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Selfish Response to Epidemic Propagation
George Theodorakopoulos, Jean-Yves Le Boudec, Fellow, IEEE, and John S. Baras, Fellow, IEEE

Abstract—An epidemic that spreads in a network calls for a
decision on the part of the network users. They have to decide
whether to protect themselves or not. Their decision depends on
the trade-off between the perceived infection and the protection
cost. Aiming to help users reach an informed decision, security
advisories provide periodic information about the infection level
in the network.

We study the best-response dynamic in a network whose
users repeatedly activate or de-activate security, depending on
what they learn about the infection level. Our main result is
the counterintuitive fact that the equilibrium level of infection
increases as the users’ learning rate increases. The same is
true when the users follow smooth best-response dynamics,
or any other continuous response function that implies higher
probability of protection when learning a higher level of infection.
In both cases, we characterize the stability and the domains of
attraction of the equilibrium points. Our finding also holds when
the epidemic propagation is simulated on human contact traces,
both when all users are of the same best-response behavior type
and when they are of two distinct behavior types.

Index Terms—Nonlinear systems, switched systems, differential
inclusions, communication networks, security

I. INTRODUCTION

A computer worm is a program that self-propagates across
a network, exploiting security or policy flaws in widely-used
services [1]. Worms have the potential to infect a large number
of computers, due to the high level of interconnection of the
telecommunication infrastructure. Indeed, a relatively recent
outbreak (Conficker/Downadup worm) infected more than 9
million computers [2]. Countermeasures to an infection can
be centrally enforced, or the decision for their adoption can
be left to individual agents such as individual home computer
users or companies.

Centralized enforcing is more likely to work in tightly
controlled environments, such as within a company network
where the users are obliged to abide by the company security
policy. In the wireless network setting, controlling the infection
has been studied [3] under the assumption that the network
operator is able and willing to control the communication
range of each device. Optimal control policies are found,
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which strike a balance between slowing the spread of the
infection and increasing the end-to-end traffic delay in the
network.

However, when it is up to individual agents to invest in
protection against infection [4]–[7], contradicting incentives
appear. Although agents want to be safe against viruses, they
would prefer to avoid paying the cost of security. Security
may not only cost money, it may also reduce the utility of the
network, for example by isolating the agent from the rest of
the network. Moreover, it may reduce the utility of the device,
for example by slowing it down [8].

The risk-seeking attitude of humans when faced with po-
tential losses [9] might shed some light on user incentives.
In psychological experiments, Tversky and Kahneman [10]
observe that their subjects prefer risking a large loss (in our
case, becoming infected) if they also have the chance of losing
nothing, rather than taking a sure but smaller loss (in our case,
activating security). Therefore, if the threat is not absolutely
certain nor imminent, users will resist spending any resources
on security (“One solution [for selling security] is to stoke
fear.” [9]).

To complicate things further, user incentives may change
with time, as the information available to them changes. There
exist security advisories that provide information about current
and newly emerging threats in popular technology products
[11], [12]. Such information influences user decisions and
incentives by changing their perception of the risks involved.
On the one hand, if users receive news of an ongoing epidemic,
they are much more willing to protect themselves. On the other
hand, when the infection has subsided and there is no clear
danger, complacency may set in with a consequent reduction
in the time and resources spent to ensure safety.

To the best of our knowledge, only static incentives of
agents have been studied [4], [5]. Users have only been
modeled as deciding once-and-for-all whether to install or not
a security product. The once-and-for-all approach applies to
installing a patch, but other countermeasures exist that can be
later revoked by the user: doing background scanning with
an antivirus software, setting up traffic-blocking filters on
firewalls, disconnecting networks or computers, etc.

In this paper, we study myopic decision-makers who receive
dynamically-updated information about the level of infection
in the network. We model agents as more likely to activate
countermeasures when the infection level is high and, when
the infection level is low, as less likely to activate them, or
more likely to de-activate them. We combine the epidemic
propagation of the worm with a game theoretic description of
the user behavior into a nonlinear dynamical system. Similarly
to other papers on security investments [4], [5], we do not
collect observations to estimate the precise shape of real-
user response functions. In this sense, clearly, our conclusions
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are of a qualitative nature. If practitioners wish to derive
quantitative results from our model, in Section II-D7 we
provide guidance on how to find approximate estimates of
the parameter values.

Our main scenario comprises the following three elements:
(i) a homogeneous mixing network (random pairwise con-
tacts), (ii) homogeneous and best-response (discontinuous)
user behavior, with a single threshold that determines whether
they activate or deactivate their protection, and (iii) users learn
what the infection level is at a rate called the learning rate.
We also test alternative scenarios for user behavior (smooth
best-response; two user classes instead of homogeneous user
behavior) and for network mixing (simulations on human
mobility traces).

Our contributions are as follows:
• The network reaches an endemic equilibrium1, that is,

an equilibrium where the infection persists. Our main
conclusion is the following counterintuitive result: the
higher the learning rate, the higher the infection level
at the equilibrium.

• We confirm our main conclusion in three cases: (i) in our
main scenario (Section III), (ii) in a scenario with smooth
best-response user behavior (Section IV-A), and (iii) in
a scenario with best-response behavior, with either one
or two classes of users simulated on real mobility traces
(human pairwise contacts) (Section IV-B).

• In the best-response and smooth best-response user be-
havior scenarios, we identify the equilibrium points (Sec-
tions III-C and IV-A1), we show under which conditions
they are locally stable (Sections III-D and IV-A2), we rule
out the possibility of closed trajectories and we character-
ize the domains of attraction for each equilibrium point
(Sections III-E and IV-A3).

II. THE SIPS MODEL FOR EPIDEMIC PROPAGATION AND
USER BEHAVIOR

A. Epidemic Propagation

There are N users in the network. Each user can be in one
of three states:

• Susceptible, denoted by S. The user does not have any
countermeasures in place and is not infected.

• Infected, denoted by I . The user is infected by the virus
and will spread it to any susceptible user he makes contact
with.

• Protected, denoted by P . The user has countermeasures
in place. As long as the user is in this state, he is immune
to the virus.

The number and fraction of users in each state are denoted,
respectively, by NS , NI , NP and S, I, P . It follows that NS+
NI +NP = N and S + I + P = 1. The state of the network
is x = (S, I, P ), and the set of possible states is X = 1

NN3 ∋
{NS

N , NI

N , NP

N }.
The evolution of the network state x is described as a

Continuous Time Markov Process, as follows. A Poisson

1The equilibrium notion that we use is in the long-term sense, i.e. as t →
∞.

TABLE I
TABLE OF IMPORTANT NOTATIONS

δ rate of disinfection (average infection duration is 1
δ
)

β contact rate of network users
γ rate of informing users about the infection level
I∗ infection threshold, in the best-response model, above

which users switch to protected

TABLE II
EVENTS THAT CAN HAPPEN IN THE NETWORK, THEIR RESULTS, AND HOW

EACH EVENT CHANGES THE NETWORK STATE x = (S, I, P ).

