JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

The Design and Evaluation of MPI-Style Web
Services

lan Cooper, Coral Walker

Abstract—In this paper we introduce MPI-style web service (MPIWS),
a novel service presented as a standard web service but integrated
with MPI programming technologies to allow web applications to run
in parallel over a loosely-coupled distributed environment. MPIWS takes
advantage of the SOAP communication protocol, and allows direct MPI-
style communication among loosely-coupled services. The MPI-style
communication supported by MPIWS includes both point-to-point and
collective communications. In this paper, point-to-point and collective
communication operations are evaluated in comparison with mpiJava.
The evaluation results demonstrate that, although the overhead of
SOAP messaging takes a toll on performance, MPIWS is generally
comparable with mpiJava sending Object datatypes, especially for
coarse-grain applications, and outperforms mpiJava in some cases.

Index Terms—Web Services, MPI, Message Passing, Collective Com-
munication.

1 INTRODUCTION

wWorkflow is a series of processing tasks, each of

which operates on a particular data set and is
mapped to a particular processor for execution. In a
loosely-coupled web service environment, a workflow
can itself be presented as a web service, and invoked
by other workflows. Web service standards and tech-
nologies provide an easy and flexible way for building
workflow-based applications, encouraging the re-use of
existing applications, and creating large and complex
applications from composite workflows.

In spite of the performance concerns of the SOAP
messaging protocol, the use of web service architectures
to build distributed computing workflows for scientific
applications has become an area of much active re-
search. Recently developed workflow languages, such
as Grid Services Flow Language (GSFL) [1], have
started addressing the problem of intercommunicating
processes. GSFL provides the functionality for one ex-
ecuting Grid service to communicate directly with an-
other concurrently executing Grid service. Although
implementation details using OGSA notification ports
in a subscriber/producer methodology are discussed in
this paper, there is no enactment environment available
to support GSFL. Another example is Message Passing

o lan Cooper and Coral Walker are with the School of Computer Science,
Cardiff University, UK.
E-mail: {i.m.Cooper, yan.huang }@cs.cf.ac.uk

Flow Language (MPFL) [2], which allows web service
communications to be described in XML. However, no
enactment engine has been implemented so far.
BPEL4WS is commonly used for composing WS-based
scientific workflows [3], but users are limited to applica-
tions with independent processes. In the case of a work-
flow with loops containing multiple independent tasks,
the overhead in invoking these sub-tasks is incurred
every iteration, in addition, any iterative data that is to
be shared by these tasks must be passed to the service by
a mediator. Fig 1 shows a workflow implementing a loop
of two independent sub-task services; these services are
connected by a mediator service to control the number of
loop iterations and to control the data sharing between

the two services.

(
A

LG

\’/

Fig. 1. A workflow showing parallel services S1 and S2
performing an iterative task by looping via a mediator
service S3

As an alternative to this scenario, Fig 2 shows the
loop implemented using MPI-Style message passing
communication between the two services, this enables
the services to be written in a way that they can process
their own loop constraints and data sharing through
loosely synchronous communication at each iteration.

51
Loosely synchronous 52

-

communication

Fig. 2. A workflow showing parallel services S1 and S2
performing an iterative task by looping internally sharing
data directly with each other.

This alternative, as well as eliminating the need for

0000-0000/00$00.00 © 200XIEEE

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

the mediator service and re-invocation at every iteration,
allows the use of collective communication techniques
to improve the efficiency of the data transfer; i.e. if there
were eight parallel services in the loop, and the data to
be shared was sent from all services to all other services,
then each service could Broadcast its data.

One example of this style of application is described
in [4] where a set of Partial Differential Equation solvers
are used to model an automotive engine heat flow
problem. Each service is initialised to model a separate
constituent part constructed from a different material
with different thermal characteristics. At each time it-
eration, the boundary conditions between the compo-
nent parts must be passed to the neighbouring service.
Another example is a distributed molecular dynamics
model, where a number of particles are divided between
services involved in the simulation. Again, at each time
interval in the simulation, the velocities of each particle
must be shared between all the services, this example
will be discussed extensively in Sec 4.5.

In this paper, we extend and update the work of
our previous paper [5] to investigate the potential and
suitability of using a web service infrastructure to sup-
port parallel applications that require MPI-style message
passing. We look at various methods and tools that can
be used to implement these message exchange patterns
(MEPs) and assess the suitability of previous work,
within the web service framework, for this emerging
workflow use. We then propose an implementation for
MPI-style web services (MPIWS) and present perfor-
mance results comparing MPIWS against mpiJava [6],
a leading high performance Java implementation [7].
Finally we examine a molecular dynamics simulation
that has been adapted to use MPIWS and discuss its
performance.

2 BACKGROUND AND RELATED RESEARCH

In the context of parallel computing, MPI message pass-
ing is referred to as the act of cooperatively passing
data between two or more separate processes [8], each of
which performs one of the subtasks of the application.
In a service-oriented scenario where each service runs
one of the subtasks, this can be translated to the act
of sending data from one executing service to another
concurrently executing service. The service is not limited
to one application. It can be invoked many times and
work for multiple applications at the same time. The
problem with allowing multiple invocation instances of
a web service is the lack of a mechanism for maintaining
the state of each invoked instance within a web service,
so that when a communication takes place, without such
a mechanism, it is difficult to determine which invoked
instance should receive the message.

A Web service framework commonly uses a sim-
ple Message Exchange Pattern (MEP) which involves a
request-only or a request-and-response message, provid-
ing no support for direct communication between con-

currently running services. A service-composite applica-
tion may involve invocations of many web services. The
return data of a service invocation could be the direct
input to another service. Without a direct communication
mechanism, the data has to be returned to the client first
before sending to the next service, which significantly
affects the overall performance of executing a service-
composite application.

Currently, there is no standard for passing data from
one service to another, concurrently running, service.
Kut and Birant [9] have suggested that web services
could become a tool for parallel processing and present a
model, which uses threads to call web services in parallel
to allow web services to perform parallel processing
tasks. This model can be extended to allow web services
to exchange data directly, this removes the need for the
client to intervene every time a process transfers data
[1]. The scenario of direct communication between web
services is shown in Fig. 3.

Research into the use of web services in parallel
computation is presented by Puppin et al. [10], who
suggest an approach for mapping MPI code into a WS-
based communication scenario to allow MPI applications
to run in a web service architecture. Their evaluation
results shows that the performance of their WS-based
MPI applications improves with the number of proces-
sors, and by using plenty of processing resources, WS-
based MPI applications are able to run nearly as fast
as MPI, with about 50% overhead. However, it appears
that a fast SOAP mechanism has not been used in
the implementation, suggesting the potential of further
improvement in performance if one of the more efficient
SOAP messaging approaches were used.

Queiroz et al. [11] presented a tool to distribute
a parallel application over distributed web services,
using sockets to support direct message passing between
services.

mpiJava [13] is a non WS-based version of MPI that
uses Java Native Interface (JNI) to provide a Java inter-
face to MPICH which allows MPI applications to work
in a more loosely-coupled distributed environment and
communicate data in the form of Objects. Although it
is not WS-based, it runs in a distributed environment,
and is thus broadly similar to the MPI-style web ser-
vices we have implemented. There has also been much
research into the performance of mpiJava [12], so by
evaluating against mpiJava, we can get an idea of how
the web services architecture will perform against other
approaches. These arguments make mpifJava a good
choice to compare against MPIWS.

