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Abstract. Smartphone notifications are often delivered without consid-
ering user interruptibility, potentially causing frustration for the recipi-
ent. Therefore research in this area has concerned finding contexts where
interruptions are better received. The typical convention for monitoring
interruption behaviour assumes binary actions, where a response is ei-
ther completed or not at all. However, in reality a user may partially
respond to an interruption, such as reacting to an audible alert or ex-
ploring which application caused it. Consequently we present a multi-step
model of interruptibility that allows assessment of both partial and com-
plete notification responses. Through a 6-month in-the-wild case study
of 11,346 to-do list reminders from 93 users, we find support for reduc-
ing false-negative classification of interruptibility. Additionally, we find
that different response behaviour is correlated with different contexts and
that these behaviours are predictable with similar accuracy to complete
responses.

Keywords: Interruptibility, smartphone notifications, interruptions, con-
text awareness, implicit sampling, mobile

1 Introduction

Over the last decade the rise of the smartphone has had a profound effect on
society, providing an ever-present opportunity for information retrieval and de-
livery. The app culture has extended the diversity of interruptions from phone
calls and SMS messages to include notifications - snippets of information from
diverse services, intended to inform or prompt reaction. Inappropriately timed
interruptions are a fundamental issue, being at best an annoyance and at worst
a dangerous distraction. Techniques are needed to enable services to determine
and exploit interruptible moments, in order to deliver the right information at
the right time.

Intelligent systems capable of predicting the success of individual notifica-
tions are highly desirable, yet this is dependent on the nature of the service
[14]. For example, an appropriate time to prompt the user for a health related
intervention is unlikely to be the same as one to notify them of a social net-
work update. Similarly, the former may require them to undertake a specific
and timely action (e.g. report their progress in situ), while the later is simply



delivering information, and could safely be ignored. Currently, the delivery of
notifications is largely at the interrupter’s discretion, leaving the interruptee to
reactively assess the appropriateness, or manually manage blanket-rules. The
smartphone’s ubiquity brings further opportunities, particularly with the evolv-
ing habitual role interruptions are having in our daily lives.

A fundamental issue in building intelligent interruption systems is to iden-
tify contexts where the benefit of interrupting outweighs the perceived cost on
the user. Previous work has typically involved relying on the user to explicitly
provide feedback after each interruption (e.g., [15, 18]), thereby classifying their
interruptibility at that time. However, this creates a rigid black-box between de-
livery and feedback, leaving an outstanding issue of what to do when complete
responses are not made. In these cases important information is being lost, for
example, it may be that the user wasn’t interrupted, or that they weren’t phys-
ically interruptible to the extent that they changed focus, or that they were
but didn’t want to provide feedback. Identifying the attentiveness of users [15]
through partial responses forms the focus of this study.

Previous interruptibility studies have identified that the abstract convention
of an interruption and a response is a staged process of decision making and
information exchange [12]. However, developing this in the context of smart-
phones has received little attention. Additionally, previous work has shown that
smartphone interactions vary based on the level of focus available [17]. There-
fore we hypothesise that, in comparison to a black-box approach, decomposing
response behaviour to notifications will enable more cases of interruptibility to
be observed and ultimately avoid misclassification. We present a model that de-
composes response behaviour from notification delivery through to notification
consumption. By developing and deploying a bespoke to-do list reminder app on
Android smartphones, we find empirical evidence supporting this approach. In
particular we are able to reduce misclassifications by separating out truly unsuc-
cessful interruptions from partial responses where some degree of interruptibility
was shown.

2 Current Conventions

The general convention for studying interruptibility is to issue interruptions un-
der different contexts and see if a response is given. For smartphone notifications,
this has the benefit of issuing interruptions through mechanisms that the user
already adopts. This has typically involved explicitly interrupting the user to
ask how interruptible they are, an arguably redundant practice if the user re-
sponds. Other studies attempt to implicitly operate through useful applications
such as a reminder function in a Mood Diary [18]. However across these studies,
each interruption attempt is typically represented in a similar way - as a feature
representation of the current context and a label of the user’s interruptibility
given that context.
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Fig. 1. The current underlying convention for determining interruptibility.