Event : Meeting between an S user and an I user

Result : S user becomes infected

Change: 1
N
(−1,+1, 0)

Event : Update received by S user

Result : S user becomes protected with probability pSP (x)

Change: 1
N
(−pSP (x), 0,+pSP (x))

Event : Update received by P user

Result : P user becomes susceptible with probability pPS(x)

Change: 1
N
(+pPS(x), 0,−pPS(x))

Event : Disinfection of I user

Result : I user becomes protected

Change: 1
N
(0,−1,+1)

process of rate β + γ + δ is associated with each user. At
an epoch of the Poisson process of user i – say at time t –
one of three events happens:

• With probability β
β+γ+δ , user i has a meeting with

another user, chosen uniformly at random. If the meeting
is between a susceptible and an infected user, the suscep-
tible user becomes infected. Otherwise nothing happens.

• With probability γ
β+γ+δ , user i receives an update about

the network state x, and he has the opportunity to revise
his current strategy if his state is S or P . If i’s state is
S, he switches to P with probability pSP (x). If i’s state
is P , he switches to S with probability pPS(x). If i is
infected, nothing happens.

• With probability δ
β+γ+δ , user i has a disinfection oppor-

tunity. That is, if i is infected, he becomes disinfected,
and we assume he becomes protected. If i is not infected,
nothing happens.

Table II summarizes the possible events and how each event
changes the network state.

B. User Behavior - Best-Response Dynamics

As can be seen from the epidemic propagation model, the
only point at which the users can make a choice is at an update
event. There is a cost cI associated with becoming infected,
and a cost cP associated with becoming protected. It holds
that cI > cP > 0, because if cI < cP there is no incentive for
a susceptible user to become protected. There is no cost for
being susceptible. Note that these costs need not be the actual
costs; user decisions are influenced by the costs as perceived
by the users.
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The choice between susceptible and protected depends on
which state minimizes the user’s expected cost. The cost
of protection is always cP . If the user chooses to remain
susceptible when the network state is x = (S, I, P ), the user’s
expected cost is IcI , as (i) the cost of infection is cI , (ii) there
is a fraction I of infected users, and (iii) the homogeneous
mixing assumption implies that the meeting between any given
pair of users is equiprobable to any other pair. That is, the
probability that the next meeting of the user is with an infected
user is equal to I . See also the last paragraph of this section,
the discussion in II-D, and in particular II-D6 and II-D4.

Therefore, the user’s decision would be S if IcI < cP , and
P if IcI > cP . If IcI = cP , then both choices are optimal,
and any randomization between them is also optimal. So, when
IcI = cP , the functions pSP (x) and pPS(x) are multivalued.
Note that the user’s decision depends only on the value of
I , rather than the whole state x of the network, so we will
slightly abuse the notation and use pSP (I) and pPS(I) in
what follows. We denote by I∗ the value of I that equalizes
the (perceived expected) cost of infection with the cost of
protection:

I∗ , cP
cI

.

The two functions become

pSP (I) =


0, I < I∗

[0, 1], I = I∗

1, I > I∗
pPS(I) =


1, I < I∗

[0, 1], I = I∗

0, I > I∗
.

Note that it is possible to generalize the users’ perceived
expected cost of infection at infection level I . Instead of IcI ,
the perceived expected cost can be any increasing function
cI(I) of the infection level I . The only difference in this case
is that I∗ is such that cI(I∗) = cP . The rest of the analysis
proceeds with no change.

C. Putting Everything Together

We consider the large population scenario, i.e., the limit as
N → ∞. Gast and Gaujal [13] show that, when N → ∞, the
trajectory of the stochastic system converges in probability to
a solution of a differential inclusion. If the solution is unique,
the stochastic system converges to it. If there are multiple
solutions for the same initial conditions, then the stochastic
system can converge to any of them.

In our case, the Continuous Time Markov Process described
previously converges to a solution of the following system of
differential inclusions (for brevity, the dependence of S, I, P
on t is not explicitly shown):

d

dt
S ∈ −βSI − γSpSP (x) + γPpPS(x)

d

dt
I = βSI − δI

d

dt
P ∈ δI + γSpSP (x)− γPpPS(x)

Since S + I + P = 1, we can eliminate one of the three
state variables. We eliminate P , and the system becomes

d

dt
S ∈ −βSI − γSpSP (x) + γ(1− S − I)pPS(x) (1a)

d

dt
I = βSI − δI, (1b)

together with P = 1−S−I . The state space D := {(S, I)|0 ≤
S ≤ 1, 0 ≤ I ≤ 1, S + I ≤ 1} is bounded. This system2 is
two-dimensional and autonomous3.

We denote the right-hand side of system (1) by F (x), and
we slightly abuse the notation for x to be x = (S, I), x ∈ D.
So, system (1) becomes

d

dt
x ∈ F (x).

D. Discussion of Model Assumptions

1) Worm lifecycle S → I → P : The S → I → P is a
normal lifecycle of a worm. Susceptible users become infected
when compromised by the worm. Infected users stop being
infected after some time; they then become protected as a
result of the action that they take to fight the infection.

Many other potential lifecycles are conceivable [1]. S →
I → S is another model that has been considered [15]. It
applies, for instance, when the users reboot their machines to
delete the worm. Not all worms are deleted in this way (e.g.
they might be in the Master Boot Record of the computer, and
so they might reload themselves upon reboot). But if the worm
is deleted, then the machine simply re-enters the susceptible
state upon reboot. The SEIR model [14] can be used for
modeling worms with a dormant phase (E for Exposed) before
becoming actively infectious.

2) Adoption/removal of countermeasures and their timing:
In our model, the countermeasures that users can activate or
deactivate include the following:

• Using antivirus software or special programs to clean
infected computers.

• Setting up firewall filters to block the virus or worm
traffic.

• Disconnecting networks or computers when no effective
methods are available.

Other countermeasures exist. A popular one, which has
received a lot of attention in the research community [16],
is to patch or to upgrade susceptible devices in order to make
them immune to the virus or worm. Of course, note that, if all
devices are eventually patched, then there can be no long-term
infection.

Adoption and removal of measures is a binary (on/off)
choice in our case; users can choose between being either
completely susceptible or completely protected. The antivirus
software is either active or not; the firewall filter either exists

2Note that for γ = 0 the model is identical to the standard SIR epidemic
model (R stands for Recovered). For pSP (x) = 0,∀x, and pPS(x) = 1, ∀x,
it is identical to the SIRS model [14]. Therefore, our SIPS model generalizes
both SIR and SIRS.

3An autonomous system is a system of ordinary differential equations
whose parameters do not explicitly depend on the independent variable (time
t in our case).
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and blocks the worm packets or not. An alternative would be to
model a gradual adoption of a security measure. For instance,
we could introduce a parameter for the scanning rate of a
firewall and allow for the gradual increase of this rate. This
would gradually increase the cost of protection and gradually
decrease the probability of infection.

We only allow users to adopt/remove the countermeasure
at the update epochs. In principle, users are free to do both
at any time they want. But in between update epochs, they
do not have any new information. So, we assume that, if they
want to act, they will act immediately when they receive the
latest update.

3) Homogeneous Mixing and Network Topology: Our ho-
mogeneous mixing assumption is suitable for worms that
perform random uniform scans of the IP address space to
find new victims (Code Red (version 2) [17], Slammer [18]).
It does not apply to worms whose propagation is topology
dependent [19], e.g. by emails to the address-book contacts of
the infected user, or mobile phone worms that propagate by
proximity (Bluetooth worms). In Section IV-B, we perform
simulations on human contact traces, to study different prop-
agation dynamics. We find that our main conclusion persists.

