is also maximum – the correctness still
need not be high. It is possible, for instance, that the user
did something out of the ordinary on the day the traces were
collected; what he did is still consistent with the observed
trace, but as it is not typical for the user it is assigned a low
probability/weight in the attack output.

1) Accuracy: We compute the accuracy of each element
of the distribution P̂r(x|o), x ∈ X , separately. That is, we

p(
x)

Xxc

High accuracy
High certainty
Low correctness

p(
x)

Xxc

High accuracy
High certainty
High correctness

p(
x)

Xxc

High accuracy
Low certainty
Low correctness

p(
x)

Xxc

Low accuracy
High certainty
Low correctness

p(
x)

Xxc

Low accuracy
Low certainty
Low correctness

p(
x)

Xxc

Low accuracy
High certainty
High correctness

Figure 3. Accuracy, Certainty, and Correctness of the adversary. The
adversary is estimating P̂r(x|o) where the true value for x (correct guess)
is xc. In this example, x can get three discrete values. The black dot shows
the estimate P̂r(x|o) for different x and the lines show the confidence
interval for a given confidence level chosen by the adversary. As it is
shown in the figures, the accuracy of the estimation is independent of
its certainty and correctness. Moreover, the level of correctness does not
convey anything about the level of certainty, and high certainty does
not mean high correctness. The only correlation between certainty and
correctness is that low certainty usually (depending on the size of X and
the distance between its members) implies low correctness.

estimate the posterior probability Pr(x|o) for each possible
value x of φ(a). We quantify the accuracy with a confidence
interval and a confidence level. By definition, the probability
that the accurate value of Pr(x|o) is within the confidence
interval is equal to the confidence level.

The extreme case is that the interval is of zero length (i.e.,
a point) and the confidence level is 1 (i.e., the attacker is
absolutely confident that the point estimate is accurate). An
attacker using more and more accurate estimation tools could
achieve this extreme case, thus making P̂r(x|o) converge to
Pr(x|o). However, achieving such ultimate accuracy might
be prohibitively costly. So, the adversary will in general
be satisfied with some high enough level of accuracy (i.e.,
large enough confidence level, and small enough confidence
interval). When the accuracy reaches the desired level, or
the resources of the adversary are exhausted, the probability
P̂r(x|o) with some confidence interval is the estimate of the
adversary.

2) Certainty: We quantify the certainty with the entropy
of the distribution P̂r(x|o). The entropy shows how uniform
vs. concentrated the estimated distribution is and, in conse-
quence, how easy it is to pinpoint a single outcome x out
of X . The higher the entropy is, the lower the adversary’s

certainty is.

Ĥ(x) =
∑
x

P̂r(x|o) log
1

P̂r(x|o)
(4)

3) Correctness: The correctness of the attack is quanti-
fied using the expected distance between the true outcome
xc ∈ X and the estimate based on the P̂r(x|o). In general,
if there is a distance ‖ · ‖ defined between the members of
X , the expected distance can be computed as the following
sum, which is the adversary’s expected estimation error:∑

x

P̂r(x|o)‖x− xc‖ (5)

As an example, if the distance is defined to be equal to
0 if and only if x = xc and to be equal to 1 otherwise,
then the incorrectness can be calculated to be 1− P̂r(xc|o),
which is the probability of error of the adversary.

The value xc is what the users want to hide from the ad-
versary. The higher the adversary’s correctness is, the lower
the privacy of the targeted user(s) is. Hence, correctness is
the metric that determines the privacy of users.

In summary, the adversary achieves the maximum accu-
racy for his estimates P̂r(x|o) that is possible under his
resource constraints. He can measure the success of the
attack by computing the certainty over the results. However,
to measure users’ privacy, the evaluator of an LPPM must
consider the true value xc and measure the adversary’s
correctness. Notice that the adversary does not know the
value of xc, hence he cannot evaluate this aspect of his
performance. Figure 3 illustrates through some examples
the independence of these three aspects (of the adversary’s
performance) from each other.

III. LOCATION-PRIVACY METER:
IMPLEMENTATION OF OUR FRAMEWORK AS A TOOL

In this section, we present Location-Privacy Meter, a
realization of our framework as a tool to measure location
privacy. We have developed a modular tool based on the
framework presented in Figure 1 and multiple reconstruction
(inference) attacks are designed to evaluate the effectiveness
of LPPMs with respect to different adversaries. The tool,
available online [1], is developed in the C++ language, so
it is fast and it can be ported to various platforms. As will
be explained further, designers of new LPPMs can easily
specify various LPPM functions in our tool in order to
compare the users’ location privacy in different schemes.

In the following subsections, we explain in detail the
specifications of different modules of the tool and also
the algorithms that we use in Location-Privacy Meter. The
evaluation of some LPPMs will be presented in Section IV.

A. Location-Privacy Preserving Mechanisms

In the current implementation of the tool, we have devel-
oped two main LPPM obfuscation mechanisms that appear

frequently in the literature: precision reducing (merging
regions) and location hiding. The anonymization mechanism
is the random permutation.

The precision reducing obfuscation mechanism reduces
the precision of a region by dropping the low-order bits
of the region identifier. If, as in our case, the whole area is
divided into a grid pattern of regions, the x and y coordinates
of the region can be obfuscated separately. The number of
dropped bits determines the level of obfuscation. Let µx and
µy be the number of dropped bits in the x and y coordinates,
respectively. This is a deterministic obfuscation in which, for
example, µx = 1 will map regions r12 and r13 (in Figure 2)
to the same location pseudonym, as they are on the 4th and
5th column of the same row.

In the location hiding mechanism, every event is indepen-
dently eliminated (i.e., its location is replaced by ∅) with
probability λh: location hiding level.

An LPPM designer can easily import her LPPM into our
tool by specifying the probability density function LPPM
(see (3)), or, equivalently, by specifying an anonymization
function and an obfuscation function.

B. Knowledge of the Adversary

In this section, we provide a model for constructing the
a priori knowledge of the adversary to be used in the
various reconstruction attacks. The schema of the knowledge
construction (KC) module is illustrated in Figure 1.

The adversary collects various pieces of information about
the mobility of the users. In general, such information can
be translated to events; perhaps the events can be linked into
transitions, i.e., two events of the same user with successive
timestamps; perhaps they can be further linked into a partial
trace or even a full trace. The quality of these events to the
adversary might be varied, e.g., they might contain noise. It
is conceivable that the adversary obtains information, such
as a user’s home address, that is not obviously translatable
to an event. Then the adversary can create typical events
(or traces) that encode that information, i.e., successive
appearances of a user at his home location between the
evening and the morning hours.