The web service standard WS-Notification [13] allows
for a subscriber - notification protocol to be followed
but this adds an extra layer of functionality on top of
WS-Resources whilst still needing the Message passing
protocol implementation.

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

Application
Manager

]

MPI-Style
Message
Passing

Fig. 3. Extending the use of parallel executing services
to allow MPI-Style direct message passing between con-
currently executing service invocations. The thin arrows
indicate the request-and-response service invocations
and the thick arrows indicate direct communication
between web services

3 DESIGN OF MPI-STYLE WEB SERVICES

The challenge is to design a tool that combines the
tightly-coupled programming approach of MPI with the
distributed, loosely-coupled architecture of SOAP based
web services. To do this we need to adhere to web
service and SOAP messaging standards whilst providing
an efficient form of communication between services.
MPIWS are designed to allow for direct communication
between concurrently executing web services.

3.1 MPI-Style Web Services

An MPIWS is a service with the ability to perform direct
point-to-point and collective communication with other
concurrently executing MPIWS services.

Executing a particular WS-based application requiring
MPI-style message passing involves a group of MPIWS
services working together within a particular commu-
nication domain, at this time in the implementation
these services are fixed when the domain is initialised.
It is possible for a MPIWS service to have multiple
invocation instances at the same time, with each instance
working for a particular application and belonging to a
particular communication domain. Since a service may
have multiple service invocation instances, each working
for a different communication domain, a domain ID is
required in order to identify different communication
domains. A communication domain is initialized by
sending its domain ID to each service involved and
assigning a rank number to each service instance to
identify the particular instance within the domain. A
local variable myRank is used to store the rank value
of the service instance. Domain ID and myRank are used
together to identify a particular service instance within
a communication domain.

Currently, MPIWS is provided as an API to be used in
the development of MPIWS services, this means that it is
deployed as part of the application’s deployment file. A
MPIWS service supports a three-layer interface: a SOAP-

based application layer, an internal MPI-operation layer,
and a SOAP-based direct communication layer.

The interface at the application layer is a web service
interface to allow MPIWS services to be invoked in the
same way as any other web service. It includes only
one method, init(), which initiates a service invocation
instance for executing the subtask coded within the init()
method.

The internal MPI-operation layer provides an interface
to a collection of MPI communication methods, includ-
ing send, receive and collective communication operations
such as broadcast, gather and barrier. These methods are
used internally within the init() method in a similar style
to a MPI application.

The methods provided by the internal MPI-operation
layer do not perform direct communications themselves
— this is done through the interface provided by the
direct communication layer. The direct communication
interface provides methods to allow the direct com-
munication among services. Similar to the application
layer interface, the methods at the direct communication
layer conform to web service standards so that SOAP
messaging is used in the direct communication among
services. There are two direct communication methods
currently supported:

o store() receives message data and stores it locally.

o bstore(), similar to store(), but to support binomial

broadcast communications.

3.2 Communication Domains

A communication domain is a collection of service
instances working for a particular service-composite
application. Within the communication domain, service
instances can be identified by their myRank values, and
communicate directly with each other by using the
service endpoint references associated with the rank
values.

A service instance, or service invocation instance,
is an invocation instance of the init() method of an
MPIWS service. It is always associated with a particular
communication domain and can be identified by its rank
value stored in myRank. The invocation of the init()
method initializes a service instance. The input data
for the init() method includes the input data to the
application subtask to be executed within the method,
and the binding information for the service instance to
work together with other service instances within a com-
munication domain. The binding information includes:

o A communication domain ID.

o The rank value for the particular service instance.

o A list of service endpoint references.

Each of the service endpoint references is associated
with a particular rank value, it allows the service to
perform direct message passing with other services in
the same communication domain.

An MPI-style web service can participate in multiple
applications concurrently, which means that at each

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

service endpoint, there may be one or more service in-
stances. Each service instance has its own data including
the local data variables as well as the data messages
received. WS-Resource is used to provide a storage
mechanism for each service instance invoked within a
service. WS-Resources are defined in the WSRF speci-
fications [14], to provide the ability to access, maintain
and manipulate persistent data values or state within
a web service. Within the WS-Resource framework, a
resource is uniquely identifiable and accessible via the
web service [15]. In our case, a resource is used to store
local data and data received from other service instances.
It is created when a service instance is initiated and is
associated with a communication domain ID so that only
the service instance associated with the same domain ID
can access and manipulate the data stored within the
resource structure.

Fig. 4 illustrates an example of a service participat-
ing in multiple communication domains. In this exam-
ple there are five services, deployed at endpoints A-
E. Services A and B work solely for communication
domain 3303 and services D and E work solely for
communication domain 2020. At each of these service
endpoints there is only one service instance associated
with its respective communication domain ID, and one
single resource associated with the service instance.
The service at endpoint C has been invoked by both
communication domains 3303 and 2020, so there are two
service instances invoked (one for each communication
domain) and two resources generated (one for each
service instance).

Endpo @ ;
A Service Endpoint Resource

Service
Method Interface

Resource Data
Method Instance Structure
Communication
Method Interface

Fig. 4. Example of services working for multiple
communication domains.

3.3 Communication

In an MPIWS service, invoking the init() method initial-
izes a service instance that executes the application sub-
task; this subtask may require MPI-style communication
with other service instances. The difficulty with allowing
message passing between service instances is that data
is normally passed into a service when a method of
the service is invoked, and there is no conventional
way to pass data into the method after it is invoked.
However, when one service method is invoked and
running, it doesn’t stop the same or other methods from
being invoked. This gives the idea that, if a running
method instance needs to receive data from another
running method instance, it can use a different method
to receive the data and store it locally. This data must
be stored in a way that it can be identified later and
retrieved by the running method instance. So the solution
to this is to devise methods that work separately from
the init() method, and provide direct communication
support for the init() method by receiving and storing
data locally. In order to provide support for point-to-
point communication between service method instances,
MPIWS offers the store() method, this method performs
the function of receiving data and storing it in a local
data structure within the resource. The data messages
are always associated with a particular communication
domain ID and can be identified by the sender’s rank
value as well as its sequential order. A received message
is stored into the resource associated with the same
communication domain ID that the message is associated
with, and can only be retricved by the service init()
method instance associated with the same domain ID.

Within a resource, there is a complex message buffer
structure that consists of a sub-layer of buffers. Each
buffer in this sub-layer is associated with a rank value
of a service instance from which the current service
instance is expecting to receive a message. The arriving
messages are stored, in the order in which they were
sent, into the particular buffer allocated to the particular
service instance from which the message is sent.

Fig. 5 shows an example of a send() operation scenario
between two MPIWS services: A and B. A communica-
tion domain has been initiated with the communication
domain ID equal to 3303. Service A is to send a message
to service B within the communication domain. In this
example, two service instances have been invoked within
communication domain 3303: rank 2 instance and rank
3 instance. The rank 2 instance, running at service
endpoint A, is sending a message to rank 3 instance
which is running at service endpoint B. To do this, the
rank 2 instance invokes the send() method, which is an
internal MPI-communication method, with the message
data as the input. The send() method calls the store()
method at endpoint B and passes the message data as
its input data. Since the store() method is a standard web
service operation, the messages it receives are standard
SOAP messages. Each SOAP message received includes,

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

» the message data required by the receiving service
instance, rank 3.

o the message sequence number, #5.

o the communication domain ID, 3303.

o the fromRank, the rank value of the sending service
instance, rank 2.