2.1 Representing the current context

The influential factors of interruptibility have been widely debated, particularly
between: user characteristics (e.g., cognitive load), interruption properties (e.g.,
notification content) and the local environment (e.g., location or activity) [4,
11]. Additionally, the definition of what it means to be interruptible is also
fragmented, with some studies focusing on: the physiological ability to switch
focus (e.g., [2, 10]); the affect the interruption would have on the current task
(e.g., [14, 7, 6]) or the user’s sentiment towards the interruption (e.g., [15]).

The data sources sampled from also vary greatly in the literature, with pe-
ripheral hardware (e.g., wearable accelerometers [5]) historically used. The in-
troduction of the smartphone has enabled many of these sensors to be contained
within a single device that isn’t alien to the user. Although smartphone sensors
have some issues with accuracy and consistency [8], similar issues affect user
annotation and bespoke equipment is impractical for large-scale, “in-the-wild”,
and longitudinal studies. Software APIs such as those tracking UI events [14, 1]
have also been used, however these are often platform dependent or limited to
moments when the user is performing a task on the device.

2.2 Labelling response behaviour

After initiating an interruption, studies across the literature typically judge suc-
cess by either observing whether a response is made (e.g., [16]) or by requesting
a self-assessment of its appropriateness (e.g., [15, 3, 19]). In either case, this re-
sembles a black-box system that either succeeds or fails. However in reality, a
user can exhibit a degree of interruptibility without completing the response.
For example, if a response is started but abandoned, it may be the case that
all notifications are unsuitable at this time, or only those from that application
(e.g., all emails) or just the particular content in question (e.g., emails from
the particular sender). If the user doesn’t provide feedback or provides incom-
plete feedback, the black-box approach can’t distinguish between these cases. For
intelligent systems, this could lead to misclassifications of partial responses as
null-responses, where no observable attempt to respond is made.

Retrieving a label Determining a quantified and unbiased measure of in-
terruptibility remains an ongoing challenge. A common method for capturing
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Fig. 2. Decomposing the decision process for Android notifications. ∗D4 may not apply
to all notifications.

this has been through self-reports, also known as Experience Sampling Methods
(ESM) (e.g., [15, 22]). On the positive side, due to the smartphone’s ubiquity, this
enables the collection of user opinion in situ, however it has several drawbacks
for interruptibility studies. Firstly, it introduces an additional task that the user
has to be sufficiently interruptible for and willing to complete. Secondly, it as-
sumes that a user can accurately and consistently quantify their interruptibility,
making it prone to errors across users and contexts [13]. Thirdly, it is also sub-
ject to potential behavioural bias from the consistent reminder that behaviour
is being monitored [13].

An alternative is to use software events to implicitly capture indicators of
interruptibility. For example, Smith et al [21] infer interruptibility by noting
whether incoming phone calls are answered. This measures what the user does
rather than what the user thinks, providing consistency over subjective self-
reporting, but it is limited to externally observed behaviour.

3 Modelling a response as a decision process

To observe within the black-box, we decompose notification response behaviour
into a sequence of atomic (possibly subconscious) decisions that a user makes.
This enables us to examine the extent to which the response is pursued and avoid
assumptions about the information the user knew. It is important to note that
we are not aiming to extend or change the existing response process - we are try-
ing to observe a process that already occurs. While this concept has previously
been explored for other systems [12], we are unaware of its application explicitly
to smartphone notifications. Additionally the variability of notifications [14] and
operating system conventions presents a non-trivial task of creating a model ro-
bust to these inconsistencies. Within the scope of this study we focus on Android,
due to it’s market share and open APIs to observe decision behaviour.

From a prediction standpoint, being able to predict at least a partial re-
sponse is useful for some applications. An example would be an application that
delivers repetitive identical reminders. The user may not want to complete the
process each time as the staged information delivery wouldn’t change. Instead,
just knowing that they acknowledged the interruption may be suitable.



3.1 Decomposing Android notifications

For Android notifications, user interface conventions and available APIs dictate
a sequence of up to 4 atomic decisions (visualised in Figure 2) to be observed. A
decision occurs at each point new information about the notification is provided
to the user. After being presented with this information (e.g., the application
icon), the user makes the decision to either continue (and be presented with the
next piece of information) or terminate the response at that point (e.g., turn the
screen back off and resume their previous activity). Inactivity with the device
represents a failed attempt to interrupt the user, i.e. null-responses. The steps
in our model are listed below, with the included examples assuming that the
device is not-in-use when the notification is delivered:

D1 The process begins as the device attempts to gain the user’s attention
through sound, vibration or visual cues. Depending on the state of the de-
vice, this may go unnoticed (e.g. if the device is in a bag). However if the
user is interrupted, they decide to either react and switch focus towards re-
sponding to the notification or ignore it.

