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Abstract This paper develops a novel adaptive gradient-based block compressive
sensing (AGbBCS SP) methodology for noisy image compression and reconstruc-
tion. The AGbBCS SP approach splits an image into blocks by maximizing their
sparsity, and reconstructs images by solving a convex optimization problem. In block
compressive sensing, commonly used square block shapes cannot always produce the
best results. The main contribution of our paper is to provide an adaptive method for
block shape selection, improving noisy image reconstruction performance. The pro-
posed algorithm can adaptively achieve better results by using the sparsity of pixels to
adaptively select block shape. Experimental results with different image sets demon-
strate that our AGbBCS SP method is able to achieve better performance, in terms
of peak signal to noise ratio (PSNR) and computational cost, than several classical
algorithms.
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1 Introduction

Compressive Sensing (CS) is a sampling paradigm that provides signal compression
at a significantly lower rate than the Nyquist rate [15], [16]. It is based on signal sparse
representation [24] and has been successfully applied in a wide variety of applications
in recent years, including image processing [9,27,30,45], Synthetic Aperture Radar
(SAR) [2], Internet of things [25,43,28], Magnetic Resonance Imaging (MRI) [38],
video [51,29], and solder joint image compression [53]. The authors in [32] proposed
a novel reconstruction method for X-ray images based on CS. The authors in [41]
developed a new method of fast encoding for SAR raw data by using CS theory to
compress and reconstruct SAR raw data. In [40] compressive sensing and matrix
completion techniques are applied to recover the original spectral signals. Simulation
results proved that the output was improved.

In this paper, we develop a novel CS algorithm named AGbBCS SP for image
compression and reconstruction, which is particularly beneficial for noisy images.
The main contributions of this paper are summarized as follows:

– We find that the square block shape used in existing methods cannot always
achieve best results. Therefore, we propose a multi-shape block splitting strategy
for block Compressive Sensing. Besides splitting the image into square blocks,
we also split it into rectangular blocks with different shapes (i.e. aspect ratios). By
doing so, nearby pixels which are similar have a high probability to be assigned
to the same block, leading to more effective compression.

– Our adaptive Compressive Sensing scheme makes a practical assumption that
only a small, randomly chosen part of the image needs to be known. Our method
automatically selects the appropriate block shape which maximizes the sparsity
of the signal in the known region.

– The control factor for sparse regularization is also important for effective image
reconstruction. We propose an adaptive approach to selecting a suitable control
factor, by comparing the sparsity of the reconstruction results.

After the block shape selection, the image is split using this block shape, and then the
recently proposed gradient-based method for Compressive Sensing [53] is applied.
Our method involves two adaptive selection steps, optimizing the block shape and
control factor, respectively. The results show that the reconstruction performance is
improved significantly.

The rest of this paper is organized as follows. In section 2, we introduce some
related work on CS. In section 3, we introduce the theory of Compressive Sensing
and the gradient-based method for the convex optimization problem. In section 4, we
describe the AGbBCS SP method for image compression. Experimental results and
comparison are shown in section 5. Finally, we conclude our paper in section 6.
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2 Related work

2.1 Compressive Sensing Algorithms

The major challenge in CS is to approximate a signal given a vector of samples. In
recent years, many methods have been proposed which can be roughly divided into
six categories:

1. Convex Optimization Algorithms. These techniques solve a convex problem
which is used to approximate the target signal, including Basis Pursuit [8], Greedy
Basis Pursuit (GBP) [21], Basis Pursuit De-Noising (BPDN) [31].

2. Greedy Iterative Algorithms. These methods build up an approximation by
making locally optimal choices step by step. Examples include Matching Pursuit
(MP), Orthogonal Matching Pursuit (OMP) [44], regularized OMP (ROMP) [36],
Compressive Sampling MP (CoSaMP) [35] and Subspace Pursuit (SP) [10].