The store() method at endpoint B receives the SOAP
message, and stores the message data into the particular
buffer that is associated with rank 2 and located in the
resource associated with domain ID 3303. The stored
message data can be retrieved later by invoking the re-
ceive() method, an internal MPI-communication method,
in the rank 3 instance at endpoint B.

— dnit 1 init

Endpoint A Endpoint B
. init . ik
Rank 3
3303 Rank 2 3303 36‘:;103
3303
send store
3303

store

Fig. 5. MPI-style web services point-to-point send
architecture.

Message (#5, 3303, 2)

init

init
Rank 3

3303 3303

receive

Endpaoint B

Fig. 6. MPI-style web services point-to-point receive
architecture.

In the web service implementation there are several
factors that may affect the sequence in which messages
are received: the messages may arrive in an order
different from the order in which they are sent. In our
implementation the message that the receiving service
instance requests next depends on the order in which
the messages were sent. Thus, it is necessary to record
the sending order of the messages so that they can
be identified later when they arrive at the receiving
service endpoint. To this end, a sequence number is
attached to each message to record the sequence number
of the message in the particular sending service. Each
time when a message is sent, the sequence number is
incremented and the new value is attached and sent with
the next message. At the receiving service endpoint, the
store method uses the fromRank, the rank of the sending
service, to decide which message buffer the message
should be stored in, and the sequence number attached
to the message to decide the order of the message to

be stored in the message buffer. The service instance on
the receiving endpoint can retrieve the message from the
corresponding message buffer. In the case that a message
has not been stored yet but a subsequent message has
been stored, the service instance has to wait until the
lower order message has completed storage in order to
retrieve the correct message.

3.3.1 Message Encoding

The communication between MPI-Style web services is
designed with a two-layer protocol stack: an upper layer
that has been described as the direct-communication
layer in Sec. 3.1, and which allows the use of communi-
cation methods via the standard SOAP communication
protocols, and a lower layer that deals with the encoding
of the message data during its transmission.

There is performance issues relating to sending the
data within a SOAP message. SOAP message uses the
XML language. If strict XML formatting is used, i.e.,
listing each entity of the data within a tagged element,
the space overhead for the message is potentially very
large. A more efficient method of encoding data is to
serialize it into a binary representation. In Java there
is an built-in function to transform objects to their
binary encoded representation, which is used in mpiJava
to encode objects before calling the native MPI layer.
However, there is a problem when putting a binary file
into a SOAP message: a binary file cannot be translated
directly to a string format, as there are not enough
characters available. Four solutions are available to this
problem: binary-to-character encoding [16], packaging
[17] [18], binary XML encoding [19], and linking [16].

Packaging, an approach that is used by both SOAP
with Attachments (SwA) [17] and SOAP Message Trans-
mission Optimization Mechanism (MTOM) [18], allows
data to be transmitted externally to the SOAP envelope.
A comparison of transmission speeds using SwA and
strict XML formatting is given in [20], which shows that
for a 256 x 256 matrix of doubles, the XML encoded
SOAP messages take over 10 times as long to transmit
as the same data serialized and sent using SwA. MTOM
also uses the SOAP with attachment approach and
is supported by Apache Axis 2, and can be used in
MPIWS services. It transports data as attachments to the
SOAP message with no coding overheads of either the
binary to character or the binary XML encoding. It also
stays within the SOAP communication protocols, unlike
linking. In addition, it decreases the message data size by
allowing attachments containing serialised objects, while
keeping the data accessible in the object model.

MTOM requires the transmitted data to be bundled
into a neat, binary coded package so that it can be
attached to the SOAP message. As the transmitted data
is of type Object, Java serialization is used to convert
the object to the required binary format. Keeping data
in its own object format at both sending and receiving
ends saves overhead from XML encoding and decoding
and significantly improves the performance of SOAP

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

messaging. This style of data transmission has been used
in many other related works, such as Queiroz [11] where
the serialisation of data sent over sockets is used, and
mpiJava [6] where the Java wrapper transfers the Objects
as byte arrays within the MPICH implementation.

3.3.2 Fire-and-Forget Invocation Approach

The use of a WS-Resource to provide a message buffer-
ing service for message passing encourages the adoption
of the asynchronous fire-and-forget service client model
[21] which is supported in Apache Axis 2, to send
the SOAP messages. The fire-and-forget client method
returns immediately after the existence of the receiving
host is confirmed. It can provide increased performance
over the sendReceive client model [21], which expects
a response message before the method returns, and
the sendRobust client model [21], which sends data and
returns when the processing at the server is complete
with either the results or information to report any
problems [21].

3.4 Collective Communications Design

Collective communication is used within the distributed
computing environment to enhance the performance of
message passing on a domain level. It provides faster
communication for applications that require domain-
level systematic communication operations. The inclu-
sion of supporting collective communications in MPIWS
is essential to demonstrate the potential efficiency of
a WS-based approach for scientific computing. To this
end, we have implemented a number of collective com-
munication operations including: Broadcast, Gather, and
Barrier.

Collective operations are more complex than point-
to-point communication and require extra processing
such as retransmitting messages, combining data into a
larger data set or appending data to existing data. In our
design, the collective operations are built by extending
the implemented point-to-point operations and adding
the extra processing required for collective communica-
tion. These additions are implemented in both the MPI
operations layer, and in the direct communications layer.

3.4.1 SendRecieve

The sendRecieve operation is a very simple combination
of a send from one service node to a second service node,
whilst at the same time a receive form that second service
node is taking place. This operation utilises the duplexity
of the communications network. MPIWS implements a
sendReceive operation by using threads to perform each
of the basic point to point operations.

3.4.2 Broadcast

The easiest example of true collective communication to
envisage is the broadcast operation. The simplest way
to perform a broadcast operation is for the broadcasting
rank, commonly called the root, to repeatedly send the

message to all other ranks in the communication domain.
SerialBroadcast is a straight forward approach in which
the root creates the message and sends it serially to each
rank in turn.

The implementation of the serialBroadcast operation
requires multiple sends. The XML message is created via
an Element object, which uses a data stream to attach
the serialized data to the SOAP message. If the message
is sent twice or more, the data stream has to be split
between the multiple sends which corrupts the message.
To solve this problem, multiple message elements that
use separate data streams for the object data are used,
with one for each send operation. However, this adds
extra latency to the broadcast.

The serial version of the broadcast has poor load
balance because the communication relies on the root
repeatedly sending the message to other ranks. It also
suffers inefficiency because it performs one send opera-
tion at a time and so does not fully utilize the bandwidth
capabilities of the network. A better efficiency, with
better network utilization and load balance, can be
gained if the send operations are distributed among
multiple ranks to allow multiple send operations to be
performed concurrently.