D2 After choosing to react (e.g. turning the screen on), an icon graphic can be
seen which indicates the notifying application (e.g. an email has arrived).
Given this information, the user then decides to either focus their attention
towards a content summary (e.g. the email subject) by accessing a notifica-
tion drawer, or exit and return to their previous activity.

D3 On seeing the content summary, the user makes the decision whether or
not to read a fuller message by consuming the notification and entering the
relevant application (e.g. accessing the email client).

D4 Finally, if relevant to the notification, the user decides whether or not to
act on the content, (e.g. send documents in reply to the email).

3.2 Model Generality

The stages visualised in Figure 2 represent the maximum observable decisions
that a user goes through, however, this could vary due to notification inconsis-
tency. Some decision steps can be obscured by properties such as a recognisable
tone, such as the distinction between D1 and D2. Similarly, this may occur if the
notification summary contains the complete content (e.g., a repetitive reminder)
rather than dynamic meta-data (e.g., email sender). Additionally, when the de-
vice is not-in-use, the unlock process provides distinct points to observe decisions
being made (Table 1). However, if the device is already unlocked (i.e., in-use),
D1 and D2 cannot be easily distinguished due to limitations in observable UI
events (e.g. accessing the notification drawer). However, the ability to observe
some degree of partial response behaviour still offers improvement over relying
on completed responses.



4 Case study: timely Android notifications

To determine the extent our decision model captures complete and partial re-
sponses to notifications, we collected data “in-the-wild”, using a bespoke Android
application. From this we explore how many additional cases of interruptibility
are captured in comparison to a black-box approach and identify correlations
between the context before an interruption and response behaviour. Finally we
assess the extent individual response behaviour can be predicted through ma-
chine learning algorithms.

For this case study we focus on notifications that require timely delivery to
be effective and provide the user with information in stages, consistent with
the model in Figure 2. Whilst this doesn’t represent all possible variations of
notifications, it is representative of a subset where interruptibility is critical for
success and is in-line with similar work [18]. We also used Android’s default
parameters where possible, including using the default tone, vibration pattern
and LED pattern.

4.1 Data Collection: Interruption experiment

We developed an Android smartphone application, called ImprompDo, designed
to deliver notifications, collect detailed context data and record response be-
haviour. So that a participation incentive naturally exists beyond our research
purpose [18], this took place implicitly behind the functionality of a to-do list
productivity tool.

Application setup After installation the user is guided through a short setup
process of consenting to participate in the study and authorising access to their
existing to-do lists (Todoist or Google Tasks). The user is then presented with
optional preferences (Figure 3), modifiable at any time. Notifications could begin
from the start of the next hour.

Fig. 3. The preferences screen



Notification delivery and response Notifications were delivered within a
user defined hour range (9am to 9pm by default) and maximum frequency (from
once an hour up to once a day). If an interruption occurs, a response follows
the same process as any other notification (shown in Figures 4-6). Although it
would be possible to check whether the user did complete the to-do item (D4),
these decisions are largely dependent on individual to-do list usage behaviour,
hence to maintain generality, we chose not to consider this step.

Fig. 4. The application icon shown for an example ImprompDo notification

Fig. 5. The notification drawer with a ImprompDo notification summary

Fig. 6. The application content shown if the ImprompDo notification is consumed.

At the beginning of each period, a random trigger was chosen that dictates
if and when the notification would occur. Inspired from related works, these
triggers were: at a random time, at the end of a period of acceleration, a temporal
online learning model (using hours) and a multi-modal online learning model
using logistic regression with features extracted from captured context. This
follows a 1 x 4 repeated measures within-subjects design implemented as a N of
1 randomized trial [15, 20]. This intended to prevent skewness by not splitting



users into groups for each trigger, and because user participation time “in-the-
wild” cannot be guaranteed.

Each notification prompts the user once and remains active for 30 seconds,
or until the user either selects a to-do list item action (Figure 6) or dismisses it.
After 30 seconds, the interruption is deemed unsuccessful in producing a response
and is removed. We assume that this window provides sufficient opportunity
for the user to respond if they were physically interrupted and could respond
immediately. This design choice intended to keep the local context at the time
the interruption consistent with the context if the user were to respond.