All this prior mobility information on each user is encoded
in one of two ways: Either in the form of some traces, or as
a matrix of transition counts TCu. The traces can be noisy
or they might be missing some events. The TCu matrix is of
dimension M ×M and its ij entry contains the number of i
to j region transitions that u has created and have not been
encoded as traces. Any knowledge of the general movement
within the regions, i.e., how a typical user moves, that cannot
be attributed to a particular user can be incorporated in the
TC matrices. In addition to this mobility information on
the users, the adversary also considers the general mobility
constraints of users within regions. For example, it might not
be possible to move between two far-away regions in one

time instant, or cross a border between two regions because
of some physical obstacles.

The adversary makes the assumption that user mobility
can be modeled as a Markov Chain on the set of regions R.
So, the mobility profile Pu of a user is a transition matrix
for that user’s Markov Chain. The entry Puij , i, j = 1..M
of Pu is the probability that u will move to region rj
in the next time slot, given that he is now in region ri.
The objective of the adversary is to construct Pu starting
with the prior mobility information (traces and TCu). The
construction is done with Gibbs sampling [20] to find the
conditional probability distribution of the entries of the MC
matrix, given the prior information. Then, one MC matrix
is created out of the distribution, for instance by averaging.

How restrictive is the Markovian assumption on user
mobility? For example, if T represents one full day, users
will have different mobility patterns depending on the time
of day. A Markov Chain can still model this situation with
arbitrary precision at the cost of increasing the number of
states. There will be two (or three, or more) interconnected
Markov Chains, corresponding to different time periods of
the day: morning and evening, or morning, afternoon and
evening, or even more fine-grained. Each MC is defined on
the set of regions R, so it still has M states, but each has
different transition probabilities. The M states of each MC
are labeled not only by a region, but also by the period of
the day that they correspond to. Finally, there are appropriate
transitions from the morning states to the afternoon states,
from the afternoon states to the evening states, and so on. So,
the model is extensible to more general mobility models, but
to keep the presentation simple we assume that T represents
one single time period.

Hereafter, we explain how to create the profile Pu of
user u from a training trace TTu with missing data, and
a transition count matrix TCu. Note that the method that
we have implemented considers multiple training traces per
user. However, to simplify the presentation we consider only
one trace. Moreover, as we are talking about profiling each
user separately, we omit the subscript/superscript u.

The ultimate goal is to estimate the parameters of the
underlying Markov Chain (i.e., the matrix P). As the training
trace TT is incomplete (i.e., we do not have the location of
the user at all time instants), we also need to fill in the
missing data at the same time. Let ET be an estimated
completion for TT . Formally, we estimate the profile P of
the user with the expectation E[P |TT, TC]. To compute this
expectation we will sample from the distribution

Pr(P |TT, TC) =
∑
ET

Pr(P,ET |TT, TC). (6)

However, sampling directly from Pr(P,ET |TT, TC)
is not straightforward; it involves computing the sum
of terms whose number grows exponentially with the
length of the trace. Hence, we use Gibbs sampling, a

Monte Carlo method, as it only takes polynomial time
to produce a sample from the conditional distributions
Pr(P |ET, TT, TC) and Pr(ET |P, TT, TC). In order to
sample from Pr(P,ET |TT, TC), we create a homogeneous
Markov Chain on the state space of P and ET in an iterative
procedure. Starting from an initial value for ET {0}, Gibbs
sampling produces pairs (P {l}, ET {l}) as follows:

P {l} ∼ Pr(P |ET {l−1}, TT, TC) (7)

ET {l} ∼ Pr(ET |P {l}, TT, TC) (8)

Convergence properties of the Gibbs sampling for this
problem are studied in [20]. We are interested in the
sequence of the P

{l}
ij values; it is not a Markov chain,

but it is ergodic and converges at geometric rate to a
stationary distribution, which is the desired Pr(P |TT, TC).
We compute Pij for every i, j as the average of P {l}ij over
all samples l.

Now, the only remaining question is how to sample from
the distributions (7) and (8). In order to sample a P {l}

from (7), we assume that the rows of the transition matrix
P are independent, and we produce samples for each row
separately. We also consider a Dirichlet prior for each row
Pi. Hence, the lth sample for row Pi comes from the
following distribution:

Dirichlet
(
{TCij + Cntij(ET {l−1}) + εij}j=1..M

)
(9)

where Cntij(·) is the number of transitions from region ri
to rj in a trace, and εij is a very small positive number if,
according to the mobility constraints, it is possible to move
from ri to rj in one time instant (otherwise εij is zero).

To sample an ET {l} from (8), we follow the simplifi-
cation proposed in [20] and iteratively construct ET {l} by
performing T successive samplings, for t = 1, . . . , T , from

P
{l}
ET (t−1)ET (t)b(TT (t)|ET (t))P {l}ET (t)ET (t+1)∑

r∈R P
{l}
ET (t−1)rb(TT (t)|r)P {l}rET (t+1)

. (10)

The values P {l}ET (0)ET (1) and P {l}ET (T)ET (T+1) are defined to
be 1. The function b(r|ET (t)), r ∈ TT is equal to 0 if r 6= ∅
and r 6= ET (t). Otherwise, it is equal to 1. Note that the
function b(ri|rj) can also represent the noise function if the
training trace is noisy: b(ri|rj) is the probability that rj is
reported as ri.

C. Tracking Attacks

We now describe two tracking attacks and their implemen-
tations. Recall from Section II-C that in a tracking attack the
adversary is interested in reconstructing complete or partial
actual traces, i.e., in sequences of events, rather than just
isolated events.

1) Maximum Likelihood Tracking Attack: The objective
of this attack is to find the jointly most likely traces for all
users, given the observed traces. Formally, the objective is
to find

arg max
σ,A

Pr(σ,A|O). (11)

Notice that the maximization above is done in a space with
N !MT elements, so a brute force solution is impractical.