The binomial distribution of the data message[22] is
a more efficient method of performing the broadcast
and has been widely used in MPI implementations. This
method uses the receiving ranks within the communi-
cation domain to take part in the collective operation
by forwarding on the message to further ranks. The
implemented system uses a standard power of two
binomial distribution to broadcast the message.

With this approach, both the re-transmission of
the data, and the calculation of which rank to re-
transmit to, must happen in the methods at the
direct-communication layer. To this end MPI-style
web services provide a bStore method, distinct from
the store method, with the additional re-transmission
functionality required for the broadcast. This method
primarily stores the data within the message data
structure as with the standard store method, but then
re-accesses the resource to recalculate the ranks that it
is to send to and performs the send operation.

There are two issues associated with the
re-transmission of the data within the direct-
communication layer methods which need to be
taken care of.

Firstly, the fromRank of the message must remain set
to the rank value of the root that initiated the broadcast.
So it is necessary to copy the fromRank value of the
received message to the re-transmitted message during
the binomial broadcast.

Secondly, the sequential ordering of the messages
is achieved by the use of a sequence number which
separately sequences each message from one rank to
any other rank. Within the binomial broadcast operation,
messages are forwarded from the broadcasts’ root rank,
to the ultimate receiving rank by other intermediary

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

Extract

DObject
A

Extract

Object

Endpoint B

Extract

l Object

Fig. 7. Architecture for the broadcast operation.

ranks within the communication domain. The messages’
sequence number is different for each receiving rank,
but the sequence number for that receiving rank is
only accessible at the broadcast root rank. The sequence
number for a message sent from the forwarding rank
to the ultimate receiving rank would be associated
with the incorrect point of origin. This problem can be
solved by the broadcast root rank including an array of
sequence numbers that correspond to each rank in the
broadcast communication domain. This slightly increases
the messages” overhead data, but allows each ultimate
receiving bStore method instance to extract the correct
sequence number for its rank.

Fig. 7 shows a simple scenario of a binomial broadcast
operation. Rank 0, as the root node, sends the message
to rank 2 then rank 1. The bStore() method extracts the
object data and rebuilds the message element for each re-
transmission. At rank 1 and 3, the object is extracted and
the Bcast() method calculates that there are no further
transmissions needed and the broadcast completes.

3.4.3 Gather

The Gather collective operation retrieves data from all
non-root service nodes and arranges it in an array at the
root service. The resulting array is of size equal to the
number of service nodes available in the communication
domain, and each cell of the array contains the data sent
from the service node with rank that equals to the index
value of the cell [23]. In MPIWS, two implementations of
the Gather method have been implemented and tested:
the serial version of the gather method and the bino-
mial version of the gather method [22]. Both versions
are implemented by using the point-to-point primitive
operations: send and receive.

In the serial implementation of the gather method,
each non-root node within the communication domain
sends its chunk of data directly to the root, and the root
receives and collates the data into an array in their rank
order.

The binomial implementation of the gather method
uses the same binomial tree, used in the binomial broad-
cast for the root service node to gather data from
each non-root service nodes. In the execution of the
binomial gather operation, for each service node, an array
of size equal to the number of nodes in the domain,
initially occupied with null objects, is generated. The
data generated by the service node is stored into the
array corresponding to the rank value of the node.
The service node may serve as an intermediary node
that receives data from other nodes and then sends the
received data, as well as its own data, to the node at
a higher level of the binomial tree. The received data
is in the form of an array with all the data stored in
the corresponding cells. Each intermediate node needs to
merge the received array with its own array by searching
through the received array, and copying each non-null
object into its own array. It then sends the merged array
to the node above in the binomial tree.

3.4.4 Barrier

The barrier operation provides a synchronization mecha-
nism for MPI applications. It involves no data transmis-
sion, but provides a guarantee that each service node
in the communication domain has reached a particular
point during its execution. There are many ways of
implementing the barrier operation, and a good reference
to many of these methods can be found in Pjesivac-
Grbovic [24]. The method we choose uses the collective
operations that have already been implemented: a gather
operation followed by a broadcast operation. The method
was chosen because it involves the least number of
consecutive sends compared to other methods, such as
the Double Ring [24].

A barrier operation involves very small or null data
transmission. Compared with the small data size that
are transmitted, the overhead of sending an empty or
near empty SOAP message is high and this causes the
poor performance of a barrier operation. However, this
problem can be overlooked if the MPIWS services are
to be used in a coarse-grained application with large
data transmission, in which the transmission times of
large data transfers make the overheads of the barrier
negligible.

3.4.5 Reduce

The reduce operation is similar to the gather but instead
of arranging the data from all nodes in a sequential
array, it merges the data from the service nodes with an
operation such as SUM or PRODUCT [23]. The design
and the evaluation is similar to the gather, although there
must be specific datatypes transmitted as the Object,
such as an array of doubles, so as to allow the merge
operator to function correctly.

The allReduce operation is an extension of the reduce
operation, in that, the data is reduced to all nodes
instead of just the root node; this means the resulting
merged data is transferred to all the service nodes [23].

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

There are a number of different methods to achieve the
allReduce operation, one of which is a scatter followed
by a reduce [22]. This method is the method by which
MPICH achieves the AllReduce. The problem with using
this method in the MPIWS architecture is that the data is
transmitted in the form of Objects, which is difficult to
be split into chunks and distributed over multiple nodes.
Thus MPIWS adopted two different approaches: the
reduce operation followed by a broadcast operation, and
the recursive doubling approach [25]. Both approaches
have been implemented and evaluated in MPIWS.

The method of recursive doubling utilises the efficien-
cies gained from the sendReceive operation. Each service
node pairs with another service node and swaps data,
then each pair of nodes pair with another pair and swap
data, this process is repeated as shown in Fig 8

Fig. 8. The recursive doubling communication for the
allReduce Algorithm with three steps (1, 2 and 3).

This method does not involve splitting the data into
chunks but is not as efficient as the scatter - reduce
method. This method is very simple for communication
domain sizes of a power of 2, but harder to implement
for non power of 2 domains; this is discussed in [25].

4 EVALUATION

Through the evaluation of MPIWS, we would like
to show that the WS-based architecture that enables
MPI-like point-to-point and collective communications
among web services can perform well compared
with other message-passing implementations, such as
mpiJava, over a loosely-coupled, distributed network.
MpiJava also has the ability to transfer data as Objects,
allowing a more object oriented approach to MPI-Style
message passing, this allows like for like comparison
of the two systems. The evaluation has been split into
two parts: evaluation of point-to-point operations, and
evaluation of collective communication operations.

4.1 Point-to-Point Communication

The evaluation tests focus mainly on the speed as-
pect of the communication implementations and MPIWS
services are tested against mpiJava. Many benchmark
suites have been devised and put forward as definitive
parallel computing benchmarks [26] [27], and many of
these are designed to test the underlying hardware or
the collective communications features of the message-
passing tools. We have chosen tests that specifically
target the performance of the message passing tools.

u?fi!?qde |- T1 !ﬁ
» T2 »
(a) (b)
Rank 0 Rank 1 Rank 2 Rank 3
L. :_——‘———"
N e -
=]

Fig. 9. Scenarios of PingPong, Ping*Pong and Matrix
Multiplication tests. An arrow represents a portion of the
matrix being sent from one processor to another.