3. Iterative Thresholding Algorithms. Iterative approaches for the CS recovery
problem are faster than the convex optimization method. For this type of algo-
rithm, which assumes that the signal is sparse, correct measurements are recov-
ered by soft or hard thresholding [4], [14] starting from an initial random noise
measurement matrix.

4. Combinatorial / Sublinear Algorithms. This type of algorithm recovers a sparse
signal through group testing [20], such as Heavy Hitters on Steroids (HHS) [39].

5. Non Convex Minimization Algorithms. Non-convex local minimization tech-
niques recover compressive sensing signals from far less measurements by re-
placing the l1-norm by the lp-norm where p≤ 1 [7]. An example of an algorithm
proposed in the literature that uses this technique is Iterative Re-weighted Least
Squares [11].

6. Bregman Iterative Algorithms. When applied to CS problems, the iterative ap-
proach using Bregman distance regularization achieves reconstruction in four to
six iterations [37].

2.2 Block Based Compressive Sensing (BCS)

In the methods above, a column or row of an image is normally viewed as a vec-
tor. But in many applications the nonzero elements of sparse vectors tend to clus-
ter in blocks [17]. In this case the sampling problems over unions of subspaces can
be converted into block-sparse recovery problems. In order to improve the perfor-
mance, [19] proposed and studied block compressive sensing for natural images and
this method involves Wiener filtering and projection onto the convex set and hard
thresholding in the transform domain. For 512× 512 size images, the author sug-
gested block dimension 32. [33] proposed a BCS SPL method with a variant of
projected Landweber (PL) iteration and smoothing. It needed more than 200 itera-
tions and they used different block dimensions (16, 32 or 64) according to differ-
ent image sizes. [34] studied a DDWT BCS method which was based on a 5-level
dual-tree discrete wavelet transform (DDWT) which was used as the sparsity basis.
For a 512× 512 image, they set the block size as 16× 16. [50] proposed a BCS
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method based on a Bayesian learning framework for Fetal ECG (FECG) telemonitor-
ing, and it could greatly reduce code execution time in the data compression stage.
They used certain block partitions and the block size ranged from 4 to 90. Both [42]
and [48] proposed an adaptive block-based compressive sensing approach which col-
lected a different number of samples of the measurement matrix for each block. [9]
studied block compressive sensing in wireless sensor networks and [3] analyzed the
block sampling strategies in compressive sensing. They showed the optimal number
of blocks depended on the properties of block coherence.

[49] and [26] studied block compressed sensing with projected Landweber (PL).
[18] developed BCS SPL method based on a smoothed projected Landweber recon-
struction algorithm. BCS SPL has obvious defects since the Wiener filter and iter-
ative projected Landweber discard partial information in the image. [46] proposed
a block compressed sensing method based on iterative re-weighted l1 norm mini-
mization. [52] developed a block compressed sensing method for solder joint images
based on CoSaMP. In those methods the row and column sizes of the measurement
matrix are the square of the block size. So with increased block size, the algorithm
requires substantially more memory.

Despite many CS algorithms appearing in the literature, there are still many chal-
lenges in compressive sampling to approximate a signal, especially for noisy signals.
On one hand, in most methods, a column or row of an image is normally viewed as a
vector, and so the local 2D spatial image information is ignored. All the block com-
pressive sensing methods mentioned above used fixed block size and are not adap-
tive. On the other hand, the computational cost for many methods, such as CoSaMP,
is unsatisfactory. Some classical methods, such as OMP, have good computational
efficiency, but their reconstruction performance needs to be improved. Third, some
of the algorithms require tuning several parameters, and are not adaptive.