We proceed by running this attack in two phases: first
deanonymization and then deobfuscation. The deanonymiza-
tion phase finds the most likely assignment of users to
obfuscated traces. Notice that it is not correct to simply
assign to each user the trace that she is most likely to have
created, because more than one user might be assigned to the
same trace. The most likely assignment is a joint assignment;
it maximizes the product

∏
u∈U P (oσ(u)|Pu) over all N !

user-to-trace assignments.
The most likely assignment is found as follows. First,

the likelihood P (ox|Pu), x ∈ U ′, u ∈ U is computed for
all O(N2) trace-user pairs (ox, u). For the case when the
obfuscation function operates on each region separately, we
compute the likelihood for each pair with the Forward-
Backward algorithm [18]. With this algorithm, each likeli-
hood computation takes time O(TM2) by taking advantage
of the recursive nature of the likelihood that we want
to compute. In particular, we define the forward variable
αt(r), t ∈ T , r ∈ R as

αt(r) = Pr{ox(1), ox(2), . . . , ox(t), ax(t) = r|Pu}, (12)

which is the joint probability of the observed trace ox up
to time t and that the actual location of the user with
pseudonym x is r at time t, given that the pseudonym x is
associated with user u. Notice that, if we can compute the
forward variable at all regions at time T , i.e., αT (r), r ∈ R,
then the desired likelihood is simply

P (ox|Pu) = Pr{ox(1), ox(2), . . . , ox(t), ax(t) = r|Pu}

=
rM∑
r=r1

αT (r). (13)

For the recursive computation of the forward variables we
use the fact that

αt+1(r) =

(
rM∑
ρ=r1

αt(ρ)Puρr

)
fr(ox(t+ 1)),

1 ≤ t ≤ T − 1, r ∈ R. (14)

Within the sum there is one term for each way of reaching
region r at time t+1, i.e., having been at each of the regions
ρ ∈ R at time t. After computing the sum, we only need
to multiply with the probability of obfuscating region r to
the location pseudonym observed at time t + 1. The only
remaining issue is the initialization of the forward variables:

α1(r) = πur fr(ox(1)), r ∈ R. (15)

The vector πur , r ∈ R is the steady state probability vector
for the mobility profile of u.

For the computation of the likelihood we do not need
the backward variables (which is where the rest of the
algorithm’s name comes from). We will, however, define
and use them in Section III-D on Localization attacks.

The whole likelihood computation for one trace-user pair
can be done in M(M + 1)(T − 1) +M multiplications and
M(M − 1)(T − 1) additions. If the obfuscation function
operates on the whole trace simultaneously, rather than on
each region individually, the worst case computation will
take time O(TMT).

Having computed the likelihoods for all trace-user pairs,
we complete the deanonymization phase of the attack by as-
signing exactly one trace to each user. To this end, we create
an edge-weighted bipartite graph of traces and users, where
the weight of the edge between user u and trace ox is the
likelihood P (ox|Pu). Then, we find the Maximum Weight
Assignment (MWA) in this graph. We use the Hungarian al-
gorithm, which has time complexity of order O(N4). Faster
algorithms exist, but the Hungarian algorithm is simple, and
the MWA only needs to be computed once in this attack;
the MWA is also an instance of a linear program, so linear
program solvers can be used. The outcome is a matching of
users and traces, such that the product

∏
u∈U P (oσ(u)|Pu)

is maximized over all N ! user-to-trace assignments.
Given the maximum weight assignment, we proceed to

the second phase of the attack: We find the most likely
deobfuscation for the trace assigned to each user. We use
the Viterbi algorithm [18] to do that. More formally, the
most likely deobfuscation is

arg max
au∈Au

Pr{au(t), t = 1, . . . , T |ou(t), t = 1, . . . , T}.
(16)

The Viterbi algorithm is a dynamic programming algo-
rithm. We define δt(r) as

δt(r) = max
au(s)s=1,...,t−1

Pr { au(s)s=1,...,t−1, au(t) = r,

ou(s)s=1,...,t−1|Pu} , (17)

which is the joint probability of the most likely trace
au(·)t−1

1 that at time t is at region r, and the trace observed
up to time t. Maximizing this quantity is equivalent to
maximizing (16). Then, similarly as before, we recursively
compute the values at time T , i.e., δT (r).

δt(r) = max
ρ∈R

(
δt−1(ρ)Puρr

)
fr(ou(t)),

2 ≤ t ≤ T, r ∈ R. (18)

The initialization in this case is

δ1(r) = πrfr(ou(1)), r ∈ R. (19)

From the values δT (r), we compute the joint probability
of the most likely trace and the observations by computing

max
r∈R

δT (r). (20)

Of course, we are interested in the most likely trace itself,
not only in its probability. The most likely trace is computed
by keeping track, at each time 2 ≤ t ≤ T , of the argument
(region ρ) that maximizes (18) and, for t = T , the one that
maximizes (20). Then, we can backtrack from time T back
to time 1 and reconstruct the trace.

Parenthetically, notice that finding the most likely trace
is exactly equivalent to finding the shortest path in an
edge-weighted directed graph. The graph’s MT vertices are
labeled with elements of the set R×T , i.e., for each time t
there are M vertices corresponding to each of the M regions.
There are edges only from vertices labeled with time t to
vertices labeled t + 1, 1 ≤ t ≤ T − 1. The weight of an
edge (t, r)→ (t+ 1, ρ) is equal to − logPurρfρ(ou(t+ 1)).
Indeed, minimizing the sum of negative logarithmic terms
is equivalent to maximizing the product of the original
probabilities.

Having completed the two phases of the attack, we ob-
serve that the trace computed is not necessarily a maximum
for (11). Indeed from (11), it follows that:

arg max
σ,a

Pr(σ, a|O) = arg max
σ,a

Pr(a|σ,O) Pr(σ|O)

= arg max
σ,a

∏
i

Pr(Au = aui |Oσ(ui)) Pr(σ|O).

Indeed, MWA does maximize the second term (actually, it
maximizes Pr(O|σ) over all σ, which is equivalent to max-
imizing Pr(σ|O)) and Viterbi does maximize the first (i.e.,
Pr(a|σ,O)). But, it is possible that an assignment σ∗ and
a set of traces a∗ that jointly maximize the total likelihood
(Pr(σ, a|O)) are different from the results obtained from the
MWA and Viterbi algorithms separately.

However, we consider such cases as pathological: In the
MWA, a user u is mapped to an obfuscated trace ou that
he has high likelihood of producing. That is, u is likely
to produce unobfuscated traces that are, in turn, likely to
be obfuscated to ou. In other words, the unobfuscated traces
that are typical for u are likely to be obfuscated to ou. There
might be a nontypical outlier (a∗) that is more likely than
the most likely typical trace, but that optimal combination
would be isolated in the A space. As such, choosing the
outlier would not be robust to small changes in, for example,
the mobility model.