4) Best-Response Dynamics and User Rationality: The
concept of best-response is a fundamental one in game theory,
and it is also one of the most popular dynamics in evolutionary
game theory. Hence, it is our main scenario in this paper.
Best-response dynamics lead to differential inclusions, which
unfortunately increases the complexity of the analysis [20]–
[23].

Differential inclusions appear because of the multiplicity of
optimal responses. In our paper the multiplicity appears when
I = I∗. At that value of I both protection and no protection are
optimal, as well as all randomizations among them. It turns out
that under certain conditions (Eq. (3)), the equilibrium point of
the system is exactly on the line I = I∗; secondly, on a more
technical note, the system trajectories that pass from the point
S = δ

β , I = I∗ cannot be uniquely continued. So, if we want
to study best-response dynamics, we cannot afford to ignore
differential inclusions, as the properties of the system under
study are intricately affected.

Of course, users might not be perfectly rational. Even in
the case of best-response dynamics, we consider the users
to be myopic: they do not take into account the long-term
effects of their actions, but they rather behave greedily. But the
lack of user rationality may go even further. Their perception
of the cost may not be clear cut (e.g., they are not sure
about the exact values of cI and cP ). Alternatively, they may
take the network state report to be not completely accurate.
To account for such cases, we study smooth best-response
dynamics (Section IV-A). Briefly, we assume that pSP (·) and
pPS(·) can be arbitrary functions of I , as long as pSP (·) is
non-decreasing with I and pPS(·) is non-increasing with I .

5) Uniform User Behavior: In the model as described, all
users behave in the same way. To account for users with
different response functions, in Section IV-B we simulate two
user classes, each with a different best-response function. An
extension to more than two classes is straightforward.

6) Costs of Infection and Protection: The cost of infection
and protection have been assumed to be constant, but this
needs not be so. For example, it is reasonable to make the
infection cost depend on δ. A larger δ means a shorter
infection duration, so the infection cost should presumably
decrease with δ. The influence of the contact rate β is less
clear. A higher β increases the probability of getting infected
within the next dt time units: this probability is βIdt. On
the one hand, the objective cost of infection itself does not
change (removing the virus from the computer, lost hours of
productivity, lost/compromised data, psychological effect on
user, etc). On the other hand, as we already said, what matters
is the cost as perceived by the users. Perhaps a user feels more
threatened due to the high contact rate β.

A further issue is the immediacy of the protection cost
versus the vagueness of the infection cost. The infection cost
is a potential cost that will be paid in the future, if the user
becomes infected. The protection cost is an immediate loss.
Humans heavily discount future losses and rewards.

We argue that none of the above considerations change our
conclusions, unless some cost depends on the update rate γ.
Making the infection cost (and even the protection cost) a
function of β and δ merely turns I∗ into I∗(β, δ); as β and δ
are constants, I∗(β, δ) also remains constant with respect to
time, so our conclusions do not change. If, for some reason,
I∗ depends on γ, and it also happens that the equilibrium
infection is equal to I∗ (which happens in the case of the
equilibrium point X2, Section III), then our conclusions on
the dependency of the equilibrium infection level on γ would
be different.

The qualitatively different nature of the infection and pro-
tection costs (future versus immediate) can be incorporated
in our model by appropriately discounting the value of cI .
The discounting can even depend on β, as β influences the
immediacy of the infection.

7) Parameter Identification: There are five parameters in
our model, β, δ, γ, cI , cP , and two smooth best-response be-
havior functions, pPS() and pSP (). Our main conclusion is
qualitative, so it is not influenced by the exact values of
these parameters. Any incidental quantitative results of our
work, such as the infection level at the equilibrium, are indeed
sensitive to the parameter values. Even though it is not directly
relevant to our main contributions, we provide some insight
on how an interested reader might go about measuring these
parameters.

To measure β, we have to estimate the contact rate per
infected user for a real worm, that is, the number of infection
attempts that the worm initiates each time unit. This can be
done by observing the behavior of the worm in the wild, or
in a controlled environment, or by analyzing the source code
of the worm if it is available. All three methods are used by
security researchers.

To measure δ, we have to estimate the time that a device
remains infected. The duration of the infection may be due
to any number of factors, such as the user not noticing the
worm, the user being indifferent, or the worm being inherently
difficult to clean because its removal might cause data loss,
for example. Measurements for the infection duration can
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typically be collected by system administrators, or any other
person who is called upon to clean the infected device.
Although it is easy to establish the end time of the infection
at a device, finding the start time might require computer
forensics techniques.

The value of γ is likely easier to determine, because γ is
the update rate and updates are sent to all the users in the
network.

An approximate estimate for the infection and protec-
tion costs can be obtained, for instance, through psycho-
logical/sociological tests and interviews, as well as purely
technical and economic evaluations. It is sufficient for our best-
response model that there be a threshold I∗ for I , above which
the users switch from S to P and below which they switch
from P to S. Similar considerations apply for the derivation
of the smooth best-response functions pSP (I) and pPS(I).
Our conclusions depend only on pSP (I) increasing with I
and on pPS(I) decreasing with I . We believe that is a very
mild assumption on user behavior, but practitioners who wish
to use our conclusions should verify it.

The non-necessity of exact estimation of the various pa-
rameters/functions adds to the importance of our results, as a
practitioner does not need to estimate the exact values of these
parameters in order to ascertain whether our conclusions apply.
All that is necessary is that our qualitative assumptions be
valid (e.g. assumptions on worm state evolution S → I → P ,
ability of users/devices to activate and deactivate protection).

III. RESULTS FOR BEST-RESPONSE DYNAMICS

In this section, we study the behavior of differential in-
clusion (1) for various values of parameters β, γ, δ and I∗.
The main finding is that the equilibrium value of the infection
increases with γ, but it cannot increase above I∗. The technical
results are summarized as follows (see also Fig. 1).

• Solutions exist.
• All solutions can be uniquely continued, except those that

start at (S, I) =
(

δ
β , I

∗
)

. These latter solutions all start
at the same point and then diverge, but none of them can
ever approach that point again. So, if we ignore the initial
point of those solutions, all solutions can be uniquely
continued.

• Point X0 = (1, 0) is always an equilibrium point. If δ <

β, one more equilibrium point exists: X1 if I∗ >
1− δ

β

1+ δ
γ

, or

X2 otherwise
(
X1 =

(
δ
β ,

1− δ
β

1+ δ
γ

)
and X2 =

(
δ
β , I

∗
))

.

• If δ ≥ β, X0 is asymptotically stable4. If δ < β, X0 is
a saddle point. If X1 exists, it is asymptotically stable.
Finally, if X2 exists, it is asymptotically stable.

• There are no solutions that are closed trajectories. All
system trajectories converge to one of the equilibrium
points. When there is more than one equilibrium point
(X0 and one of X1 or X2), a trajectory converges to
X0 = (1, 0) if and only if it starts on line I = 0; all
other trajectories converge to the other point.

4A point x0 is asymptotically stable, if for every ϵ > 0 there exists a δ
such that if ||x(0) − x0|| < δ then ||x(t) − x0|| < ϵ for every t ≥ 0, and
also limt→∞ x(t) = x0

A. Existence of Solutions

We show that the differential inclusion
d

dt
x ∈ F (x), x ∈ D (2)

has solutions.
We define a partition of the state space D into three

domains: D− = D∩{(S, I), I < I∗}, D+ = D∩{(S, I), I >
I∗}, and L = D ∩ {(S, I) : I = I∗}. Domain L will also be
referred to as the discontinuity line.