3 Compressive Sensing Methodology

3.1 A Brief Review of Compressive Sensing

Given an image, the first step of CS is the construction of a k-sparse representation,
where k is the number of the non-zero entries of the sparse signal. Most natural sig-
nals can be made sparse by applying orthogonal transforms, such as Wavelet Trans-
form, Fast Fourier Transform and Discrete Cosine Transform (DCT) [6]. This step is
represented as

x =Ψs, (1)

where s is an N-dimensional noise free image, x is a weighted N-dimensional vector
(sparse signal with k nonzero elements), and Ψ is an N×N orthogonal basis matrix.
The second step is compression. In this step, a random measurement matrix is applied
to the sparse signal according to the following equation:

y = Φx = ΦΨs, (2)
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where Φ is an M×N random measurement matrix (M < N). In most images or
videos, there is some noise [5,54]. For a noisy image, the equation is generalized as:

y = ΦΨs+w, (3)

where w is an N-dimensional noise signal (or measurement error). Let M be the num-
ber of measurements (the row dimension of y) sufficient for high probability of suc-
cessful reconstruction. As expected, signal x in Eq.(2) and Eq.(3) may be estimated
from measurement y by solving the convex minimization problem [44,35] as follows.{

minimize ‖x‖1
subject to : ‖Φx− y‖2 ≤ ε,

(4)

where ε is an upper bound on the noise in the data.
The robustness of CS heavily relies on a notion called the restricted isometry

property (RIP) [47]. RIP is defined as follows,

(1−δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1+δk)‖x‖2
2, (5)

where ‖ · ‖2
2 defines the l2 norm, and δk is the k-restricted isometry constant of a

matrix. RIP is used to ensure that all subsets of k columns taken from Φ are nearly
orthogonal.

3.2 Gradient-Based Method for Convex Optimization Problems

Generally Eq.(4) is a constrained minimization problem of a convex function. One
of the simplest methods for solving a convex minimization problem is the gradient-
based algorithm which generates a sequence xk via

x0 ∈ RN ,xk = xk−1− tk∇g(xk−1), (6)

where g(x) is a convex function, and tk > 0 is a suitable step size. For a signal in
Eq.(3), let us think about an objective function F(x) = g(x) + f (x), where g(x) is
convex, and f (x) = λ‖x‖1. In our method, it is more natural to study the closely
related problem

argmin
x
‖Φx− y‖2

2 +λ‖x‖1. (7)

At point xk−1, the function F(x) can be approximated by the following quadratic
function

QL(x,xk−1) =

{
g(y)+< x− xk−1,∇g(xk−1)>+

1
2tk
‖ x− xk−1 ‖2

2

}
, (8)

which admits a unique minimizer,

PL(xk−1) = argmin
x
{QL(x,xk−1),x ∈ RN}. (9)

We solve this problem using a gradient-based method, in which an iteration pa-
rameter tk is replaced by a constant 1/L which is related to the Lipschitz constant [1].



6 Hui-Huang Zhao, Paul L. Rosin, Yu-Kun Lai, Jin-Hua Zheng and Yao-Nan Wang

Fig. 1 The flow chart of our AGbBCS SP approach.

4 The Adaptive Gradient-based Block Compressive Sensing with Sparsity

4.1 Framework of our method

The framework of our AGbBCS SP approach is shown in figure 1. For an image, the
main steps are:

– We propose an adaptive block CS approach in which we consider different block
shapes for splitting the image into a set of non-overlapping blocks of equal shape.
Assuming that the information of the entire image is unknown, our method ran-
domly selects a small part of the image and reconstructs it, and adaptively selects
one block shape which can maximize the sparsity of the signal.

– The original image is sparsified by an orthogonal transformation, treating its
compression as a convex optimization problem, followed by applying a gradient-
based method. Each block is then transformed into a one-dimensional data vector.
Here, we assume the problem to be convex with the Lipschitz gradient. Aiming
at improving the efficiency, we replace an iteration parameter by the Lipschitz
constant [53].

– We apply the proposed gradient-based method for reconstruction. The proposed
method also adaptively selects a control factor which controls an l1 norm expres-
sion in the optimization problem by comparing the sparsity of the reconstruction
results. After an inverse transformation, the reconstructed signal can be obtained.
Finally, each one-dimensional data vector is transformed into a two-dimensional
block, and those make up the image.