4.2 Data Collection: Implicit sensing

To capture context before interruption and during response we chose data sources
that would be readily available for a real-world smartphone application - with-
out adding any extra permissions or user tasks. With little co-agreement across
the literature [5], we adopted a bottom-up approach of collecting from a vari-
ety of local hardware sensors and software APIs. The data sources chosen to
extract feature variables from were: linear acceleration (pseudo-sensor), grav-
ity (pseudo-sensor), light sensor, proximity sensor, charging state, screen on/off
state, lock/unlock state, volume state and the current timestamp. Whilst these
are a subset of what the smartphone is capable of, these represent what is typi-
cally available on an Android smartphone, across manufacturers and models.

Additional context about what the user is doing could be provided by calen-
dar data or activity recognition. However, calendar data has high granularity and
is often incomplete, especially beyond working hours. Detailed activity recogni-
tion is restricted by the inability for current smartphones to do this accurately
and efficiently. Other environmental data such as location and ambient noise
(microphone) were omitted due to the additional permissions required. This
also has a tenuous link to the to-do list application and may deter users from
participating and could introduce a behavioural bias [13].

Data was collected implicitly as notifications were delivered and remained
active. Sampling begins from 5 seconds before the interruption until the notifi-
cation is consumed/dismissed by the user (D3) or otherwise it expires 30 seconds
after interruption (Figure 7). Sampling consists of taking sets of raw data vec-
tors containing a reading from each data source. As readings are delivered by
Android asynchronously, a short window is opened to listen for readings. It is

0s

Sampling
begins

5s

Interruption
occurs

Tt

Notification
is consumed

Else

35s

Notification
expires

Fig. 7. Visualisation of the implicit data collection. Sampling occurs from 5s before
delivery up until the notification is consumed at time Tt (5s < Tt < 35s) or it expires.



Decision Continue on event Exit early event

D1* Screen is switched on Screen stays off until timeout

D2* Device is unlocked Screen is switched back off

D3 Notification is tapped on Notification is dismissed or timeout

D4 Application dependent Application dependent

Table 1. Decision outcomes observed through progressive smartphone events. *Only
observable if an Android device is not-in-use.

closed when either: at least 1 reading is collected from all data sources or 2 sec-
onds has elapsed. When closed, the most recent readings are taken to minimise
variance between reading times. If no readings were available after 2 seconds,
the reading for that data source is set to null in the vector. An attempt is made
to open a new sampling window immediately, however this is subject to device
speed and system stability. The collection of raw data vectors is then examined
to extract decision behaviour, using the criteria detailed in Table 1.

5 Case Study Results

After a period of 6 months, we analysed the aggregated data of all users to deter-
mine whether: capturing detailed response behaviour is beneficial; different con-
texts before an interruption are correlated with different behaviour; and whether
partial and complete responses could be predicted. A summarised breakdown of
the dataset is shown in Table 2. It should be noted that user participation was
voluntary and could have occurred any time within the 6 months for any du-
ration. Missing data prevented the extraction of whether the device was in-use
or not at the time of the interruption or the decision behaviour afterwards, in
1287 of 11,346 cases (11.343%). Of the remaining 10,059 cases, the majority of
notifications were not completed, with only 1056 of 10,059 (10.498%) consuming
the notification - consistent with other studies (e.g., [15]).

5.1 Capturing partial response behaviour

Identifying partial responses, and therefore preventing them from being misin-
terpreted as null-responses, is possible under our approach. When the device was
not-in-use at the time of interruption, partial responses occurred in 1126/7737
cases (14.553%). Whilst this may appear small, this increases the total distribu-
tion of cases where some degree of interruptibility was shown from 1056 cases
(across in-use and not) to 2182 in 10,059, representing a substantial 106.629%
increase. Including notification dismissals when the device was in-use would in-
crease this further. Overall, this suggests that whilst users aren’t interruptible
most of the time, decomposing interruptibility through our model reveals ad-
ditional cases to potentially consider. If further APIs are made available (e.g.



Metric Value

Total number of users with >1 notification 93
Total number of notifications 11,346
Total number of days 178
Average number of notifications 122
Average number of days 26.457

Interruptions when the device was not-in-use 7737
- Null responses 5939
- Partial responses 1126
- Complete responses 672

Interruptions when the device was in-use 2322
- Null responses 1747
- Partial responses 191
- Complete responses 384

Interruption cases with missing data 1287
- Unknown if in-use or not-in-use 1267
- Unknown response behaviour 20

Table 2. A summary breakdown of the ImprompDo dataset.

notification drawer UI events), then further cases could be captured when the
device is in-use.