The PingPong test is one of the most popular tests that
are used to provide a simple bandwidth and latency
test for point-to-point communications. Getov et al. [28]
used a number of variations of the PingPong test to
compare the performance of MPI and java-MPI. Foster
and Karonis [29] also used the test to evaluate MPICH-G,
a grid-enabled version of MPI. Here, we have chosen two
variations of the PingPong tests: the standard PingPong
test, and the Ping*Pong test.

The standard PingPong test requires an even number
of processors within a communication domain, with each
of the processors paired with another. Within each pair
of processors a message is sent from one processor to the
other, and is then sent back again. The scenario of the
PingPong test is illustrated in 9(a). In this test, the round-
trip time of the message traveling from one processor to
another is measured.

The Ping*Pong test [28] is a variation of the PingPong
test. Similar to the PingPong test, it involves an even
number of processors each of which is paired with
another. In each pair group, one processor sends multiple
messages to the other processor in the same pair group,
and the receiving processor returns each message it
receives. Fig. 9(b) shows the scenario of the Ping*Pong
test. This test differentiates between the intra message
pipeline effect, where the message is broken into smaller
parts by the system and processed through a pipeline
to speed up the communication, and the inter message
pipeline effect, where the system does not have to wait
for one message to complete its transfer before starting to
process the next message [28]. The Ping*Pong test shows
a more realistic view of the system’s performance, as
it emulates many real applications of message passing
(such as matrix multiplication).

A further test is performed based on a real application,
a one dimensionally blocked parallel matrix multiplica-
tion, which is a simple parallelized version of the matrix
multiplication problem. The communications for the

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

matrix multiplication application are shown in Fig. 9(c).
It is important to note that although the sequence of
the send operations are fixed, both the sending and the
receiving processors do not have to wait until the send or
receive operations complete before they process the next
message.

In the matrix multiplication application test, the mul-
tiplication calculations are extremely time-consuming,
together with the variances in the processors’ utilization
at the time of testing, could dilute the performance
of the communications. We have therefore omitted the
calculation part of the application and presented only
the communication results of the application.

4.2 Collective Communication

For the evaluation of collective communication opera-
tions, we have tested both serial and binomial versions
of the broadcast, gather and allReduce operations against
mpiJava.

In the broadcast and allReduce tests, a barrier operation
is performed before the start of the operation. The time
calculation starts after the barrier operation is completed.
The broadcast operation ends when all the service nodes
have received the broadcasted message and the broad-
casting service was notified. The notification is per-
formed by a report-to-root operation which is effectively a
minimal data gather. In the allReduce tests this report to
root must be done with the reduce - broadcast method and
the recursive doubling method to ensure the consistency.

In the gather test, similar to the broadcast test, a barrier
operation is performed before the gather operation starts
to synchronize the processors. The time calculation starts
after the barrier operation finishes and ends when the
gather operation returns at the root service node.

4.3 Evaluation Environment

In the evaluation tests, all the MPIWS services are
deployed using Apache AXIS 2.1.2 and are hosted in a
Tomcat 5.5.20 application server. The mpiJava API we
used is mpiJava V1.2 which wraps MPICH 1.2.6. All
code was written in Java 1.6.0. The evaluation tests are
undertaken on a public network of university machines,
all of which are prone to unforeseen activities. The tests
were done during low usage hours to reduce inconsis-
tencies. All graphs show minimum timings to reduce
the impact of the network on the results. The Linux
machines used for the tests have twin Intel pentium 4,
2.8GHz processors. In order to eliminate the possible
discrepancies in thread handling within mpiJava and the
Tomcat deployment, only one processor is used on each
machine, this should be especially noted for the threaded
sendRecieve tests.

4.4 Evaluation Results and Discussion

All tests are done using an Object comprising of an
N x N matrix of doubles as the message. In the graphs of

10

8000 |

7000 T— —— mpiJava
_ 6000 1. mPws
W
E 500
= 4000
E 3000
=

2000 -

1000 Fﬁr/

0 et==""]
0 500 1000 1500 2000 2500
Matrix size (N)

Fig. 10. PingPong test results (N = 0 - 2000).

I
80 T— . mpiJava

6 ||~ MPws f
o)i
e

] 50 100 150 200
Matrix size (N)

Time {ms)

Fig. 11. PingPong test results (N = 0 - 200).

the test results, MPIWS indicates the MPIWS implemen-
tation, mpiJava indicates the mpiJava implementation,
S MPIWS indicates the serial version of the MPIWS
implementation, and B MPIWS indicates the binomial
version of the MPIWS implementation.

The results of the PingPong Test are displayed in
Fig. 10 with N in the range of 0 to 2000. To be able
to see clearly the difference between the two MPI im-
plementations when the size of message is small, the
results of the PingPong Test with N in the range of
0 to 200 are displayed in Fig. 11 with a larger scale.
The results clearly show the expected communications
overhead of the SOAP messaging, which degrades the
performance of MPIWS when the transmitted data is
small. However, when the transmitted data is large
enough(in this example, over the 200 KB for when
N = 160), the SOAP communication overhead becomes
relatively small enough to be absorbed by the total
communication time to make MPIWS services run at a
speed that is similar to mpiJava.

The results for the Ping*Pong test are shown in Figs. 12
and 13. Fig. 12 shows the results when N is in the range
of 0 to 2000 and Fig. 13 shows the results on a larger
scale when N is in the range of 0 to 200. It can be seen
clearly from the figures that the MPIWS implementation
outperforms mpiJava when the transmitting data is
larger than 130 KB (when N = 130). The positive results
of Ping*Pong test can be explained by the inter message
pipeline effect caused by the fire-and-forget approach and
message buffering used in MPIWS.

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

40000 |
—— mpiJava
30000 —— —— MPIWS

/

20000

Time (ms)

10000

WA/V

0 500

1000 1500

Matrix size (N)

2000 2500

Fig. 12. Ping*Pong test results (N = 0 - 2000).
500 .
400 —— mpiJava
_ 11— MPIWS
E 300 /’;
a
E 200
E
100 M/;/
o b
0 50 100 150 200
Matrix size (N}
Fig. 13. Ping*Pong test results (N = 0 - 200).

The results of the matrix multiplication test running
over 8 processors and using point-to-point communica-
tion operations are shown in Figs. 14 and 15. Fig. 14
shows the results when N is in the larger range of 0
to 2500 while Fig. 15 shows the results when N is in
the smaller range of 0 to 600. According to the results,
when the size of the matrix is large enough, in this case
270 x 270, the application runs faster using MPIWS than
using mpiJava. We have also done the tests over different
numbers of processors and all the results came out
consistently. The results shows clear agreement with the
Ping*Pong test. The matrix multiplication requires con-
secutive sends to distribute the matrix over processors.
The combination of fire-and-forget sends with message
buffering at the receiving processor have a good inter
pipeline effect on the MPIWS which is demonstrated in
the Ping*Pong Test, and explains the test results showed
in Figs. 14 and 15.