A solution for this differential inclusion is an absolutely
continuous vector function x(t) defined on an interval J for
which d

dtx(t) ∈ F (x(t)) almost everywhere on J [24].
Theorem 1: Solutions of (2) exist.

Proof: See [25].

B. Uniqueness of Solutions

In general, because the right-hand side of (2) is multivalued,
even though two solutions at time t0 are both at the point x0,
they may not coincide on an interval t0 ≤ t ≤ t1 for any
t1 > t0. If any two solutions that coincide at t0 also coincide
until some t1 > t0, then we say that right uniqueness holds at
(t0, x0). Left uniqueness at (t0, x0) is defined similarly (with
t1 < t0), and (right and left) uniqueness in a domain holds if
it holds at each point of the domain.

Theorem 2: All solutions of (2) can be uniquely continued,
except possibly those that start at (S, I) = ( δβ , I

∗). The latter
ones will stay at that point if 0 ∈ F ( δβ , I

∗), i.e., if ( δβ , I
∗)

is an equilibrium point; otherwise, they can be continued in
multiple ways.

Proof: See Appendix.

C. Equilibrium Points

The equilibrium points are found by solving the inclu-
sion 0 ∈ F (x) for x. If δ ≥ β, point X0 = (1, 0)
is the only equilibrium point. If δ < β, one more equi-
librium point exists: X1 if I∗ >

1− δ
β

1+ δ
γ

, or X2 otherwise(
X1 =

(
δ
β ,

1− δ
β

1+ δ
γ

)
and X2 =

(
δ
β , I

∗
))

.

1) Equilibrium points above the discontinuity line: There
can be no equilibrium points in the domain D+. The system
becomes

d

dt
S = −βSI − γS

d

dt
I = βSI − δI.

From the first equation, S has to be zero. But then the
second equation implies that I also has to be zero, which is
not an admissible value for I as I = 0 cannot be above the
discontinuity line.

2) Equilibrium points below the discontinuity line: There
is either one or two equilibrium points in the domain D−. The
system becomes

d

dt
S = −βSI + γ(1− S − I)

d

dt
I = βSI − δI.
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I

S

X0

I = I∗

0

1

1

(a) The case δ ≥ β. The only equilibrium point is X0 = (1, 0). It
is stable and all trajectories converge to it. β = 3.0, δ = 4.0, γ =
1.2, I∗ = 0.3

I

S

X0

X1

S =
δ
β

I =
1−

δ
β

1+
δ
γ

I = I∗

0

1

1

(b) The case δ < β and I∗ >
1− δ

β

1+ δ
γ

. The point X1 =

(
δ
β
,
1− δ

β

1+ δ
γ

)
is a stable equilibrium point. β = 3.0, δ = 1.0, γ = 1.2, I∗ = 0.8

I = I∗

S =
δ
β

(c) Detail of 1b around point
(

δ
β
, I∗

)
. The continuation of a

trajectory starting at
(

δ
β
, I∗

)
is not unique. Three sample trajectories

are plotted, corresponding to different elements of set F ( δ
β
, I∗).

I

S

X0

X2

S =
δ
β

I =
1−

δ
β

1+
δ
γ

I = I
∗

0

1

1

(d) The case δ < β and I∗ ≤
1− δ

β

1+ δ
γ

. The point X2 =
(

δ
β
, I∗

)
is

a stable equilibrium point. β = 3.0, δ = 1.0, γ = 1.2, I∗ = 0.2

Fig. 1. The vector field of the system and the equilibrium points for all regions of the parameter space. At each point (S, I), an arrow parallel to ( dS
dt

, dI
dt

)
is plotted. In figures 1b and 1d, point X0 = (1, 0) is also an equilibrium point but it is unstable. All trajectories converge to X1 or X2, respectively, except
those that start on the axis I = 0, which converge to X0. The indicative parameter values used are β = 3.0, δ = 4.0, 1.0, 1.0, γ = 1.2, I∗ = 0.3, 0.8, 0.2.
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This system has the solutions

X0 = (S0, I0) = (1, 0)

X1 = (S1, I1) =

(
δ

β
,
1− δ

β

1 + δ
γ

)
.

The second solution, X1, is admissible if and only if X1 ∈
D−, i.e.,

δ

β
≤ 1,

1− δ
β

1 + δ
γ

< I∗, and
δ

β
+

1− δ
β

1 + δ
γ

≤ 1.

The third condition is always satisfied. Note also that if δ
β = 1,

then X0 and X1 coincide.
3) Equilibrium points on the discontinuity line: There is at

most one equilibrium point on the discontinuity line I = I∗.
To find it we solve the inclusion 0 ∈ F (S, I∗) for S. The
system becomes

d

dt
S ∈ −βSI∗ + [−γS, γ(1− S − I∗)]

d

dt
I = βSI∗ − δI∗.

Since I∗ > 0, d
dtI is zero only when S = δ

β . We then have
to check if it is possible to make d

dtS equal to zero, that is, if
0 ∈ F ( δβ , I

∗). We find that it is possible when I∗ is such that

I∗ ≤
1− δ

β

1 + δ
γ

. (3)

In that case, the equilibrium point is

X2 = (S2, I2) =

(
δ

β
, I∗
)
.

The conditions for admissibility are S2 = δ
β ≤ 1 and S2+I2 =

δ
β + I∗ ≤ 1. The latter is true if (3) holds.

In general, there are many combinations of pSP (I
∗) and

pPS(I
∗) that make d

dtS equal to zero, but there is always one
with pSP (I

∗) = 0. In that case, pPS(I
∗) = δI∗

γ(1− δ
β−I∗)

.

D. Local Asymptotic Stability

1) Stability of X0 and X1:
Theorem 3: X0 is asymptotically stable if and only if β ≤ δ;

X1 is asymptotically stable whenever it exists (β > δ) and
the trajectories spiral towards X1 (at least locally). If β = δ,
X0 and X1 coincide, and the resulting point is asymptotically
stable.

Proof: We evaluate the Jacobian of the system at X0 and
X1. See [25].

2) Stability of X2:
Theorem 4: X2 is asymptotically stable whenever it exists.

Proof: To show that the equilibrium point on the discon-
tinuity line is asymptotically stable, we will use Theorem 5
below [24, §19, Theorem 3]. To use this theorem we transform
the system so that the line of discontinuity is the horizontal
axis, the equilibrium point is (0, 0), and the trajectories have
a clockwise direction for increasing t.

We set x = δ
β − S and y = I − I∗. Domains D,D−, D+

become G = {(x, y)|x ≤ δ
β , y ≥ −I∗, y − x ≤ 1 − I∗ − δ

β },
G− = G ∩ {(x, y)|y < 0}, and G+ = G ∩ {(x, y)|y > 0}.
Then, the system can be written as

dx

dt
= P−(x, y)

= −βxy − (βI∗ + γ)x+ (γ + δ)y

− γ(1− I∗) + δ(I∗ +
γ

β
)

dy

dt
= Q−(x, y) = −βx(y + I∗)

for (x, y) ∈ G−, and

dx

dt
= P+(x, y)

= −βxy − (βI∗ + γ)x+ δy + δ(I∗ +
γ

β
)

dy

dt
= Q+(x, y) = −βx(y + I∗)

for (x, y) ∈ G+.
The partial derivatives of P±, that is, of P+ and of P−,

are denoted by P±
x , P±

xx, P
±
y etc., and similarly for Q±. We

define two quantities A± in terms of functions P±, Q± and
their derivatives at (0, 0):

A± ,
(
P±
x +Q±

y

P± − Q±
xx

2Q±
x

)
.