2) Distribution Tracking Attack: We now consider the
most general type of tracking attack, one which computes
the distribution of traces for each user, rather than just the
most likely trace:

Pr{∩Ni=1Aui
= aui

,Σ = σ|o1, o2, . . . , oN} (21)

The implementation of this attack uses the Metropolis-
Hastings (MH) algorithm on the product of the space A
with the space of all possible permutations σ. The purpose
of the MH algorithm is to draw independent samples (from
the space A × Σ) that are identically distributed according
to the desired distribution (21). The algorithm makes use
of the fact that the desired distribution, briefly written as
Pr{a, σ|o}, is equivalently:

Pr{a, σ|o} =
Pr{o|a, σ}Pr{σ|a}Pr {a}

Pr{o}
(22)

The denominator is a normalizing factor that is hard
to compute, but it does not depend on a. The algorithm
allows us to sample from the distribution Pr{a, σ|o} without
computing the denominator Pr{o}. However, the numerator
needs to be easy to compute, which is true in our case: We
compute the probability Pr{o|a, σ} using (1); the probability
Pr{σ|a} is constant and equal to 1

N ! , as we use random per-
mutation as the anonymization function; and the probability
Pr {a} is computed from the users’ profiles.

At a high level, the MH algorithm performs a random
walk on the space of possible values for (a, σ). The tran-
sition probabilities of the random walk are chosen so that
its stationary distribution is the distribution from which we
want to sample.

First of all, we need to find a feasible initial point for the
walk (i.e., a point that does not violate the mobility profile
of any user; it is not a trivial matter to find such a point). We
use the output of the maximum likelihood tracking attack.

We then need to define a neighborhood for each point
(a, σ). We define two points (a, σ) and (a′, σ′) to be
neighbors if and only if exactly one of the three following
conditions holds:
• The components σ and σ′ differ in exactly two places.

That is, N − 2 out of the N traces are assigned to
the same users in both σ and σ′, and the assignment
of the remaining two traces to users is switched. The
components a and a′ are identical.

• The components a and a′ differ in exactly one place.
That is, the location of exactly one user at exactly one
timeslot is different. All other locations are unchanged.
The components σ and σ′ are identical.

• Points (a, σ) and (a′, σ′) are identical. That is, a point
is assumed to be included in its own neighborhood.

We finally define a proposal density function that deter-
mines the candidate neighbor to move to at the next step;
this function also influences the convergence speed of the
algorithm. For simplicity, we use a uniform proposal density,
so the candidate is selected randomly among all neighbors.

To perform the random walk, suppose that the cur-
rent point is (a, σ) and the selected candidate is
(a′, σ′). Then, (a′, σ′) is accepted with probability
min{Pr{o|a′,σ′}Pr{a′}

Pr{o|a,σ}Pr{a} , 1}. If (a′, σ′) is rejected, then we

repeat the procedure of selecting and probabilistically ac-
cepting a neighbor. If it is accepted, it is logged as a step in
the random walk. However, it is not an independent sample,
as it is correlated with (a, σ). Only after making enough
steps to overcome the inherent correlation among successive
steps is a step stored as an independent sample. After storing
enough independent samples, the algorithm stops.

How many independent samples are enough? The attacker
collects as many samples as needed to satisfy his accuracy
requirements. The confidence interval for the chosen confi-
dence level must be shorter than the desired length. Suppose
the attacker needs to collect n independent samples.

How many steps of the random walk must be taken
between each pair of successive samples to ensure the inde-
pendence of these n samples? There are standard statistical
tests of independence; our choice is the Turning Point test.
The basic idea of this test is that, among three successive
independent and identically distributed samples, all 3! = 6
possible orderings are equiprobable. Given three numerical
values xi−1, xi, xi+1, a turning point exists at i if and only if
xi is either larger than both xi−1, xi+1 or smaller than both
xi−1, xi+1. If the three numerical values are independent
and identically distributed, then the probability of a turning
point is 2

3 . Then, given a large enough number of values, n
in our case, the number of turning points is approximately
Gaussian with mean 2n−4

3 and variance 16n−29
90 .

So, we test if the number of turning points in our sequence
of n MH samples can be claimed to be Gaussian with this
mean and variance. If so, we stop. Otherwise, we make more
steps in the random walk and skip more and more of the
logged intermediate steps before storing each sample.

It should be emphasized that the Distribution Tracking
attack can answer all kinds of U-R-T questions. The
attacker can specify a very wide range of objectives as
functions of a sample of the MH algorithm. Then, the
attacker computes this function on each independent sample,
and the sample average of the computed values is the
estimate of the attacker’s objective. In this case, the accuracy
and certainty metrics would be computed on the values that
the function returns, rather than directly on the MH samples.

Despite its generality, the Distribution Tracking attack is
computationally intensive. So, it might make sense to use
heuristics to find the distribution of traces for each user.

An important heuristic is to consider, as we have al-
ready seen, only the most likely deanonymization. Then
we find the posterior distribution of nonobfuscated traces
separately for each user-to-obfuscated-trace assignment that
the deanonymization produced. Formally, the objective is to
find the pdf

max
σ

Pr(σ, a|O). (23)

The implementation of this heuristic is simply to find the
MWA, as explained in the Maximum Likelihood Tracking
attack, and then run Metropolis-Hastings for each user-trace

pair separately. That is, MH would run on each space Au
separately for each u, and of course the neighborhood of a
point would be restricted to single location changes, as there
can be no changes in the username part.

D. Localization Attacks
In localization attacks, a typical question is to find the

location of a user u at some time t. The most general answer
to such a question is to compute

Pr{au(t) = r|ou, Pu} (24)

for each r ∈ R. The output for the attacker is a distribution
on the possible regions, from which he can select the most
probable, or form an average, etc. For this attack, the attacker
needs to know or estimate the observed trace that user u
created, perhaps by using the Maximum Weight Assignment,
which is what we have implemented.

Of course, he can perform the attack for each of the
observed traces, as it is not very computationally intensive.
In particular, these probabilities can be easily computed
with the Forward-Backward algorithm. In the section on
the Maximum Likelihood Tracking attack, we described the
computation of the forward variables

αt(r) = Pr{ox(1), ox(2), . . . , ox(t), ax(t) = r|Pu}. (25)

The backward variables are defined to be

βt(r) = Pr{ox(t+ 1), ox(t+ 2), . . . , ox(T)|ax(t) = r, Pu},
(26)

that is, βt(r) is the probability of the partial trace from time
t + 1 to the end, given that the region at time t is r and
given that user u created the trace.

Again, we can recursively compute the backward variables
using the fact that

βt(r) =
rM∑
ρ=r1

Purρfρ(ox(t+ 1))βt+1(ρ),

t = T − 1, T − 2, . . . , 1, r ∈ R. (27)

Notice that the computation takes place backwards in
time. The initialization (at time T) of the backward variables
is arbitrary:

βT (r) = 1, r ∈ R. (28)

Having computed the backward variables, the probability
Pr{au(t) = r|ou} is then equal to

Pr{au(t) = r|ou, Pu} =
αt(r)βt(r)
Pr(ou|Pu)

. (29)

The variable αt(r) accounts for the observations up to
time t and region r at time t, and βt(r) accounts for the
remainder of the observed trace, given that the region at t
is r. The term Pr(ou|Pu) is a normalization factor that was
earlier computed as

∑rM

r=r1
αT (r). An alternative way of

computing it is as
∑rM

r=r1
αt(r)βt(r), which more directly

shows its role as a normalization factor.