4.2 Block Compressive Sensing and Multi-shape Block Split Strategy

Given an N1×N2 image, it is split into small blocks of size n1×n2. Let fi represent
the vectorized signal of the i-th block through raster scanning, i=1, 2, . . . , K, and K =
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N1N2
n1n2

. One is able to get an m-dimensional sampled vector yB through the following
linear transformation,

yB = ΦB fi, (10)

where ΦB is an m× n1n2 measurement matrix, m� n1n2. The block CS method
is memory efficient as we just need to store an m× n1n2 Gaussian random matrix
ΦB, rather than the full M×N1N2 one. Small data requires less memory storage and
allows faster processing, while large data produces more accurate reconstruction.

In existing methods, the blocks in the Block Compressive Sensing are fixed as
squares. However, there are many different block aspect ratios with the same number
of pixels. Unlike common methods, we split the image into different shapes. Given
an Ñ× Ñ image (assuming Ñ is a power of 2 for simplicity), the shape of a block is
w×h, so 

w = 2a,
h = 2b,
a = 0,1,2,3, ... log2 Ñ.
b = log2 Ñ−a,

(11)

For example, 9 aspect ratios are defined to split a 256× 256 image with the fol-
lowing block-shapes: 1×256, 2×128, 4×64, 8×32, 16×16, 32×8, 64×4, 128×2 and
256×1. As we will discuss later in section 5.1, some block shapes (especially those
closer to squares) are more likely to provide effective reconstruction. Also, using
closer-to-square blocks also means that these blocks can be fit in smaller square re-
gions, e.g. 8×32, 16×16, 32×8 blocks can be fit in 32×32 squares, whereas 1×256
blocks cannot. As we will discuss in section 4.3, this makes adaptive selection more
effective. Detailed discussions will be presented in the experimental results.

4.3 Adaptive Block Shape Selection

In most cases, the information of the entire signal (image) is unknown. It is hard to
select one block shape from several shapes if the image content is unknown. So we
make a practical assumption that only a small part of the image is known and propose
a new approach based on sparsity for block shape selection. We highlight the block
shape selection step in our approach.

First, we randomly select a small percentage of image pixels that make up known
regions. These regions are then split into smaller block shapes considering the various
aspect ratios specified in Eq.(11). We reconstruct them, calculate their sparsity, and
then select the block shape which maximizes sparsity.

For an image, firstly, it is split into T non-overlapping regions of size P×Q,
where K1 = T × p are known regions, and p is the proportion. So K1 regions (size
P×Q) are selected. There are K2 block sizes in Eq.(11) wk × hk,(k = 1,2, ...,K2)
that fit within P×Q regions. Then for K1 regions (size P×Q), they are split into K3
blocks of size wk× hk. Given that x̂ is defined as the reconstructed result in Eq.(7),
the summed sparsity of its blocks is defined as

Sp = l0
ε (x̂i, j ≤ ε) , (12)
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Algorithm 1: Block Shape Selection with Sparsity
Input : An input image s, a percentage p;
Output: The selected block size w×h

Procedure:
Step 1:
Split s into T blocks of size of P×Q
K1 = T × p
K1 regions (each of size P×Q) are selected, and those regions collectively form ŝ.
Step 2:
K2 block shapes are considered: w1×h1,w2×h2, ...,wK2 ×hK2 .
ŝ is split into K3 blocks altogether with wk×hk through Eq.(11)
For the k-th block size ŝ={s̃(k)(1), s̃(k)(2), . . . , s̃(k)(K3)} .
for k = 1 to K2 do

ŝ(k) = /0.
for j = 1 to K3 do

Add a new signal s̃(k)( j) to ŝ(k).
end

end
Step 3:
for k = 1 to K2 do

Get x̂k through Eq.(7) with ŝ(k)

Spk = l0
ε

(
x̂k ≤ ε

)
through Eq.(12),

end
Spd = max{Sp1 ,Sp2 , ...,Spk}
The d-th block shape is chosen, and the block size is wd ×hd .
Output wd and hd .