The results of the broadcast tests are shown in Fig-
ures. 16 and 17. Fig. 16 shows the results when NN is in
the larger range of 0 to 700, while Fig. 17 shows the
results when N is in the smaller range of 0 to 300. Three
implementations of broadcast have been tested: serial
version of MPIWS broadcast, binomial version of MPIWS
broadcast , and mpiJava broadcast. The MPIWS serial
version and mpiJava broadcasts perform comparably with
mpiJava broadcast doing slightly better, but the MPIWS
binomial version of broadcast performs much better than
the either of them. The results are expected because

11

70000 e
e

:2222 —=— mpiJava /
wn
£ 40000 <
2 ./ /
£ 30000 e
F 20000 —

10000

0 —‘.._.Gélz/—/// T T

0 1000 2000

Matrix Size (N}

3000 4000

Fig. 14. Results of Matrix multiplication test using point-
to-point Communication with 8 Processors (N = 0 - 2500).

2000

—— MPIWS
1500 —=— mpiJava /
1000 =2

Time (ms)

] /

0 200 400 600 800
Matrix Size (N}

Fig. 15. Results Matrix multiplication test using point-to-
point communication with 8 processors (N = 0 - 600).

using a binomial tree is a more efficient approach in
implementing broadcast than using a serial approach [22],
and broadcast in mpiJava is a serial version of broadcast
due to there being no mapping to the native MPICH
broadcast for broadcasts of the type Object.

The results of the gather tests are displayed in Fig. 18.
Three gather tests are performed: the serial version of
MPIWS gather, the binomial version of MPIWS gather,
and the javaMPI gather. In contrast to the broadcast oper-
ation, where using a binomial tree significantly improves
performance, using a binomial tree works degrades

3500
3000 | * S MPIWS %
- 2500 1| = mpiJava ..:".
E 2000 - . B MPIWS =
.E 1500 '=I akyd
= 1000 W e
500 -ﬁh““
0 T T
0 200 400 600 800
Matrix Size (N}

Fig. 16. Broadcast test results (N = 0 - 700).

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

700
600 || * S MPIWS i
= 500 +* mpiJava .!’
E 400 1 s BMPIWS ‘=‘
[]
2 a0 .
F 200 S L
100 VTSI LAV Ll
o Mmazgriivniiies
0 100 200 300
Matrix Size (N)

Fig. 17. Broadcast test results (N = 0 - 300).

3500
3000 — = S MPIWS =
2500 | * mpiJava § .;_‘u'
w . - ut
E 2000 1 B MPIWS s §§
] ¥
£ 1500 -+
= - -i‘
1000 ol
500 <
1] T T T
1] 200 400 600 800
Matrix Size (N)

Fig. 18. Gather test results (N = 0 - 700).

the performance of a gather operation because of the
overhead that arises from repeatedly transmitting the
cumulative data. According to the results, the mpiJava
gather performs better than the MPIWS serial gather
when the message size is small (N = 150) and slightly
worse than the MPIWS serial gather when the message
size is large than this value.

Since there is no dependence on message size, the
results of the barrier tests displayed in Fig. 20 show
the timings of the barrier communication against the
number of processors. Three different barrier implemen-
tations are tested: the serial version of MPIWS barrier

300

250 -1 = S MPIWS
= 200 4| * mpiJava e
E - B MPIWS -im
o 150 —
£ -5 "
= 100 —

-5 ¥
50 it
0 bl - =4 i
0 50 100 150 200
Matrix Size {N)

Fig. 19. Gather test results (N = 0 - 200).

12

80
n n
70
&0 1 |= S MPIWS - m
2 a0 1 * mpiJava .
g n + B MPIWS _ u .
= -
= * L »
30 e ¥ , s v o
20 LI
10 + ¥
0 - I s e e
0 5 10 15
Number of Processors in Communication Domain

Fig. 20. Barrier test results.

operation, the binomial version of the MPIWS barrier
operation, and the mpiJava barrier operation. The serial
version of the MPIWS barrier operation is implemented
by a serial MPIWS gather followed by a serial MPIWS
broadcast. The binomial version of the MPIWS barrier
operation is a binomial MPIWS gather followed by a
binomial MPIWS broadcast. When the message size is
small, the overhead of SOAP messaging becomes signif-
icant and this is clearly shown in the results: both serial
and binomial versions of the MPIWS barrier operation
are much slower than the mpiJava barrier. Comparing
between the serial and the binomial versions of the
MPIWS barrier operations, the binomial implementation
works better than the serial implementation when the
number of processors are greater than 5.

This operation is the worst case scenario for the
MPI-Style services due to the minimal size of the data
transmitted and the need to send a comprehensive SOAP
message to achieve the communication: the whole of
the SOAP message is overhead. Although this result on
its own is not a very positive argument for the MPI-
Style web services architecture, the barrier is a very short
operation compared to coarse-grained data transmission
operations. In most application scenarios, the poor per-
formance of the barrier will become unnoticeable due
to the longer transmission times of communications of
larger quantities of data.

The reduce and allReduce evaluation must be consid-
ered very carefully, they are included in the evaluation
specifically due to their use in the molecular dynamics
application presented in sec 4.5. MpiJava processes the
allReduce operation differently to other operations, as it
will not allow the data to be transferred as an Object.
MpiJava requires the data transfer to be conducted
as one of the MPICH defined datatypes. This allows
the reduction operations to function properly, but also
means that the MPIWS is no longer being evaluated
against a message passing tool which is transferring
Objects. The graphs (fig. 21 and 22) show the mpiJava
reduce and allReduce as well as the MPIWS serial reduce
and binomial reduce and two implementations of the
MPIWS allReduce; the reduce - broadcast, and the recursive
doubling (RD) methods.

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

5000
+ MPIWS AllReduce o
4500 11 . MPIWS Reduce Serial
2000 1| ¢« MPIWS AllReduceRD
MPIWS Reduce Binomial a
3500 H{ —+— mpiJavaAlReduce -
- —— mpiJava Reduce i
w 3000 e
g« + i
o 2500 e =4
E an I‘
= 2000 P
1500 Bt : = =
1000 e hl i
P il

0 200

400
Matrix Size N

Fig. 21. AlIReduce test results (message size N = 0 -
800).

300
+ MPIWS AlIReduce

250 = MPIWS Reduce Serial -
= 200 + MPIWS AlIReduceRD e
£ 7 MPIWS Reduce Binomial 3y
= 450 4| — mpiJava AllReduce LR
£ —— mpiJava Reduce 5 R
i= 100 — &

T
50 e, -..q::ﬂ M"‘L’——'&"_'A
g YedE kW : M
0 50 100 150 200
Matrix Size N

Fig. 22. AllReduce test results (message size N = 0 -
200).

With the reduce evaluation, we can see that the collec-
tive communications approach is consistently beneficial.
When it is compared to the transmission of datatypes
within the javaMPI we can see the impact of the extra
serialisation step. Again for the allReduce evaluation it
can be seen the MPIWS does not fare too well; but, as has
been discussed, this is not a surprise. What is important
though, is the comparison to the serial operations in
the broadcast and reduce experiments. These comparisons
show the ability of the web services architecture to utilise
the collective communications operations in order to
increase the efficiency of the data transfer.

4.5 Application Moldyn

MolDyn[30] is a piece of molecular dynamics simulation
code, provided by the Java Grande Forum with the MPJ
Version 1.0 source code. It is used as an evaluation
benchmark.