E. Meeting Disclosure Attacks

In a meeting disclosure attack, a typical objective specifies
a pair of users u and v, a region r, and a time t, and then
it asks whether this pair of users have met at that place
and time. The probability of this event is computed as the
product Pr{au(t) = r|ou, Pu}Pr{av(t) = r|ov, P v} by
using the results of the localization attack. A more general
attack would specify only a pair of users and ask for the
expected number of time instants that they have met in
any region. Such questions can be answered by using the
results of the localization attack for each user ui as will
be explained in Section IV. Yet another question would not
specify any usernames, but only a region and a time. The
objective would be the expected number of present users
in the region at that time. Again, a localization attack for
each user would be the first step as will be explained in
Section IV.

IV. USING THE TOOL: EVALUATION OF LPPMS

In this Section, we pursue two main goals:

• We show a few examples of using the Location-Privacy
Meter to quantify the effectiveness of LPPMs against
various attacks.

• We evaluate the appropriateness of two popular met-
rics, namely, k-anonymity and entropy, for quantifying
location privacy.

In order to use the Location-Privacy Meter, we first
need to provide and specify (i) the location traces that we
obfuscate/anonymize, (ii) the LPPMs that we implement,
and (iii) the attacks that we perform.

The location traces that we use belong to N = 20 ran-
domly chosen mobile users (vehicles) from the epfl/mobility
dataset at CRAWDAD [17]. Each trace contains the location
of a user every 5min for 8hours (i.e., T = 96). The area
within which users move (the San Francisco bay area) is
divided into M = 40 regions forming a 5× 8 grid.

We use two location-privacy preserving mechanisms that
are explained in Section III-A: precision reducing with
parameters µx, µy (the number of dropped low-order bits
from the x, y coordinate of a region, respectively), and
location hiding with parameter λh (the probability of hiding
a region). Let LPPM(µx, µy, λh) denote an LPPM with
these specific parameters. The traces are also anonymized
using a random permutation function (i.e., each user is
assigned a unique pseudonym from 1 to N).

In order to consider the strongest adversary, we feed
the knowledge constructor (KC) module with the users’
actual traces. We run the inference mechanisms explained in
Sections III-C and III-D and obtain results for the following
U-R-T attack scenarios:

• LO-ATT: Localization Attack: For a given user u and
time t, what is the location of u at t? (Since the location

is a random variable, the answer is the probability
distribution over the regions).

• MD-ATT: Meeting Disclosure Attack: For a given pair
of users u and v, what is the expected number of
meetings between u and v? Put differently, at how many
time instants in T the two users are in the same region.

• AP-ATT: Aggregated Presence Attack: For a given
region r and time t, what is the expected number of
users present in r at t?

The metric to evaluate location privacy of users in all three
attacks is the failure of the adversary in finding the correct
answer: his incorrectness. For LO-ATT, according to (5), the
privacy of user u at time t is computed as

LPLO-ATT(u, t) =
∑
r∈R

p̂u,t(r)‖r − au(t)‖ (30)

where au(t) is the actual location of u at time t, and the
distance ‖r− au(t)‖ is equal to 0 if r = au(t) (i.e., correct
estimation by the adversary), and it is equal to 1 otherwise.
Moreover, p̂u,t(r) = P̂r{au(t) = r|ou, Pu} as described in
Section III-D.

For MD-ATT, let Ztu,v = 1au(t)=av(t) be the random
variable that indicates whether u and v meet at time t. The
adversary estimates their expected number of meetings over
all time instants

Ê(
∑
t

Ztu,v) =
∑
t

P̂r(Ztu,v = 1) =
∑
t

∑
r

p̂u,t(r)p̂v,t(r)

The actual number of meetings between u and v is∑
t 1au(t)=av(t). Hence, according to (5), the privacy of u

and v is

LPMD-ATT(u, v) = ‖Ê(
∑
t

Ztu,v)−
∑
t

1au(t)=av(t)‖, (31)

whose values range from 0 and T .
For AP-ATT, let Y ur,t = 1au(t)=r be the random variable

that indicates whether u is in r at t. The adversary estimates
the expected value of

∑
u Y

u
r,t which is

Ê(
∑
u

Y ur,t) =
∑
u

P̂r(Y ur,t = 1) =
∑
u

p̂u,t(r)

The actual number of users in region r at t is
∑
u 1au(t)=r.

Hence, according to (5), the privacy of users at time t for
region r is

LPAP-ATT(r, t) = ‖Ê(
∑
u

Y ur,t)−
∑
u

1au(t)=r‖, (32)

and its values range from 0 to N .
Figure 4 illustrates the results that we have obtained

about the effectiveness of the precision-reduction and
location-hiding LPPMs against these three attacks. Each
row in the figure corresponds to one attack. The left-
hand column shows the results for the LPPM with pa-
rameters (0, 0, 0.0), (0, 0, 0.1), ..., (0, 0, 0.9), and the right-
hand column shows the results for the LPPM with

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hiding Level

(i) LPPM(0, 0, *)

Lo
ca

tio
n

P
riv

ac
y

IN
co

rr
ec

tn
es

s
of

 lo
ca

liz
at

io
n

of
 a

 u
se

r

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hiding Level

(ii) LPPM(1, 3, *)

(a) LPLO-ATT(u, t) for all users u and times t

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

Hiding Level

(i) LPPM(0, 0, *)

Lo
ca

tio
n

P
riv

ac
y

IN
co

rr
ec

tn
es

s
of

 e
xp

ec
te

d
nu

m
be

r
of

 m
ee

tin
gs

 b
et

w
ee

n
a

pa
ir

of
 u

se
rs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

Hiding Level

(ii) LPPM(1, 3, *)

(b) LPMD-ATT(u, v) for all pairs of users u, v

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Hiding Level

(i) LPPM(0, 0, *)

Lo
ca

tio
n

P
riv

ac
y

IN
co

rr
ec

tn
es

s
of

 e
xp

ec
te

d
nu

m
be

r
of

 u
se

rs
 in

 a
 r

eg
io

n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Hiding Level

(ii) LPPM(1, 3, *)

(c) LPAP-ATT(r, t) for all regions r and times t

Figure 4. The system-level location-privacy against attacks LO-ATT(a),
MD-ATT(b) and AP-ATT(c). Left-hand and right-hand side plots show the
attack results against LPPM(0, 0, ∗) and LPPM(1, 3, ∗), respectively.
The last parameter of LPPMs (hiding level λh) is shown on the x-axis.
The boxplot shows, in particular, the median, 25th and 75th percentiles.

parameters (1, 3, 0.0), (1, 3, 0.1), ..., (1, 3, 0.9). Recall that
LPPM(µx, µy, λh) denotes the location-privacy preserving
mechanism with parameters µx and µy as the number
of dropped low-order bits from the x and y coordinates,
respectively, and with parameter λh as the probability of
hiding a region. Each box-and-whisker diagram (boxplot)
shows the system level location-privacy of users for a
specific set of LPPM parameters against a specific attack.
The bottom and top of a box show the 25th and 75th

percentiles, and the central mark shows the median value.
The ends of the whiskers represent the most extreme data
points not considered as outliers, and the outliers are plotted
individually.