Fig. 2 Adaptive block selection based on sparsity.

where x̂i, j is the element at location (i, j) in the reconstructed result x̂, and l0
ε (·) is a

function defined in [22]. Thus, we propose the adaptive block shape selection with
sparsity algorithm whose details are shown in Algorithm 1. For example, given a
256× 256 image, we set p = 0.25. We consider splitting the image into T = 64 re-
gions of size P×Q= 32×32, and K1 = 64×0.25= 16 blocks are randomly selected,
so that K3 = 16×4= 64. With 32×32 regions, we consider K2 = 3 block sizes 8×32,
16×16 and 32×8 which fit within the region. The process of block shape selection
is shown in figure 2.

In this paper, we consider splitting an image into blocks in different ways, and
the configuration with the largest sparsity is chosen for CS.
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Algorithm 2: Adaptive Gradient-based Block Compressive Sensing
Input : An image I of size Ñ× Ñ; a sparse signal transform matrix Ψ ∈ RWH×WH ; a

measurement matrix Φ ∈ RM×WH ; where W and H are the chosen block width and
height, and M is the sampling rate; Lipschitz constant L = 0.5; the number of iterations
J = M/4.

Output: The reconstructed image s.

Procedure:
Step 1:
begin: I is split into T regions, and p is a percentage, K1 = T × p regions are selected.
One block shape W ×H is chosen by Algorithm 1,
I is split into K4 blocks with W ×H block size.
end
Step 2:
begin: Set the block counter k=1, λ = 1, and the iteration counter j=1, Spmax = 0.
while λ ≤ 100 do

while k ≤ K2 do
Transform each block into a data vector; y0 = x0 = 0 ∈ RWH , t1 = 1;
while j ≤ J do

zk
j = PL(yk

j), solved through [53].

tk
j+1 =

1+
√

1+4tk2
j

2
xk

j=argmin{F(xk) : xk = zk
j ,x

k
j−1}

yk
j+1 = xk

j +
tk
j

tk
j+1

(zk
j− xk

j)+
tk
j−1

tk
j+1

(xk
j− xk

j−1)

end
Collect all the x̂k

J to form x̂.
end
Sp = l0

ε (x̂≤ ε) through Eq.(12),
If Sp > Spmax

Spmax = Sp
ˆ̂x = x̂

Endif
end
s′ =Ψ−1 ˆ̂x.
For each one-dimensional data vector in s′, transform it into an W ×H block.
Collect all the blocks to form the reconstructed image s.
end

4.4 Adaptive Block Compressive Sensing with Sparsity Algorithm

During the minimization of Eq.(7), λ can be used to improve the result with different
sampling rates. Usually λ = M/4, but in our proposed method, we set λ ∈ [1,100],
and we adaptively choose λ such that the largest sparsity is achieved. Thus, we pro-
pose our AGbBCS SP algorithm whose details are shown in Algorithm 2, where the
basic sparse optimization is based on [53].

There are two steps in our method. The first step compares the sparsity for block
shape selection. The second step uses the selected block shape to split the image
and reconstruct the image. In comparison with other reconstruction algorithms, our
algorithm has the following characteristics:

– Unlike the traditional block compressive sensing approaches, in which the block
is a fixed square shape, our method considers splitting an image into multiple
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Table 1 Correct ratio of AGbBCS SP (M = 128)

dataset image number best shape selected ratio
Holidays 157 136 86.62%
Copydays 812 691 85.10%

block shapes. Similar pixels have a high probability to be assigned to the same
block.

– Furthermore the block shape selection is adaptive and it is determined by maxi-
mizing sparsity.

– Suppose the information of the entire image is unknown. Our algorithm randomly
selects a small part of the image to perform block shape selection.