By assessing the exact decision stage the user discontinued responding, we
can also infer why they may have exited. For example, if the user turns the
screen on to show the application icon, but goes no further, they don’t know
what the exact to-do list item was, so their reason for stopping cannot be due
to undesirable content.

5.2 Correlating context to decision behaviour

Before conducting our analysis we performed Kolmogorov-Smirnov tests, which
determined the presence of non-normal variable distributions. Therefore, non-
parametric equivalents to t-tests were used. For variables with 2 possible values,
Mann-Whitney U tests were used. Kruskal-Wallis 1-way ANOVAs were used for
those with more than 2 values, to reduce the likelihood of Type I statistical
errors. We began with analysing whether a particular trigger was significantly
better at producing at least partial responses. From pairwise post-hoc tests from
a Kruskal-Wallis test we found that no trigger was significantly better than all
others. As a result we chose to analyse the significance of each variable individ-
ually, towards building other multi-modal prediction models.

To evaluate the prospects for prediction, we analysed whether the context
sampled in the 5 seconds before an interruption was correlated to the outcomes
of each decision (continue or exit). Raw sensor readings on Android devices have
previously been shown to be inconsistent [8] and require filtering [9]. Therefore
to stabilise the readings over the 5-second period, we took the mean value of each



Not-in-use In-use

Feature Variables D1 D2 D3 D3

Accelerating*
True, False

.186 .458 .072 .000

Ambient Light**
Dark, Dim, Light, Bright

.000 .039 .000 .000

Screen Covered*
True, False

.000 .187 .000 .005

Volume State**
Silent, Vibrate, Audible

.000 .009 .011 .000

Orientation**
Flat, Upright, Other

.000 .098 .000 .000

Charging State*
True, False

.000 .001 .145 .177

Time of Day**
Morn, Aftrn, Eve, Nght

.002 .125 .936 .000

Day of the Week** .509 .794 .100 .000

Number of cases (n) 7737 1798 1469 2322

Table 3. P-values indicating significance of each feature on each decision. Bold values
show significance using p < 0.05. * Mann-Whitney U Test ** Kruskal-Wallis 1-way
ANOVA

data source and categorised the result (shown in Table 3). For the “Accelerating”
variable, a high-pass noise filter was also applied (threshold = 0.1m/s2) to ensure
that acceleration was substantial.

Each variable was then tested for statistical significance by analysing the
distribution of its values across each decision outcome (continue or exit). Table 3
provides an overview of the p-values from the analysis. Overall, the results reveal
differences in the significant variables between different decisions, as well as when
the device is in-use and not, showing potential for predicting response behaviour
at a finer granularity than a black-box model.

5.3 Response prediction

To investigate the extent in which response behaviour can be predicted, we
built predictive models from the same dataset using the machine learning tool-
kit WEKA. We experimented with whether having a different model for each
decision (with {continue, exit} classes) would perform better than a multi-class
model predicting the exact decision the user exited the response. An exit at D3
is synonymous with a complete (consumed) response.

From frequency distributions we found that the distribution of class labels in
the dataset was imbalanced. Therefore we used random-under-sampling (RUS)
to prevent skewing classifier performance. We chose 7 classifiers used in related
works and performed 10-fold cross validation on each model using 100 randomly



not-in-use in-use

Classifier Metric D1 D2 D3 MC D3

AdaBoostM1
Precision 0.6045 0.6064 0.6375 0.2522 0.5927
Recall 0.6026 0.6045 0.6369 0.2976 0.5923

BayesNet
Precision 0.5936 0.5873 0.5955 0.2532 0.4997
Recall 0.5889 0.5831 0.5917 0.2870 0.4996

J48
Precision 0.6065 0.5986 0.6316 0.3376 0.6010
Recall 0.6023 0.5957 0.6294 0.3393 0.6002

Logistic
Precision 0.5719 0.5791 0.6118 0.3217 0.5881
Recall 0.5718 0.5790 0.6117 0.3272 0.5879

NaiveBayes
Precision 0.5715 0.5816 0.6195 0.3408 0.5889
Recall 0.5702 0.5801 0.6174 0.3372 0.5872

RandomForest
Precision 0.5788 0.5769 0.6250 0.3277 0.5939
Recall 0.5787 0.5768 0.6246 0.3283 0.5938

SMO
Precision 0.5664 0.5779 0.6036 0.3233 0.5941
Recall 0.5659 0.5761 0.6017 0.3248 0.5928

Table 4. Classifier performance using models at varying granularities. Bold values
indicate the highest value across classifiers.

under-sampled balanced datasets. The mean performance of each classifier is
shown in Table 4.