By system-level location-privacy, we collectively refer to
the privacy values (expected error - incorrectness) achieved
for all possible combinations of attack parameters ((u, t)
for LO-ATT, (u, v) for MD-ATT, (r, t) for AP-ATT). The
system-level location-privacy is represented by the median
privacy value, shown in the boxplot as the central mark
in the box. We also plot the 25th and 75th percentiles
of the privacy value in order to show the diversity of
adversary’s expected error. As an example, the first boxplot
in Figure 4(a).ii, which is associated with 0.0 in the x-axis,
shows LPLO-ATT(u, t) for all u and t, using LPPM(1, 3, 0.0).

We expect to see improvement in location privacy, as we
increase the level of obfuscation. We also expect to observe
convergence of location privacy to its near maximum value,
when we set the location-hiding level equal to 0.9 (i.e.,
90% of the users’ locations are hidden from the adversary).
Unsurprisingly, we observe these two things in the plots:
Reading a plot from left to right we see the effect of increas-
ing the hiding level λh (0.0 to 0.9) for constant precision-
reducing levels µx and µy . Namely, the privacy always
increases, although the effect is much more pronounced in
LO-ATT(first row). By comparing corresponding boxes of
two adjacent plots, i.e., same hiding levels, we see the added
value of the precision-reducing mechanism (on the left, µx
and µy are both 0; on the right, µx is 1 and µy is 3). Again,
the clearest improvement happens in LO-ATT.

An interesting conclusion is that the effect of the LPPM
is most positive against LO-ATT, which is, in a sense, the
most intrusive attack of the three: it targets the exact location
of a single user at a single time. The other two attacks,
especially AP-ATT, are more related to statistics of the user
mobility, so there could even be legitimate reasons that
one would want to collect that information. For instance, a
researcher who studies the geographical distribution of users
would be interested in the number of users in a region. We
can conclude that the tested LPPMs protect users’ location-
privacy against malicious adversaries, but they still provide
information for less harmful activities.

Now, we assess the appropriateness of two metrics,
namely k-anonymity and entropy, for quantifying location
privacy. Note that any other heuristic metric can be evaluated

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location Privacy − INcorrectness of the adversary (LP)

Lo
ca

tio
n

P
riv

ac
y

−
 N

or
m

al
iz

ed
 E

nt
ro

py
 (

N
H

)

(a) Entropy vs. Incorrectness

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location Privacy − INcorrectness of the adversary (LP)

Lo
ca

tio
n

P
riv

ac
y

−
 N

or
m

al
iz

ed
 K

−
an

on
ym

ity
 (

N
K

)

(b) K-anonymity vs. Incorrectness

Figure 5. Comparison of location-privacy metrics. The x-axis shows the
users’ location-privacy based on the incorrectness metric (30). The y-axis
shows (a) the normalized entropy of the adversary’s estimation, (b) the
normalized k-anonymity. Each point in the plot represents the location
privacy of some user at some time for two metrics (incorrectness vs entropy
in (a), incorrectness vs k-anonymity in (b)). “∗”s are the location privacy
values achieved from LPPM(2, 3, 0.9) as a strong mechanism, “·”s are
the values for LPPM(1, 2, 0.5) as a medium mechanism, and “◦”s are the
values for LPPM(1, 0, 0.0) as a weak mechanism. The two metrics would
be fully correlated only if all points were on the diagonal (0, 0) to (1, 1).

in the same way. We focus on LO-ATT, and we assess
these metrics by testing to what extent they are correlated
to the success of the adversary in correctly localizing users
over time (i.e., the incorrectness metric LPLO-ATT(u, t)).
We choose three LPPMs: LPPM(1, 0, 0.0) as a weak
mechanism, LPPM(1, 2, 0.5) as a medium mechanism, and
LPPM(2, 3, 0.9) as a strong mechanism.

In Section II-D, we use entropy to measure the uncertainty
of the adversary. Here, we assess the normalized entropy of
the pdf of the location of user u at time t, as a metric for

her location privacy. The normalized entropy is computed
as follows:

NHLO-ATT(u, t) =
−
∑
r∈R p̂u,t(r) log(p̂u,t(r))

log(M)
(33)

where log(M) is the maximum entropy over M regions.
According to the k-anonymity metric, the location-privacy

of a user u at a given time t is equal to the number of
users who satisfy all of the following conditions: (i) they
are anonymous, (ii) they obfuscate their location by merging
regions (which includes their actual location), (iii) their
obfuscated location (i.e., the set of merged regions) is a
superset of the obfuscated location of u at t. We divide this
number of users by N , the total number of users, to have
the normalized k-anonymity:

NKLO-ATT(u, t) =
1
N

∑
v∈U

1av(t)∈ou(t)∧ou(t)⊆ov(t) (34)

Figure 5 illustrates the relation between the incorrect-
ness of the adversary LPLO-ATT(u, t) and the two above-
mentioned metrics: normalized entropy NHLO-ATT(u, t), and
normalized k-anonymity NKLO-ATT(u, t). We see that the en-
tropy is more correlated to the adversary’s incorrectness than
k-anonymity is. However, both entropy and k-anonymity
misestimate the true location privacy of users.

Let us focus on Figure 5(a). All but few of the points fall
into the “NH < LP ” triangle, which means that, in this
setting, the entropy metric underestimates location privacy.
For example, consider the “∗”s on the NH = 0.6 horizontal
line, all of whose entropy is 0.6. The incorrectness metric
(LP) of these points ranges from 0.6 to 1. Or, consider the
vertical line LP = 1, where there are “∗”s corresponding to
values of NH ranging from 0.2 to 0.7. In both cases, the
estimation of location privacy by NH is up to 5 times less
than the true location privacy of users, which makes it an
unappropriate and loose lower bound for location privacy.
We observe the same phenomenon in the results of the two
other LPPMs (represented by “·”s and “◦”s).