– The algorithm also adaptively selects the control factor λ according to the sparsity
of the results.

5 Experiments and Discussion

In order to evaluate the quality of the reconstructed results, many researchers used
the Peak Signal to Noise Rate (PSNR) to measure the result quality in image pro-
cessing [13]. In our study, PSNR is also used to compare the experimental results.
The experiments were implemented on an Intel Core i5 with 2.70 GHz CPU. The
test images include some standard ones (such as woman), INRIA Copydays dataset
(157 images), and INRIA Holidays dataset (812 images) [23] to which salt & pepper
noise is added with δ = 0.05 by default. Since some methods require the image size
to be a power of 2, we have cropped all the images to 256×256.

5.1 Experiments with different block aspect ratios

Given a 256×256 image, the block-shapes 1×256, 2×128, 4×64, 8×32, 16×16,
32×8, 64×4, 128×2 and 256×1 are considered. We used the INRIA Copydays and
the INRIA Holidays datasets and the noise level is set δ = 0.05. With the sampling
rate M = 128 and λ = M/4, we test different block shapes. Then we select the best
shape, and the number of times that each block shape is best is shown in figures 3(a)
and (b) for the two datasets, respectively.

We find that a square block (16× 16) cannot always get the best results, and
8×32, 16×16, and 32×8 can achieve the top three results. So in our AGbBCS SP
method, three block shapes are chosen. As described above, we consider splitting a
256×256 image into 64 regions, each of size 32×32, and 64×0.25 = 16 blocks are
randomly selected to calculate sparsity for three block shapes (8× 32, 16× 16, and
32× 8). Then we choose the block shape which can get maximum sparsity for the
given image.

Based on the introduction above, we do a test with the INRIA Copydays dataset
and the INRIA Holidays dataset with added noise δ = 0.05, and we count the number
of images our method selects the best block shape for based on M = 128, and the
results are shown in table 1.
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(a) Copydays dataset

(b) Holidays dataset

Fig. 3 The number of images that each block shape is best in the (a) INRIA and (b) Holidays datasets.

From table 1, one can see that the proposed AGbBCS SP approach can achieve
a good result for block shape selection, where the ratios of correctly selecting the
best block shapes are 86.62% and 85.10%. The average reconstruction results with
different block shapes and our method are shown in figures 4 (a) and (b).

One can see from figures 4 (a) and (b) that AGbBCS SP, which can adaptively
select block shape and λ which can adjust the l1 norm in the minimization problem,
achieves the best results. Especially when the sampling rate u ≤ 0.6, the PSNR is
improved greatly.

5.2 The comparison of reconstruction results

Now let us compare the proposed AGbBCS SP with the popular methods SP [10],
OMP [44], BOMP [17], CoSaMP [12], BCoSaMP [52] BCS SPL [18] and Deep
Image Prior [45]. In BOMP, BCoSaMP and BCS SPL, the block is set to a square
shape (size 16×16). Deep Image Prior is not based on blocks, and we simply recover
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(a) Copydays dataset

(b) Holidays dataset

Fig. 4 Quantitative comparison based on different block shapes for INRIA datasets

images based on a sparse sampling using the authors’ code. The test image woman
is used (size 256× 256) with added noise δ = 0.03, as shown in figure 5(a). The
reconstruction results based on popular methods with sampling rate M = 200 are
shown in figures 5(b-g) and the reconstruction result based on our AGbBCS SP with
the same sampling rate, is shown in figure 5(h).

We can see that our method can achieve a better result than SP, OMP, BOMP,
CoSaMP, BCoSaMP, BCS SPL and Deep Image Prior.With more noise added and
M = 128 in test image woman, the PSNR comparisons are shown in figure 6. One
can see from figure 6 that, compared to SP, OMP, BOMP, CoSaMP, BCoSaMP and
Deep Image Prior, our method achieves the best result.With increasing noise in the
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(a) woman (b) Noisy image (c) [44](17.97dB) (d) [10](17.27dB) (e) [12](16.66dB)

(f) [17](18.08dB) (g) [52](17.01dB) (h) [18](20.27dB) (i) [45](19.55dB) (j) Our(21.19dB)

Fig. 5 Reconstruction results based on different methods

Fig. 6 PSNR comparison of different levels of added noise

image, Deep Image Prior can achieve a constant PSNR value. When δ > 0.025, our
method achieves a better PSNR result than BCS SPL.