The results show poor performance for the multi-label model in comparison
to individual models dedicated to predicting continue or exit for each decision.
For the individual models, the performance is in-line with similar studies (e.g.,
[15]), with D3 the equivalent to a black-box model. Given that this is an aggre-
gated dataset and that humans can have varying smartphone and interruption
habits this performance (of around 60%) is neither unexpected nor unreason-
able. Interestingly, the variance in classifier performance for each decision and
between decisions is small for both metrics and not statistically significant. Cru-
cially, this shows that partial response behaviour can be predicted as well as
complete responses. This is also beneficial for real-world implementation as the
same classifier can be used for all decisions without a detrimental affect on per-
formance.

Additionally, although having separate models increases complexity, a single
computationally cheap classifier can be used without significant performance loss
- improving viability as the smartphone has limited resources. Going forward,
this shows that predicting response behaviour at decision-level granularity is pos-
sible. These results provide a baseline for further work on whether performance
can be improved with personalisation and online learning.



6 Limitations and future work

Notifications vary in content and purpose [14], so to assess the suitability of our
model we’ve used a notification that is representative of those where untimely
delivery would be useless for both the interrupter and the interruptee. However,
other types of notifications, particularly less timely notifications (e.g., digest type
notifications such as Twitter’s notifications) and rapport-driven notifications
(e.g., instant messaging) should also be explored.

We have focused on Android smartphones running version 4.0 - 4.4, which
represented between 85%-90% of the market distribution within Android ver-
sions at the time of the study. However, the delivery and response conventions
to notifications can vary across operating systems, inhibiting a one-size-fits-all
case study. Theoretically, the premise of the model remains, the exact decisions
and indicators of decisions being made may need to be adapted from a priori
knowledge of these systems.

Going forward, several steps to potentially improve prediction performance
can be taken. Firstly, the performance of alternative training methods, such
as online or evolutionary learning, could be explored. Secondly, further work
could explore whether personalised training data could improve performance
or a mix with aggregated data. Thirdly, we’ve intentionally used typical data
sources available for Android devices. If technical constraints and behavioural
bias risks can be mitigated, the predictive power of other data sources should be
explored. Finally, if additional measures to implicitly observe decision behaviour
become available, this should be explored, particularly for when the device is
in-use.

For the model itself, an ongoing research question remains in distinguishing
between cases where the user wasn’t physically interrupted (e.g. the smartphone
wasn’t near them) and those where they were but they didn’t perform any ob-
servable actions on the device, i.e. null-responses.

7 Conclusion

Smartphone notifications have extended the diversity and frequency of inter-
ruptions we receive throughout our daily lives. Intelligent systems for inferring
interruptibility and likely success of a timely response are highly desirable to
the remove the reactive burden placed on users. The current conventions for
modelling the response behaviour to notifications heavily rely on complete re-
sponses and the user to provide labelling. However in reality notifications have
high variability [14], a user might be interruptible but not for all notifications
[12].

For intelligent systems which seek to decide whether to push or delay a
notification in situ, we explore whether the natural decision process that the
user goes through when being interrupted [12] can be observed for smartphone
notifications. We present a model of up to 4 sequential decisions a user faces when
receiving and responding to notifications and find support for our hypothesis that



decomposing how a response is made is worthwhile. Through an “in-the-wild”
case study, we observe that including partial responses when the device is not-
in-use increased the number of cases where some degree of interruptibility was
shown by 106.629% - reducing false-negative misclassifications.

Additionally, we find that this is achievable without explicit user annotations
through implicitly observing how the user interacts with the device. From this
we identify that different features in the context before an interruption are signif-
icantly correlated to different partial and complete response behaviour. Finally,
we attempt to predict the extent in which a user pursues a response, with accu-
racy in-line with related work in the area, but with the benefit of also predicting
partial responses.
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