The results are even worse for k-anonymity in Figure 5(b)
as there is less correlation between NK and LP . In fact,
k-anonymity in some cases underestimates location privacy
(consider the area where NK < 0.5 and LP > 0.5) and in
some other cases (NK > 0.5 and LP < 0.5) overestimates
it. Hence, this is not an appropriate estimator for location
privacy either.

V. RELATED WORK

There are several papers in the field of location privacy
that aim at clarifying the way to effectively protect users’
location privacy by classifying the problems and studying
various unaddressed issues and missing elements in this field
of research. We will discuss these papers in the beginning
of this section. These papers cover a range of different
concerns, but highlight the following two urgent topics:

• Understanding the threats and formalizing the attacks
on location privacy

• Designing a standard and appropriate evaluation metric
for location privacy based on a sound theoretical model
that can be used to compare various schemes

Krumm [14] studies various computational location pri-
vacy schemes: those that can be formally specified and
quantitatively measured. The authors regard the accuracy
of location privacy metrics as the key factor in the progress
of computational location privacy, and emphasize the im-
portance of finding a single (or a small set of sufficient)
quantifier for location privacy.

Decker [6] gives an overview of location privacy threats
and studies the effects of various countermeasures on pro-
tecting location privacy. The author also discusses which
protection mechanisms (such as obfuscation, anonymization)
are appropriate for different location-based services, consid-
ering the specification and requirements of those services.

Shokri et al. [21], [22] survey various LPPMs and also
the metrics used for measuring location privacy (called
uncertainty-based, error-based and k-anonymity). The au-
thors compare various metrics qualitatively and show that
metrics such as entropy and k-anonymity are inadequate for
measuring location privacy. The authors rely on a number
of common-sense examples to justify the results.

Duckham [7] proposes a few rules as the key principles
of research on location privacy, which make this field of
research different from other research topics in privacy. The
author refers to the predictable mobility of humans, the
constraints of the area within which people move, the effects
of location-based applications on privacy, the effectiveness
of centralized vs. distributed protection mechanisms and,
last but not least, the importance of a formal definition of
fundamental terms (such as the precision and accuracy of
information) in the design of protection mechanisms.

All the above-mentioned papers, of course, have been a
source of inspiration for our research in this paper. However,
despite the fact that we share common concerns (especially
the two emphasized items in the beginning of this Section)
neither these papers, nor any other paper we know about,
provide a framework with which LPPMs can be evaluated
quantitatively. Our work is a realization of the goals and
concerns of the research community and provides a modular
platform every part of which can be separately analyzed
and be improved upon; for example, by simulating more
powerful attacks using other inference techniques.

Other papers related to our work implement particular
attacks to show the predictability and uniqueness of users’
location traces, and some of them evaluate the efficacy of
specific protection mechanisms. Each paper uses a different
model to state the problem and evaluate location privacy. In
spite of this diversity, this provides us with tools that can
potentially be used in a generic framework.

A prominent example of such papers is [15], in which
Liao et al. propose a framework for recognizing mobile
users’ activities based on the places they visit and also
the temporal patterns of their visit. The authors develop
an inference technique based on Markov Chain Monte
Carlo (MCMC) methods and show how users’ activities are
dependent on their mobility traces. The paper does not talk
about the consequences of these techniques, if used by an
adversary, on users’ privacy. However, it shows the relation
between location privacy (i.e., to what extent a user’s identity
is unlinkable to a location) and the general privacy of mobile
users (e.g., their activities and habits). Thus, it explains
the value of protecting mobile users’ location-privacy for
preventing the loss of their general privacy.

Other papers define the users’ (location) privacy as the
extent to which the users’ names (real identities) can be
derived from their traces. In our terms, they address “what
is the likelihood that an anonymous trace belongs to a given
user.” In fact, the results show the uniqueness of users’
mobility patterns.

Bettini et al. [2] state that location traces can act as
quasi-identifiers of mobile users and lead to identification
of anonymous traces. Hence, they propose a k-anonymity
method to protect users’ anonymity.

Hoh et al. [12] and Krumm [13] focus on finding users’
identities based on their home addresses. Hence, they run
some inference attacks on location traces to find the home
address of the user to which the trace belongs. The effec-
tiveness of various protection mechanisms such as spatial
cloaking (hiding), noise (perturbation), and rounding (reduc-
ing precision) on foiling these attacks are also evaluated.

Mulder et al. [5] show that anonymous location traces,
even at a low space granularity (i.e., at the level of the size
of the GSM cells) and spanning a short time period (a few
hours), can be re-identified, given the mobility profiles of
the individuals.

Golle and Partridge [10] discuss the anonymity of
home/work location pairs. The authors show that knowing
home and work addresses is enough to de-anonymize the
location traces of most of the users (especially in the United
States, where they obtained their results). Freudiger et al.
[9] use more advanced clustering algorithms to show mobile
users’ privacy-erosion over time as they make use of various
types of location-based services.

In the same vein of the previous works, Ma et al. [16]
show that published anonymous mobility traces can be iden-
tified using statistical inference methods such as maximum
likelihood estimators, if the adversary has access to some
samples of those traces with known user names.

Note that these papers in general only highlight the
vulnerability of location traces to de-anonymization by an
adversary with access to different types of information.

However, there are very few research contributions where
the authors focus on how traceable a user is; that is, the

extent to which the adversary can correctly reconstruct a
complete trace from partial fragments. An example of this
line of investigation is [11], in which Hoh and Gruteser
propose a tracking attack based on multi-target tracking al-
gorithms [19] (using a Kalman filter) can help the adversary
to link different pieces of a user’s anonymous trace. The
authors propose a path confusion method in which traces
of different users are perturbed to create confusion in the
tracking algorithm. They also formulate an optimization
problem to solve the tradeoff between location privacy and
usefulness of the perturbed traces.

In our paper, as opposed to the enumerated related work,
we jointly consider obfuscation and anonymization methods
and develop generic attacks that can be used against any
LPPM. The framework we propose in this paper enables us
to formalize and evaluate various LPPMs. To the best of our
knowledge, the Location-Privacy Meter is the first generic
tool developed to evaluate location privacy of location traces.

Finally, we should mention that modeling and formalizing
evaluation frameworks for privacy has recently been the
focus of researchers in other domains. Good examples of this
movement are differential privacy (for databases, typically)
proposed by Dwork [8], a framework to evaluate anonymity
protocols by Chatzikokolakis et al. [3], an evaluation frame-
work for MIX networks by Troncoso and Danezis [4], [24],
and a privacy model for RFIDs by Vaudenay [25].