The MolDyn simulation problem consists of an array
of particles. Each particle has a position, a velocity and
a force; each of these is defined in terms of its x, y,
and z components. The whole particle array is present
and initialised at all the participating ranks, and then

13

there are a series of iterations where the particles move
and the positions, velocities and forces are recalculated.
The movement and recalculation of the velocities are a
relatively simple calculation (xcoord = xcoord + xvelocity
+ xforce and xvelocity = xvelocity + xforce) that scales at
O(n) where n is the size of the particle array, so it is faster
to carry these out for every processor locally. The main
part of the calculation is the recalculation of the forces
exerted on each particle; the calculations of the new
particle forces are distributed amongst the contributing
ranks.

The calculation of the force on particle ¢ is a function of
the distances between it, and every other particle in the
problem this scales at O(n?). The distribution of these
recalculations is achieved by each rank processing one
in every p particles in the particle array, where p is the
number of processors in the problem domain. When
these distributed calculations have been achieved, the
forces are collected into an array for each dimension,
and an allReduce operation is performed on each of the
force arrays. The force data can then be reassembled in
to the particle objects and then the next iteration can be
performed.

The MolDyn code fits nicely in to the evaluation of
MPIWS as it spans two types of application: Firstly it
can be thought of as an iterative workflow, and secondly
it is a scientific application which sits firmly in the realm
of the mpiJava application scope.

As MolDyn can be thought of as an iterative workflow
that repeatedly calls a set of distributed services to
perform a looped iteration on a set of data (see fig 1).
Then this workflow can be optimised by enabling the
distributed services to directly communicate the iteration
results throughout the communication domain, saving
the repeated initialisation costs associated with the loop
model and also allowing the use of collective commu-
nication techniques to increase the efficiency of the data
distribution.

MolDyn is also a typical high performance comput-
ing application. MPI is commonly used for molecular
dynamics simulation and there are many examples of
production grade code available [31], [32]. These codes
use a variety of communication architectures to achieve
their goals but for the purposes of the evaluation of
MPIWS, MolDyn will suffice. The communications archi-
tecture involves the allReduce operation on both the three
force arrays and on three energy variables, plus three
barrier synchronisations per iteration. The benchmark
test performs 50 iterations and the size of the particle
array varies from 2K to 32K particles.

4.5.1 Evaluation of MolDyn running on MPIWS

If we look at the communication results for the allReduce
operation we can create an estimation of the extra time
that the MolDyn application should take running on the
MPIWS tool compared to on mpiJava. Fig 23 shows the
timings for a range of particle array sizes run on both
MPIWS and mpiJava as well as the predicted and actual

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

200
—— MPIWS

150 4 —— mpiJava /
v —— DIiff ,/A//‘
< 100 Pdif allR
E /K//
=

50
0 ‘/_lywélg_*_f/l_ T T

0 50 100 150 200 250 300
Message size KBytes

Fig. 23. The times taken for the MolDyn Application vs the
individual forces message size for MPIWS and mpiJava.

& *
5 <

Sa

33 *

a2 .
1 +
0 T T T
0 5 10 15 20

Number of Processors
Fig. 24. The speedup for the MolDyn application

over 0-8 MPIWS services running the application with
27,436 particles (individual force message size is approx.
157Kbytes).

difference in the two results. The second graph, fig 24
shows the speed up of the MolDyn application whilst
running on a range of service nodes.

These graphs show that the predictions are not all that
dissimilar to the actual results. As expected the MPIWS
version does take longer than mpiJava; but, as can be
seen from the speedup graph, there is a definite timing
improvement when the application is distributed over
more than one service.

These results do prove an extremely important point
about the applicability of MPI-Style collective communi-
cations in the workflow environment. If MolDyn was run
for 27,436 particles (message size approx 220 Kbytes) on
8 services, the time for the barriers would be 33ms, the
time for the serial allReduce of the double values would be
60ms then the time for a serial reduce and a serial broadcast
is 155 4 198ms this gives a communication time for 50
iterations of 67 seconds, compared to the 41 seconds for
the collective operations.

This evaluation of the MolDyn simulation demon-
strates that MPIWS based communication can make a
significant difference in the communication overheads
of web service workflows that contain parallel loop
structures. It also shows that MPIWS can be used to
efficiently run scientific computing applications that are
written for a traditional MPI implementation by simply
replacing the MPI communication calls with the MPIWS

14

communication calls and deploying the application as an
MPIWS web service.

5 CONCLUSIONS

Direct communication support and MPI-Style message
passing among web services provides the ability for
MPI-style applications to fully utilise the modularity
of the web services environment. It could become the
building block for the future development of execu-
tion environments for WS- and XML-based workflow
languages, such as MPFL, that support WS-composite
scientific applications.

From the tests undertaken, we have discovered that
despite using MTOM, a fast SOAP mechanism using
SOAP-with-attachments, the overhead of SOAP messag-
ing is significant enough to affect the performance of
MPIWS when message sizes are small. However, when
the message sizes reach a certain threshold, MPIWS
runs at a similar, or even faster, speed compared with
mpiJava passing similar Objects. It is also found that
the inter message pipe effect, a noticeable feature in
applications that use consecutive MPIWS sends as well
as those with a distribution of receiving processors,
contributes positively to the performance of MPIWS. The
test results for the collective communication operations
confirm that MPIWS is a practical and efficient way
to integrate collective communications techniques into
a web services environment, although not all of the
collective operations (especially the barrier operation) are
as efficient as could be hoped.

The benefits to the efficiencies within workflow com-
munication have also been assessed and it has been
shown that the use of collective communication tech-
niques within the web services architecture can signif-
icantly improve the efficiency of suitable applications
such as the MolDyn simulation Code.

From the above observations, we conclude that using
MPIWS for WS-workflow applications requiring MPI
message passing is potentially a practical and efficient
way of distributing coarse-grained parallel applications.

Further work on this research would be to increase
the functionality of MPIWS to more fully implement
the MPI standard, including the use of message tags,
and the ability to receive from "Any Source’ as well as
implementation of more of the collective communication
operations. A longer term goal is to integrate MPIWS
with MPFL to produce an execution environment for
MPI-Style workflows.

REFERENCES

[1] S.Krishnan, P. Wagstrom, and G. V. Laszewski, “Gsfl: A workflow
framework for grid services,” Argonne National Laboratory, 9700
S. Cass Avenue, Argonne, IL 60439, Tech. Rep., 2002.

[2] Y. Huang and Q. Huang, “Ws-based workflow description lan-
guage for message passing,” in 5th IEEE International Symposium
on Cluster Computing and Grid Computing, Cardiff, Wales, U. K,
2005.

JOURNAL SERVICES COMPUTING, VOL. 1, NO. 1, JANUARY 2025

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

A. Akram, D. Meredith, and R. Allan, “Evaluation of bpel to
scientific workflows,” in CCGRID ’06: Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and the Grid
(CCGRID'06). Washington, DC, USA: IEEE Computer Society,
2006, pp. 269-274.