Theorem 5: Let the conditions

Q− = Q+ = 0, P− < 0, P+ > 0

Q−
x < 0, Q+

x < 0

be fulfilled at (0, 0). Then, A+ − A− < 0 implies that the
zero solution is asymptotically stable, whereas A+ −A− > 0
implies that the zero solution is unstable.

All the conditions of Theorem 5 are satisfied in our case,
together with A+ − A− < 0. The condition P− < 0 is
equivalent to (3), i.e., the condition on I∗ that causes the
equilibrium point to be on the line of discontinuity. All the
other conditions are straightforward to verify. For example, to
prove that A+−A− < 0 we can quickly establish that A+ < 0
and A− > 0, again using (3).

E. Domains of Attraction

Consider an autonomous system on the plane, as ours is.
If a half trajectory T+ of such a system is bounded, then its
ω-limit set5 Ω(T+) contains either an equilibrium point or a
closed trajectory [24, §13, Theorem 6].

The main result for our system is
Theorem 6: For any half trajectory T+, its ω-limit set Ω(T )

can only contain equilibrium points, that is, X0 = (1, 0), X1 =

(S1, I1) =

(
δ
β ,

1− δ
β

1+ δ
γ

)
, or X2 = ( δβ , I

∗).

Proof:

5The ω-limit set of a half trajectory T+(x = ϕ(t), t0 ≤ t < ∞) is the
set of all points q for which there exists a sequence t1, t2, . . . tending to ∞
such that ϕ(ti) → q as i → ∞.
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If δ > β, then only X0 exists. There are no closed
trajectories as d

dtI < 0, so all trajectories converge to X0.
For the remainder of the proof, we assume β ≥ δ, so either
X1 or X2 exists and is stable.

The following two functions are useful6:

E(S, I) , S − S1 ln(S) + I +
γ

β
ln(I),

(S, I) ∈ D+

M(S, I) , S − (S1 +
γ

β
) ln(S +

γ

β
) + I − I1 ln(I),

(S, I) ∈ D−.

It holds that E(S, I) is constant on trajectories in the area D+,
and M(S, I) is decreasing along trajectories in the area D−.
Indeed, with some calculations it can be shown that
d

dt
E(S, I) =

∂E

∂S

dS

dt
+

∂E

∂I

dI

dt
= 0

d

dt
M(S, I) =

∂M

∂S

dS

dt
+

∂M

∂I

dI

dt
= − (βS − δ)2

βS + γ

1 + γ
β

1 + δ
γ

≤ 0.

Under the assumption β ≥ δ, we prove
Lemma 1: A trajectory converges to X0 = (1, 0) if and only

if it starts on line I = 0.
Proof: See [25].

From now on, we limit our attention to trajectories that have
no common points with the line I = 0.

Assume that there exists a half trajectory T+ whose limit
set Ω(T ) contains a closed trajectory Γ. By successively
eliminating properties of Γ, we prove that Γ cannot exist.

Lemma 2: Point ( δβ , I
∗) cannot be on a closed trajectory.

Proof: See [25].
As (S, I) = ( δβ , I

∗) cannot be on Γ, there holds right
uniqueness on Γ. Hence, Ω(Γ) = Γ.

We now prove that Γ cannot have more than two or fewer
than two intersection points with L.

Lemma 3: A closed trajectory Γ that does not pass through
the point ( δβ , I

∗) cannot have either more than two or fewer
than two intersection points with the discontinuity line L. If it
has two intersection points, they cannot be on the same side
of ( δβ , I

∗).
Proof: See [25].

Lemma 4: A closed trajectory Γ cannot intersect the dis-
continuity line L on exactly two points that are on opposite
sides of ( δβ , I

∗).
Proof: See Appendix.

From the previous lemmata, we conclude that there can be no
closed trajectory Γ. Therefore, all trajectories have to converge
to equilibrium points.

F. Discussion of Results

Fig. 2 shows that the total fraction
1− δ

β

1+ δ
γ

of infected at the

system equilibrium increases with the update rate γ, until
1− δ

β

1+ δ
γ

6Functions of this form are Lyapunov functions for the SIRS epidemic
model [26]. Although they are not Lyapunov functions in our case, we found
them using the technique described in [26]: looking for functions of the form
f1(S) + f2(I) whose time-derivatives do not change sign.

becomes equal to the threshold I∗. This increase is due to
the combination of two factors. First, when

1− δ
β

1+ δ
γ

< I∗, the
trajectories will eventually be completely contained in domain
D− (below I∗). In this domain, at each time a protected is
informed about the fraction of infected, he will choose to
become susceptible, thus fueling the infection. Second, no
susceptible will choose to become protected. The larger the
value of γ, the shorter time a user will spend being protected,
thus the smaller the fraction of protected. However, a smaller
fraction of protected implies a larger fraction of infected, as
the fraction of susceptible at equilibrium is necessarily δ

β , i.e.,
it is independent of γ.

I

γ

I∗

X1 : I(γ) =
1−

δ
β

1+
δ
γ

X2 : I(γ) = I∗

Fig. 2. The total fraction of infected as a function of γ.

When
1− δ

β

1+ δ
γ

> I∗, the equilibrium fraction of infected is
limited to I∗: further increases of γ have no effect. The expla-
nation is that, as soon as the instantaneous value of I exceeds
I∗, susceptible users switch to protected, and protected users
stay protected, thus bringing the infection level below I∗, into
the domain D−. However, there is no equilibrium point for
the system in D−, so the only possible equilibrium value of I
is I∗. For I = I∗ there are in general many combinations of
pSP (I

∗) and pPS(I
∗) that lead to an equilibrium, including

one with pSP (I
∗) = 0 and pPS(I

∗) > 0. That combination
means that no susceptible users become protected, but some
protected become susceptible. Other combinations with both
pSP (I

∗) > 0 and pPS(I
∗) > 0 would be harder to justify, as

they imply that at the same value of I∗ users would switch
from susceptible to protected and back.

IV. ROBUSTNESS OF RESULTS WITH RESPECT TO MODEL
ASSUMPTIONS

In our main scenario (Section II), all users follow best-
response (multivalued and discontinuous) dynamics, they con-
tact each other uniformly at random, and they all have the
same behavior function.

In the current section we show that our conclusions do
not change if we vary these assumptions. In all cases we
show that the equilibrium infection level increases with the
update rate γ. In particular, we prove that this holds even
if users follow any arbitrary continuous and single-valued
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response function, as long as pSP (I) increases with I and
pPS(I) decreases with I; we call this the smooth best-response
case. We also show that there are no periodic solutions, so
all trajectories converge to equilibrium points. Further, we
perform simulations on human contact traces, as opposed to
assuming uniform contact patterns. We confirm again that the
equilibrium infection increases with the update rate, whether
the users have a common behavior function or they are split
into two types (each with a different best-response threshold).