For a more in-depth survey of various privacy-preserving
methods, metrics and attacks in the location-privacy litera-
ture, the reader is referred to [14], [21], [23].

VI. CONCLUSION

In this paper, we have raised the questions “what is loca-
tion privacy?” and “how can location privacy be quantified,
given an adversary model and a protection mechanism?”
In order to address these questions, we have established a
framework in which various entities, which are relevant to
location privacy of mobile users, have been formally defined.
The framework enables us to specify various LPPMs and
attacks. Within this framework, we were also able to unravel
various dimensions of the adversary’s inference attacks. We
formally justify that the incorrectness of the adversary in
his inference attack (i.e., his expected estimation error)
determines the location privacy of users.

We have developed an operational tool, named Location-
Privacy Meter, as a realization of our framework. A designer
of an LPPM can easily specify and integrate her algorithm
in this tool for evaluation. Relying on well-established
statistical methods, we have implemented a generic attack
that can be used to answer all sorts of information disclosure
questions. We have also developed some specific attacks,
such as localization attacks, that are more targeted and hence
more time-efficient.

As a follow-up to this work, we will add new modules
with which we can support pseudonym changes over time

for users, in order to capture all possible LPPM algorithms.
We would also like to incorporate the location-based appli-
cations into the framework and analyze the effectiveness of
LPPMs with respect to these applications.

ACKNOWLEDGMENT

The authors would like to thank George Danezis, Julien
Freudiger and Prateek Mittal for their insightful discussions
on the earlier versions of the framework, Mathias Humbert
and Mohamed Kafsi for their valuable comments on the
submitted manuscript, and also Vincent Bindschaedler for
helping us in the development of the Location-Privacy Meter.

REFERENCES

[1] Location-Privacy Meter tool. Available online through
http://people.epfl.ch/reza.shokri, 2011.

[2] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy
against location-based personal identification. In In 2nd
VLDB Workshop SDM, pages 185–199, 2005.

[3] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden.
Anonymity protocols as noisy channels. In Proceedings of
the 2nd international conference on Trustworthy global com-
puting, TGC’06, pages 281–300, Berlin, Heidelberg, 2007.
Springer-Verlag.

[4] G. Danezis and C. Troncoso. Vida: How to use bayesian
inference to de-anonymize persistent communications. In
Proceedings of the 9th International Symposium on Privacy
Enhancing Technologies, PETS ’09, pages 56–72, Berlin,
Heidelberg, 2009. Springer-Verlag.

[5] Y. De Mulder, G. Danezis, L. Batina, and B. Preneel. Iden-
tification via location-profiling in gsm networks. In WPES
’08: Proceedings of the 7th ACM workshop on Privacy in the
electronic society, pages 23–32, New York, NY, USA, 2008.

[6] M. Decker. Location privacy-an overview. In ICMB ’08:
Proceedings of the 2008 7th International Conference on
Mobile Business, pages 221–230, Washington, DC, USA,
2008. IEEE Computer Society.

[7] M. Duckham. Moving forward: location privacy and location
awareness. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Security and Privacy in GIS and
LBS, SPRINGL ’10, pages 1–3, New York, NY, USA, 2010.

[8] C. Dwork. Differential Privacy. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Automata, Languages and
Programming, volume 4052, chapter 1, pages 1–12. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[9] J. Freudiger, R. Shokri, and J.-P. Hubaux. Evaluating the
privacy risk of location-based services. In Financial Cryp-
tography and Data Security (FC), 2011.

[10] P. Golle and K. Partridge. On the anonymity of home/work
location pairs. In Pervasive ’09: Proceedings of the 7th Inter-
national Conference on Pervasive Computing, pages 390–397,
Berlin, Heidelberg, 2009. Springer-Verlag.

[11] B. Hoh and M. Gruteser. Protecting location privacy through
path confusion. In SECURECOMM ’05: Proceedings of the
First International Conference on Security and Privacy for
Emerging Areas in Communications Networks, pages 194–
205, Washington, DC, USA, 2005. IEEE Computer Society.

[12] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing
security and privacy in traffic-monitoring systems. IEEE
Pervasive Computing, 5(4):38–46, 2006.

[13] J. Krumm. Inference attacks on location tracks. In In Pro-
ceedings of the Fifth International Conference on Pervasive
Computing (Pervasive), volume 4480 of LNCS, pages 127–
143. Springer-Verlag, 2007.

[14] J. Krumm. A survey of computational location privacy.
Personal Ubiquitous Comput., 13(6):391–399, 2009.

[15] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and
inferring transportation routines. Artif. Intell., 171:311–331,
April 2007.

[16] C. Y. Ma, D. K. Yau, N. K. Yip, and N. S. Rao. Privacy
vulnerability of published anonymous mobility traces. In
Proceedings of the sixteenth annual international conference
on Mobile computing and networking, MobiCom ’10, pages
185–196, New York, NY, USA, 2010. ACM.

[17] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser.
CRAWDAD data set epfl/mobility (v. 2009-02-24). Down-
loaded from http://crawdad.cs.dartmouth.edu/epfl/mobility.

[18] L. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.

[19] D. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, 24(6):843–854, 1979.

[20] C. Robert, G. Celeux, and J. Diebolt. Bayesian estimation of
hidden Markov chains: A stochastic implementation. Statis-
tics & Probability Letters, 16(1):77–83, 1993.

[21] R. Shokri, J. Freudiger, and J.-P. Hubaux. A unified frame-
work for location privacy. In 3rd Hot Topics in Privacy
Enhancing Technologies (HotPETs), 2010.

[22] R. Shokri, J. Freudiger, M. Jadliwala, and J.-P. Hubaux. A
distortion-based metric for location privacy. In WPES ’09:
Proceedings of the 8th ACM workshop on Privacy in the
electronic society, pages 21–30, New York, NY, USA, 2009.

[23] R. Shokri, C. Troncoso, C. Diaz, J. Freudiger, and J.-P.
Hubaux. Unraveling an old cloak: k-anonymity for location
privacy. In Proceedings of the 9th annual ACM workshop on
Privacy in the electronic society, WPES ’10, pages 115–118,
New York, NY, USA, 2010. ACM.

[24] C. Troncoso and G. Danezis. The bayesian traffic analysis of
mix networks. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages
369–379, New York, NY, USA, 2009. ACM.

[25] S. Vaudenay. On privacy models for rfid. In Proceedings of
the Advances in Crypotology 13th international conference
on Theory and application of cryptology and information
security, ASIACRYPT’07, pages 68–87, 2007.