M. Mu and J. R. Rice, “Modeling with collaborating pde
solvers—theory and practice,” Computing Systems in Engineering,
vol. 6, no. 2, pp. 87 - 95 1995 [Online]. Avail-
able: http:/ /www.sciencedirect.com/science/article/B75C5-
49V61XR-1K/2/05405347242a88{b59d15366a3a03b5

I. Cooper and Y. Huang, “The design and evaluation
of mpi-style web services.” in ICCS (1), ser. Lecture
Notes in Computer Science, M. Bubak, G. D. van
Albada,]. Dongarra, and P. M. A. Sloot, Eds., vol
5101. Springer, 2008, pp. 184-193. [Online]. Available:
http:/ /www.springerlink.com/content/n74287q451wgl504

B. Carpenter, “Java for high performance computing: Mpi-
based approaches for java,” Pervasive Technology Labs, Indiana
University. internet presentation, accessed Aug 2007. [Online].
Available: http://www.hpjava.org/courses/arl/lectures/mpi.ppt
M. Baker, B. Carpenter, and A. Shafi, An Approach to Buffer
Management in Java HPC Messaging, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, May 2006, vol.
Volume 3992/2006, pp. 953-960.

W. Gropp, Tutorial on MPI: The Message-Passing Interface. [Online].
Available: http:/ /www.new-npac.org/projects/cdroms/cewes-
1998-05/reports/gropp-mpi-tutorial. pdf

A. Kut and D. Birant, “An approach for parallel execution of
web services,” in Proceedings - IEEE International Conference on Web
Services. IEEE Computer Society, June 2004, pp. 812-813.

D. Puppin, N. Tonellotto, and D. Laforenza, “How to run scientific
applications over web services,” in Parallel Processing, 2005. ICPP
2005 Workshops. International Conference Workshops on, 2005, pp. 29
-33.

C. Queiroz, M. A. S. Netto, and R. Buyya, “Message passing over
net-based desktop grids,” in Proceedings of the Workshop on Cutting
Edge Computing, in conjunction with the 13th IEEE International
Conference on High Performance Computing (HiPC'06), 2006.

H.-K. Lee, B. Carpenter, G. Fox, and S. B. Lim, “Benchmarking
hpjava: Prospects for performance,” in 6th Workshop on Languages,
Compilers and Run-time Systems for Scalable Computers, March 2002.
S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam,
J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D. Snelling, S. Tuecke,
W. Vambenepe, and B. Weihl, “Web services base notification,”
03/05/2004 2004.

K. Czajkowski, D. F. Ferguson, I. Foster,]J. Frey, S. Graham,
L. Sedukhin, D. Snelling, S. Tuecke, and W. Vambenepe, “The ws-
resource framework version 1.0,” Globus Alliance and IBM, Tech.
Rep., 2004.

S. Graham, A. Karmarkar,]. Mischkinsky, I Robinson,
and 1. Sedukhin, Web Services Resource 1.2 (WS-Resource)
Public Review Draft 01, OASIS, 10 June 2005. [Online].
Available: http://docs.oasis-open.org/wsrf/wsrf-ws_resource-
1.2-spec-cd-01.pdf

B. Harrington, R. Brazile, and K. Swigger, “Ssrle: Substitution
and segment-run length encoding for binary data in xml,” in
Information Reuse and Integration, 2006 IEEE International Conference
on, Sept. 2006, pp. 11-16.

J. J. Barton, S. Thatte, and H. F. Nielsen, “Soap messages with
attachments,” W3C, W3C Note, Dec. 2000. [Online]. Available:
http:/ /www.w3.org/TR/SOAP-attachments

M. Gudgin, N. Mendelsohn, M. Nottingham, and H. Ruellan,
“Soap message transmission optimization mechanism,”
W3C, Tech. Rep. January 2005. [Online]. Available:
http:/ /www.w3.org/TR/soap12-mtom/

R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki, “An
evaluation of binary xml encoding optimizations for fast stream
based xml processing,” in WWW ’04: Proceedings of the 13th
international conference on World Wide Web. New York, NY, USA:
ACM Press, 2004, pp. 345-354.

Y. Ying, Y. Huang, and D. W. Walker, “Using soap with
attachments for e-science,” in Proceedings of the UK e-Science All
Hands Meeting 2004, Aug. 2004, poster.

D. Jayasinghe, “Invoking web services using apache axis2,”
Internet, Dec 2006, accessed Aug 2007. [Online]. Avail-
able: http:/ /todayjava.net/pub/a/today/2006/12/13/invoking-
web-services-using-apache-axis2.html

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
(31]

[32]

15

M. Barnett, L. Shuler, S. Gupta, D. G. Payne, R. van de Geijn, and
J. Watts, “Building a high-performance collective communication
library,” in Supercomputing '94: Proceedings of the 1994 conference on
Supercomputing. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1994, pp. 107-116.

D. W. Walker, “The design of a standard message passing interface
for distributed memory concurrent computers,” Paralle] Comput.,
vol. 20, no. 4, pp. 657-673, 1994.

J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of mpi collective
operations,” Cluster Computing, vol. Volume 10, no. Number 2,
pp- 127-143, June 2007.

R. Rabenseifner, “Optimization of collective reduction
operations,” in Computational ~ Science - ICCS 2004,
M. et al, Ed, vol. 3036/2004. Springer Berlin
/ Heidelberg, 2004, pp. 1-9. [Online]. Available:

http:/ /www.springerlink.com/content/hha38fla0pOnhp1x/

P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,
J. Kepner, J. McCalpin, D. Bailey, and D. Takahashi, “Introduction
to the hpc challenge benchmark suite,” icl.cs.utk.edu, Tech. Rep.,
march 2005 2005.

Intel, “Intel mpi benchmarks,” Intel,
Tech. Rep., June 2006. [Online]. Available:
ftp:/ /ftp.uybhm.itu.edu.tr/belgeler/sistem_kullanimi/IMB_ug-
3.0.pdf

V. Getov, P. Gray, and V. Sunderam, “Mpi and java-mpi: contrasts
and comparisons of low-level communication performance,” in
Supercomputing '99: Proceedings of the 1999 ACM/IEEE conference
on Supercomputing (CDROM). New York, NY, USA: ACM Press,
1999, p. 21.

I. Foster and N. Karonis, “A grid-enabled mpi: Message
passing in heterogeneous distributed computing systems,” in
Supercomputing, 1998. SC98. IEEE/ACM Conference on. IEEE
Computer Society, 1998, pp. 46 — 46.

L. Smith, “Moldyn,” Edinburgh Parallel Computing Centre, Tech.
Rep., 2001.

“Dl_poly.” [Online]. Available:
http:/ /www.cse.scitech.ac.uk/ccg/software/DL_POLY /index.shtml
“Moldy.” [Online]. Available:

http:/ /www.ccp5.ac.uk/moldy/moldy.html

lan Cooper is a PhD student and associate
lecturer in the School of Computer Science at
Cardiff University. He received the B.Eng in Elec-
tronics Engineering from Cardiff University in
1996 and then went on to work in industry before
returning to Cardiff to attain the M.Sc in Com-
puter Science in 2005. He is now completing his
PhD at Cardiff, lan’s research interests include
high performance and distributed computing.

Coral Y Walker is a lecturer in the School of
Computer Science at Cardiff University. Coral
was awarded the B.Eng degree from Chengdu
University of Science and Technology in 1991,
the M.Sc. in Computing from Nanjing University
in 1998, and was awarded the PhD in Com-
puter Science from Cardiff University in 2003.
Coral’'s main research interests are web services
and WS-based Grid architecture, workflow lan-
guages and their execution environments.