The more technical results in the smooth best-response
case (equilibrium points, conditions for asymptotic stability,
absence of closed trajectories) parallel the ones in the best-
response case.

A. Smooth Best-Response

The user behavior functions pSP (I) and pPS(I) are con-
tinuously differentiable, and we require that d

dI pSP (I) > 0
and d

dI pPS(I) < 0. Other than that, the two functions are
arbitrary. The stochastic system converges to a system of
ordinary differential equations [27], [28].

As mentioned above, it is still the case that the equilib-
rium infection level increases with the update rate γ. Further
technical results follow:

• Two equilibrium points may exist, X0 and X1. X0 exists
always, X1 when δ

β ≤ pPS(0)
pSP (0)+pPS(0) (Condition (5)).

• X0 is asymptotically stable when X1 does not exist. X1

is asymptotically stable whenever it exists.
• The trajectories of (4) must converge either to X0 or to

X1. When (5) does not hold, all trajectories converge to
X0. When (5) holds, trajectories starting at points with
I = 0 approach X0 along line I = 0, whereas all other
trajectories converge to X1.

1) Equilibrium Points: The equilibrium points of the sys-
tem are found by solving the equation F (x) = 0 for x:

0 =
d

dt
S = −βSI − γSpSP (I) + γ(1− S − I)pPS(I)

(4a)

0 =
d

dt
I = βSI − δI (4b)

From (4b), either I = 0 or S = δ
β .

• Equilibrium point X0

Substituting I = 0 into (4a), we find X0 = (S0, I0) =(
pPS(0)

pSP (0)+pPS(0) , 0
)

. These values of (S0, I0) are always
admissible as they are always non-negative and at most
equal to 1.
Recalling the meaning of pPS(0) and pSP (0), we can
reasonably expect that pPS(0) = 1 and pSP (0) = 0.
Protected users have no reason to remain protected, and
susceptible users have no reason to become protected,
when there is no infection in the network. In this case,
X0 is (1, 0).

• Equilibrium point X1

Substituting S = δ
β into (4a), it follows that I has to

satisfy g(I) = 0, where

g(I) , −δI − γδ

β
pSP (I) + γ

(
1− δ

β
− I

)
pPS(I).

To solve g(I) = 0 for I we need to know the two
response functions pSP (I) and pPS(I). But even without
knowing them, we can still prove that g(I) = 0 has a
unique solution for I ∈ [0, 1− δ

β ] under the condition

δ

β
≤ pPS(0)

pSP (0) + pPS(0)
. (5)

The proof proceeds in three straightforward steps; we
omit the details. The first step is to show that dg(I)

dI < 0,
so g(I) strictly and monotonically decreases in the inter-
val [0, 1− δ

β ]. The second step is to show that g(0) ≥ 0,
which leads to (5), and then to show that g(1− δ

β ) < 0.
The final step is to use the Intermediate Value Theorem
to conclude that there is exactly one solution of g(I) = 0
in [0, 1− δ

β ].
Denoting by I1 the solution of g(I) = 0, we conclude
that X1 = (S1, I1) = ( δβ , I1) is uniquely determined
under (5). The values S1, I1 are admissible as they are
both between 0 and 1, and their sum is at most equal
to 1. Note that if (5) does not hold then both g(0) < 0
and g(1− δ

β ) < 0, so the monotonicity of g in [0, 1− δ
β ]

implies that X1 does not exist. Consequently, (5) is both
necessary and sufficient for the existence of X1.

2) Asymptotic Stability:
Theorem 7: X0 is asymptotically stable when X1 does not

exist. X1 is asymptotically stable whenever it exists.
Proof: We evaluate the Jacobian of the system at X0 and

X1. See [25].
3) Domains of Attraction:
Theorem 8: The trajectories of (4) must converge either

to X0 or to X1. When (5) does not hold, all trajectories
converge to X0. When (5) holds, trajectories starting on line
I = 0 approach X0 along I = 0, whereas all other trajectories
converge to X1.

Proof: Since the system is two-dimensional and F is
continuously differentiable, we can use Dulac’s criterion [29]
to show that the system can have no periodic trajectory.

Theorem 9 (Dulac’s criterion): Let A be a simply connected
domain. If there exists a continuously differentiable function
h : A → R such that ∇ · (hF ) is continuous and non-zero on
A, then no periodic trajectory can lie entirely in A.

In our case, domain A is the state space excluding line
I = 0. Note that there can be no periodic trajectory that passes
from a point with I = 0. We select as function h the function
h(S, I) = 1

I . We compute ∇ · (hF ) to be

∇ · (hF ) = −β − γ
pSP (I)

I
− γ

pPS(I)

I
< 0, ∀(S, I) ∈ A,

which is continuous and non-zero in A. Then, from Dulac’s
criterion, no periodic trajectory lies entirely in A, and, conse-
quently, the system has no periodic trajectory at all. From the
Poincaré-Bendixson theorem, the system can only converge
to a periodic trajectory or an equilibrium point; so, we can
conclude that every trajectory must converge to an equilibrium
point, that is, either to X0 or to X1.

More precisely, when (5) does not hold, only X0 exists
so all trajectories converge to X0. When (5) holds, both X0

and X1 exist, and X0 is a saddle point. Trajectories starting
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on line I = 0 approach X0 along I = 0, whereas all other
trajectories converge to X1. Indeed, if I(0) > 0, then the
corresponding trajectory will have I(t) > 0, ∀t > 0. The
reason is that if I(t0) = 0 for some finite t0 > 0, then the
uniqueness of solutions would be violated at (S(t0), I(t0)),
because (S(t0), I(t0)) would be a common point with the
trajectories that approach X0 along the line I = 0. If t0 = ∞,
i.e., the trajectory with I(0) > 0 converges asymptotically
to X0 while I(t) remains strictly positive, then we reach
a contradiction as d

dtI will become positive at points close
enough to X0 (see (5) and (4b)).

4) The equilibrium infection increases with γ: The no-
infection equilibrium point X0 = (1, 0) is unaffected by γ.
We show now that, at X1 =

(
δ
β , I1

)
, the equilibrium level of

the infected increases with γ.
Theorem 10: The infection I1 at X1 =

(
δ
β , I1

)
increases

with γ.
Proof: The derivative dI1

dγ is always positive:
I1 satisfies g(I1) = 0, i.e.,

−δI1 −
γδ

β
pSP (I1) + γ(1− δ

β
− I1)pPS(I1) = 0 (6)

Differentiating (6) with respect to γ we have

dI1
dγ

G(I1) = H(I1),

where

G(I1) , −δ − γδ

β

dpSP (I1)

dI1
− γpPS(I1)

+ γ(1− δ

β
− I1)

dpPS(I1)

dI1
,

and

H(I1) ,
δ

β
pSP (I1)− (1− δ

β
− I1)pPS(I1).

But G(I1) < 0 and H(I1) < 0 for all values of I1. Therefore,
dI1
dγ is positive.

The negativity of G(I1) is deduced from dpSP (I1)
dI1

> 0 and
dpPS(I1)

dI1
< 0. The negativity of H(I1) is deduced from (6):

δ
β pSP (I1)− (1− δ

β − I1)pPS(I1) = − δ
γ I1 < 0.