With increasing numbers of samples in the noisy image (see figure 5(a)) the PSNR
comparisons are shown in figure 7. One can see from figure 7 that, compared to SP,
OMP, BOMP, CoSaMP, BCoSaMP and Deep Image Prior, our method can achieve
best result. When M≥ 70, our method achieves a better result than BCS SPL. We also
compare their number of iterations for reconstructing figure 5(a) with sampling rate
M = 200, the iteration and the PSNR comparison are shown in figure 8 and figure 9.

One can see that our method achieves the best result after 20 iterations. It achieves
a better result than SP, OMP, BOMP, CoSaMP, BCoSaMP after 7 iterations. From
figure 9, one can see that Deep Image Prior can achieve a better PSNR around 350
iterations. So in the following experiments, the number of iterations is set to 350 for
Deep Image Prior.
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Fig. 7 PSNR comparison based on different sampling rates for woman

Fig. 8 PSNR comparison for different numbers of iterations for woman

Fig. 9 PSNR result of Deep Image Prior with different numbers of iterations for woman
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(a) (b)

Fig. 10 Source example images.

(a) Image (b) Noisy image (c) [44](19.57dB) (d) [10](18.85dB) (e) [12](18.41dB)

(f) [17](19.04dB) (g) [52](17.53) (h) [18](21.14dB) (i) [45](20.99dB) (j) Our(23.73dB)

Fig. 11 More reconstruction experiments based on different methods applied to figure 10(a)

More image reconstruction results with sampling rate M = 200 and δ = 0.03
based on different methods are shown in figures 11 and 12 which contain special
content or background (shown in figure 10).

We can see that figure 10(a) contains sky as its background, while in figure 10(b),
the buildings have lots of blocky areas. The content for these images is well suited
for using block compressive sensing. Compared with other methods, our method can
achieve the best PNSR results, but there are some blocky artifacts in the reconstructed
images. This is because some blocks are sparser than other blocks, so it can generate
better results than the blocks around them.

In the next experiment, we used the INRIA Copydays and Holidays datasets with
added noise δ = 0.05. The comparison results are shown through the experiments
with different numbers of samples (from sample rate 0.1 to 0.9). The results are shown
in figures 13, 14(a) and (b).

From figures 13 and 14, one can see that the proposed AGbBCS SP approach al-
ways obtains better PSNR results compared to SP, OMP, BOMP, CoSaMP, BCoSaMP
and Deep Image Prior. Increasing the number of samples can improve the reconstruc-
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(a) Image (b) Noisy image (c) [44](18.97dB) (d) [10](18.14dB) (e) [12](17.45dB)

(f) [17](18.99dB) (g) [52](17.70dB) (h) [18](21.13dB) (i) [45](21.04dB) (j) Our(22.78dB)

Fig. 12 More reconstruction experiments based on different methods applied to figure 10(b)

(a) Copydays

(b) Holidays

Fig. 13 Quantitative comparison based on different methods for INRIA datasets.
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(a) Copydays

(b) Holidays

Fig. 14 Running time comparison based on different methods for the INRIA dataset

tion results. When the sampling rate u = M/N > 0.3, the proposed algorithm can
achieve better results than BCS SPL too. When the sampling rate u = M/N > 0.9,
Deep Image Prior can achieve a similar results with AGbBCS SP . We also find that
BCS SPL has a poor performance on de-noising. With an increasing number of sam-
ples, BCS SPL gets worse reconstruction results. Deep Image Prior can keep a con-
stant runtime around 15s with an increasing number of samples. At the same time,
our AGbBCS SP method has lower computational cost than BCS SPL, CoSaMP,
BCoSaMP and SP. Increasing the sample rate can improve the reconstruction result.
Unlike BCS SPL, CoSaMP, BCoSaMP and SP, our method can keep the low compu-
tational cost with the increasing sample rate.