Dividing (6) by γ and taking the limit γ → ∞, the limiting
value of I1 is the solution to

δ

β
pSP (I1) = (1− δ

β
− I1)pPS(I1).

This limiting value is admissible, as it is also a solution of
g(I) = 0, hence it lies in the interval [0, 1− δ

β ].

B. Propagation on Human Contact Traces

In this section, we use human contact traces to simulate
the propagation, instead of assuming uniform contact patterns;
the objective is to test the robustness of our conclusions with
respect to the contact pattern. Moreover, instead of only having
a common response function for all users, we now include
the case where users are split into two classes, each with a
different best-response behavior function. Note that we choose
to have two classes to keep the presentation simple, but we

believe that our results carry over to multiple user classes.
Using enough user classes, it is possible to approximate any
arbitrary continuous distribution of user behaviors.

The traces used are Bluetooth contacts among 41 devices
given to participants in a conference [30]. These traces were
collected over a period of approximately 72 hours.

For the single user class case, a piecewise-continuous re-
sponse function is used (Fig. 3):

pSP (I) =


0 I < I∗ − ϵ

2
1
ϵ (I − I∗ + ϵ

2 ) I∗ − ϵ
2 < I < I∗ + ϵ

2

1 I > I∗ + ϵ
2

and pPS(I) = 1− pSP (I).
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Fig. 3. The user response function pSP (I) used in the simulations: the
probability that a susceptible user switches to being protected, upon learning
the fraction I of infected users in the network.

For the two user-class case, we use separate piecewise-
continuous response functions for each class. Users in the
first class have a low threshold I∗1 = 0.1. Because of their
low threshold, these users become protected easily, and they
do not easily switch from protected to susceptible. We call
them responsible because the way they behave helps reduce
the infection. The second class of users, who we call selfish,
have a high threshold I∗2 = 0.9. This means that they hardly
ever decide to switch from susceptible to protected, whereas
they almost always decide to leave the protected state. For
both classes ϵ = 0.001.

We now establish that the fraction of infected indeed
increases for larger values of the update rate γ. For the
simulations that follow, we set7 δ = (6hr)−1, and we plot
the system trajectories on the S − I plane (average of 30
simulations) for three different values of γ, (1hr)−1, (6hr)−1,
and (24hr)−1. The initial conditions for all simulations were 1
infected and 40 susceptible. In the case of two user classes, the
initially infected user is of class 2 (selfish). Each simulation
runs until either there are no infected, or the end of the traces
is reached.

7These are indicative values. Our purpose is not to model any specific
worm, but to show that our conclusions (dependence of the infection level on
γ) hold for worms with a range of characteristics.
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Fig. 4. Single user behavior class. The trajectory of the system (average of 30 simulations) on the SI plane, when δ = (6hr)−1 and γ takes the values
(1hr)−1, (6hr)−1, and (24hr)−1. The thresholds are I∗ = 0.1, 0.5, 0.9. The network experiences higher numbers of infected devices for higher values of
γ. I∗ limits the infection when I∗ = 0.1, 0.5.

In Fig. 4 we plot simulation results for the single user
class case for I∗ = 0.1, 0.5, 0.9, and ϵ = 0.001, omitting
an initial transient phase. The system state oscillates between
two equilibrium points, X0 (nighttime, when the contact rate
is low) and either X1 or X2, depending on whether I∗ is low
enough to limit the infection or not. In all cases, the system
trajectories go through higher values of I for increasing values
of γ, thus confirming our main conclusion that the infection
level increases with the update rate. The effect of lowering I∗

is that it limits the maximum infection at the equilibrium, so
the trajectories are capped at values of I not far above I∗.

In Fig. 5 we plot the system trajectories for the two user-
class case. We again omit the initial transient phase, and we
show the susceptible and infected of 1) the total population
(first column), 2) the responsible subpopulation (second col-
umn), and 3) the selfish subpopulation (third column). Each
row corresponds to a different split of the total population
into responsible and selfish subpopulations. In the first row,
the responsible-selfish split is 20%-80%, in the second row it
is 50%-50%, and in the third row it is 80%-20%.

We again confirm the conclusion that the fraction of infected
in the total population increases for larger values of γ. Two
secondary conclusions relate to the situation within each
subpopulation: the selfish user trajectories seem as if the selfish
were isolated. That is, their trajectories are very similar to
those they would follow if they were alone in the network
(compare with the case I∗ = 0.9 in Fig. 4). The responsible
users, on the contrary, stay mostly in the bottom left region,
which means that many of them stay protected. Comparing
with the case I∗ = 0.9 in Fig. 4, they now stay a bit closer
to the bottom left corner. This means that the selfish-caused
infection keeps more of them protected than if they were
alone in the network. The observations on the selfish and on
the responsible are mutually compatible, as the users that are
protected (here, the responsible) do not interact with the rest
of the network, so the trajectories of the remaining users (here,
the selfish) seem as if they were isolated.

V. POLICY IMPLICATIONS AND POTENTIAL SOLUTIONS

We have confirmed our main conclusion across various
scenarios: the higher the learning rate, the higher the infection
level at the equilibrium. In order to avoid such an increased
infection level, various potential solutions suggest themselves.
Firstly, because increasing γ increases the infection, it makes
sense to reduce γ, that is, to stop informing users about
the current infection level. However, this solution seems a
bit radical, throwing out the baby with the bath water. A
more moderate solution would be to inform users only if the
infection level exceeds I∗. As long as the infection level is
below I∗, the users would not be informed at all, or they would
be informed only about the existence (but not the level) of the
infection. This solution would indeed decrease the infection,
assuming that the users do not start interpreting the absence of
information as an indirect notification that the infection level
is low.

Another solution is to decrease I∗, as I∗ limits the max-
imum infection level. Decreasing I∗ (I∗ , cP

cI
) means de-

creasing cP or increasing cI . On the one hand, increasing cI
(or user perception of cI ) could be achieved by holding users
liable8 if their devices become infected, or by increasing user
awareness for the consequences of an infection. Decreasing
cP , on the other hand, could be done by moving the cost of
protection to the mobile operator (or ISP). The operator would
have an incentive to shoulder the cost (at least part of it), if it
is liable8 in case of user infection.

Increasing user awareness could also help change the be-
havior of users. In particular, users should be informed about
the long-term consequences of staying unprotected. This might
change their myopic behavior.

A synthetic solution that would guarantee a zero-infection
level at the equilibrium, is the following: Activate security at
the first sign of infection (equivalent to I∗ = 0) and keep it
activated until the infection drops back to zero. That is, the
only updates would be at the beginning and at the end of the
infection, rather than at a constant rate. However, that would

8Penalizing users or software publishers has already been proposed, in the
law community, as a potential reform for regulating worms in cyberspace [31].
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Fig. 5. The trajectory of the system (average of 30 simulations) on the SI plane, when δ = (6hr)−1 and γ takes the values (1hr)−1, (6hr)−1, and
(24hr)−1. Users are split into two classes: the responsible, with I∗ = 0.1, and the selfish, with I∗ = 0.9. The columns correspond to the total population,
the responsible subpopulation, and the selfish subpopulation. The rows correspond to a total population split of 20%-80%, 50%-50%, and 80%-20% into
responsible and selfish. As in the case of a single user class, the network experiences higher numbers of infected devices for higher values of γ. In the current
case of multiple user classes, the higher number of infected is mostly due to the selfish users.

require modifying the behavior of the users, as not all users
can be expected to behave voluntarily in such a responsible
manner (as I∗ = 0 implies they would).