5.3 Reconstruction for Images with Gaussian Noise

In the next experiment, we used the INRIA Copydays dataset with added Gaussian
noise σ ∈ [0.01,0.1]. The comparison results are shown through the experiments with
sampling rate M = 128(u = 0.5). The results are shown in figure 15.
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Fig. 15 Quantitative comparison based on different methods for the INRIA Copydays dataset.

Fig. 16 Parameter analysis with different δ and λ for woman

From figure 15, one can see that the proposed AGbBCS SP approach always
obtains the best result in terms of PSNR as compared to SP, OMP, BOMP, CoSaMP,
BCoSaMP, Deep Image Prior, and BCS SPL.

5.4 Parameters Analysis

λ can be used to improve the result for AGbBCS SP to cope with different noise
levels δ . We do an experiment with the image woman with different values of δ and
λ , and set M = 200. We find that for different values of δ , λ ∈ [15,60] typically
achieves the best results, and larger λ tends to produce better results with higher
noise level (larger δ ). Note that in our approach λ is automatically selected, which
reduces the user’s burden for parameter tuning.
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6 Conclusions

This paper proposes an adaptive gradient-based block compressive sensing (AGb-
BCS SP) approach on the basis of the sparsity of the image.

– Besides splitting the image into square blocks, a new image block splitting method
for compressive sensing is proposed. We split the image into rectangular blocks
with different shapes (aspect ratios). Our adaptive Compressive Sensing scheme
makes a practical assumption that only a small, randomly chosen image part re-
quires to be known. The proposed method automatically selects the control factor
and the appropriate block shape that maximizes the sparsity of the signal in the
known region.

– After block shape selection, the image is split by using the selected block size,
the proposed gradient-based method is applied for reconstruction. The proposed
method also adaptively selects a control factor which controls an l1 norm expres-
sion in the optimization problem by comparing the sparsity of the reconstruction
results. Finally through an inverse transformation, the reconstructed signal can be
obtained.

– Experiments reveal that in block compressive sensing the square block shape does
not always produce the best results. Our algorithm can adaptively achieve better
results by using the sparsity of pixels to adaptively select block shape. The pro-
posed algorithm can achieve better results according to PSNR than classical algo-
rithms with different block shapes (1×256, 2×128, 4×64, 8×32, 16×16, 32×8,
64×4, 128×2 and 256×1). The performance is improved greatly. When Gaussian
noise [0.01, 0.1] is added, the proposed algorithm maintains better performance
than SP, OMP, BOMP, CoSaMP, BCoSaMP and BCS SPL according to their av-
erage PSNRs. For different levels of noise δ , the proposed method for adaptive
selection of λ produces better results than existing methods. The proposed algo-
rithm can achieve the best results in average PSNR than the classical algorithms
SP, OMP, BOMP, CoSaMP and BCoSaMP on several datasets. With added salt
& pepper noise δ = 0.05. BCS SPL can achieve better results than the proposed
algorithm when the sampling rate u ≤ 0.3. However, BCS SPL has a poor per-
formance on de-noising. With an increasing number of samples, BCS SPL gets
worse reconstruction results. When the sampling rate u > 0.3, the proposed algo-
rithm can achieve better average PSNR than BCS SPL.

– We also find that if a block can achieve greater sparsity than its neighboring
blocks, it can generate a better reconstruction result than its neighbors. Such vi-
sual differences lead to some blocky artifacts in the reconstruction image. Future
work will investigate how to avoid blocky artifacts, and more relationships be-
tween sparsity of pixels and block shape will also be researched.
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