VI. CONCLUSIONS AND FUTURE WORK

We have studied the interaction of two factors, myopic
decision-makers and dynamic information updates, in the
context of security activation decisions in a network with a
propagating worm. Our main scenario is the best-response
user dynamic in a homogeneous mixing network. We conclude
that an increased update rate counterintuitively leads to an
increased equilibrium infection level. Our conclusion does not
change when the users follow smooth best-response dynamics
(arbitrary continuous single-valued function). Our conclusion
remains valid in the case of best-response behavior, with one
or two classes of users (low and high threshold) simulated on
real mobility traces.

In the best-response and smooth best-response dynamics,
we identify the equilibrium points, show when they are locally
stable, and rule out the possibility of closed trajectories. We
also characterize the domains of attraction for each equilibrium
point.

In future work, we aim to study the transient behavior of
the system. The transient behavior becomes important when
the convergence to equilibrium is slow: the time average of the
infection cost over some initial finite interval might be quite
different from the equilibrium cost.

It may also be worth examining alternative worm models,
and testing whether our main conclusion holds for them, too.
For example, the SEIR model is more suitable for a worm with
a dormant phase after infecting a user but before starting to
infect others. Alternative countermeasures, such as patching,
require different models, such as adding a new state R for
the (patched) users that have permanently recovered from the
infection.

Worms have multiple spreading patterns (called “target dis-
covery methods” [1]). Depending on the pattern, the epidemic
propagation can be faster or slower; it can even be topology
dependent (worms that spread to the local network of an
infected user, or worms that spread to a user’s email contacts,
for example). Our conclusions might then need to be modified.
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APPENDIX

Proof of Theorem 2: The solution is unique in D− and
in D+ because F has continuous partial derivatives there.

A solution x(t) of (2) may intersect with the line of
discontinuity L, say at time t = t0. We now study when such
a solution can be uniquely continued for t > t0, i.e., we study
when right-uniqueness holds.

Formally, let F−(x) and F+(x) be the limiting values of F
at a point x ∈ L as F approaches x from D− and from D+,
respectively. Let h(x) = F+(x) − F−(x), and F−

N , F+
N , hN

be the projections of the vectors F−, F+, h onto n = (0, 1),
the normal to L directed from D− to D+ at x.

The values of these vectors and projections are

F−(x) = (−βSI∗ + γ(1− S − I∗), βSI∗ − δI∗)

F+(x) = (−βSI∗ − γS, βSI∗ − δI∗)

h(x) = (−γS − γ(1− S − I∗), 0)

F−
N = βSI∗ − δI∗

F+
N = βSI∗ − δI∗

hN = 0.

On L, at the points where F−
N > 0, F+

N > 0 (or F−
N < 0,

F+
N < 0), the solutions pass from D− into D+ (correspond-

ingly, from D+ into D−) and uniqueness is not violated [24,
§10, Corollary 1]. So, at no point of L is uniqueness violated,
except possibly at ( δβ , I

∗).
For a solution that starts at ( δβ , I

∗) there are two possi-
bilities. First, if 0 ∈ F ( δβ , I

∗), i.e., if ( δβ , I
∗) is an equi-

librium point, then the solution will stay at ( δβ , I
∗). But if

0 /∈ F ( δβ , I
∗), the continuation is not unique: There is one

continuation for each element of set F ( δβ , I
∗), and all of them

are tangent to L because d
dtI = 0 when S = δ

β (see Fig. 1c).
In the proof of Lemma 2, we show that none of them can ever
approach ( δβ , I

∗) again in the positive direction of time.

Proof of Lemma 4, part of Theorem 6: Call A = (SA, I
∗)

the point in Γ ∩ L with SA < δ
β , and call B = (SB , I

∗)

the one with SB > δ
β . Let Γ be parameterized by ϕ(t) =

(x(t), y(t)), t ∈ [0, T ]; also ϕ(0) = ϕ(T ). Function ϕ(t)
is a solution of the differential inclusion, that is, ϕ̇(t) =
(ẋ(t), ẏ(t)) ∈ F (ϕ(t)), t ∈ [0, T ]. Let tA, tB ∈ [0, T ] be
such that A = ϕ(tA) and B = ϕ(tB). Let αA, αB ∈ [0, 1]
be such that ẋ(tA) = −βxy − γx + αAγ(1 − y) and
ẋ(tB) = −βxy − γx+ αBγ(1− y).
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Define P (x, y) and Q(x, y), (x, y) ∈ D \ {y, y > 0} as
follows:

P (x, y) = −1

y
ẏ = −1

y
(βxy − δy) = δ − βx

Q(x, y) =
1

y
ẋ

=


1
y (−βxy + γ(1− x− y)), y < I∗

1
y (−βxy − γx+ αAγ(1− y)), x ≤ δ

β , y = I∗

1
y (−βxy − γx+ αBγ(1− y)), x > δ

β , y = I∗

1
y (−βxy − γx), y > I∗

We compute
∮
Γ
Pdx+Qdy in two ways.

For the first computation, we use the parametrization ϕ(t) =
(x(t), y(t)) of Γ, so dx = ẋdt and dy = ẏdt. The result is
zero: ∮

Γ

Pdx+Qdy =

∫ T

0

−1

y
ẏẋdt+

1

y
ẋẏdt = 0. (7)

For the second computation, we split Q(x, y) into two
functions, one continuous Qc(x, y) and one discontinuous
Qd(x, y), so that Q(x, y) = Qc(x, y) +Qd(x, y).

Qc(x, y) =
1

y
(−βxy − γx)

Qd(x, y) =


1
yγ(1− y), y < I∗

1
yαAγ(1− y), x ≤ δ

β , y = I∗

1
yαBγ(1− y), x > δ

β , y = I∗

0, y > I∗

So now the original integral can be split into two:
∮
Γ
Pdx+

Qdy =
∮
Γ
Pdx+(Qc+Qd)dy =

∮
Γ
Pdx+Qcdy+

∮
Γ
Qddy.

We use Green’s theorem to compute the first integral.∮
Γ

Pdx+Qcdy =

∫∫
Γ

∂Qc

∂x
− ∂P

∂y
dxdy

=

∫∫
Γ

−β − γ

y
dxdy < 0.

(8)

To compute the second integral
∮
Γ
Qddy, we define function

Qext
d (x, y) =

1

y
γ(1− y), (x, y) ∈ D \ {y, y > 0}

and curves Γ1 and Γ2. Curve Γ1 is Γ restricted to y ≤ I∗,
with direction from A to B. Curve Γ2 is the line segment of
L joining B and A, with direction from B to A.

Observe that∮
Γ

Qddy =

∮
Γ1∪Γ2

Qext
d dy =

∫∫
Γ1∪Γ2

∂Qext
d

∂x
dxdy = 0,

(9)
where the first equality follows from Qd ≡ Qext

d on Γ1 and
dy = 0 on Γ2, whereas the last equality follows from Green’s
theorem, because Qext

d is continuously differentiable.
The result of (7) contradicts the results of (8) and (9). So,

the trajectory Γ with the assumed properties cannot exist.
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