
Improved Initialisation for Centroidal Voronoi Tessellation and Optimal Delaunay
Triangulation

Jonathan Quinna, Feng Sunb, Frank C Langbeina,∗, Yu-Kun Laia, Wenping Wangb, Ralph R Martina

aCardiff University, School of Computer Science and Informatics, 5 The Parade, Cardiff, CF24 3AA, UK
bThe University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

Centroidal Voronoi tessellations and optimal Delaunay triangulations can be approximated efficiently by non-linear optimisation
algorithms. This paper demonstrates that the point distribution used to initialise the optimisation algorithms is important. Compared
to conventional random initialisation, certain low-discrepancy point distributions help convergence towards more spatially regular
results and require fewer iterations for planar and volumetric tessellations.
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1. Introduction

Centroidal Voronoi tessellations (CVTs) [1] and optimal De-
launay triangulations (ODTs) [2] are highly regular tessella-
tions of an Euclidean region. Each cell within a tessellation
contains a point sample, or site, to which the cell belongs. The
properties of CVTs and ODTs mean that their sites are spatially
very evenly distributed: as sites in a CVT or ODT tend to be
close to a regular hexagonal lattice, triangulating them results
in a large proportion of equilateral triangles. Such regular ar-
rangements are highly desirable for many applications, such as
solving partial differential equations using finite element anal-
ysis and the construction of response surfaces. Hence, CVT
and ODT generation is a problem studied widely in geometric
modelling and numerical analysis.

Given a set of sites in a Euclidean region, the Voronoi cell
of a site is the subset of the region closest to the site. The set
of all Voronoi cells is referred to as the Voronoi tessellation of
the region. A CVT is a special type of Voronoi tessellation in
which the site of each Voronoi cell is positioned at the cen-
troid of its cell [1]. This results in a very regular tessellation:
in a globally optimal 2D CVT, each Voronoi cell far from the
boundary of the region converges to a regular hexagon as the
number of sites goes to infinity [3]. An ODT is the triangu-
lation of a Euclidean region that minimises the interpolation
error of a given function [2]. Typically the function of a stan-
dard elliptic paraboloid is used. In this case, when the sites
are fixed, the optimal connectivity is given by the Delaunay tri-
angulation of these sites. Ignoring boundary effects, the inte-
rior triangles tend to be regular when the number of sites is
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sufficiently large. Given a fixed number of samples, the glob-
ally optimal distributed sites for CVTs and ODTs have a de-
terministic layout. In practice, a good approximation can be
obtained with an optimisation method which iteratively updates
some initial distribution of sites. The ODTs and CVTs resulting
from this have slightly different tessellation properties: when
triangulated, CVT approximation produces more nearly regu-
lar triangles in 2D meshes, while ODT approximation results in
fewer slivers (degenerate tetrahedrons [4]) in 3D meshes [5].

Point distributions produced by CVT and ODT methods are
uniformly dense and isotropic and, locally, neighbouring sam-
ples are very evenly spaced [6]. For geometric modelling and
graphics applications, such sampling is very useful as indicated
by the blue noise criterion: there are minimal spikes of energy
in the mid to high radial frequencies, meaning that no additional
structure is introduced by the sampling process [7]. Simpli-
cies generated from the sampling are also close to equilateral,
minimising numerical problems. Therefore, CVT and ODT ap-
proximations have been applied to various problems, including
remeshing [5, 8], dithering and finite element mesh generation.

CVT generation relies on probabilistic iterative solutions
such as Lloyd’s method [9]. Liu et al. [8] proved that the
piecewise CVT energy function is C2 continuous for convex,
compact, regions. Hence, it can locally be optimised by non-
linear numerical optimisation methods. Consequently they use
limited-memory BFGS (L-BFGS) to improve the efficiency of
CVT computation. They also describe methods to compute
a density-controlled CVT (where the metric is locally scaled
with respect to a density function) using L-BFGS and pre-
conditioned L-BFGS (P-L-BFGS), yielding fast convergence
even for large-scale problems. Efficient ODT computation uses
Chen’s method [2], which is similar to Lloyd’s iterative CVT
method and has been further improved by Alliez et al. [5].

There are few results on improving the efficiency of the
optimisation methods or the regularity of the output sample
distribution by carefully choosing the initial site distribution.
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Figure 1: Two CVTs with 800 seeds in a square. Top row: random initialisation converging to an energy of 2.43704× 10−3. Bottom row: Hammersley initialisation
converging to an energy of 2.43135 × 10−3. (a) and (b) show non-hexagonal cells in the CVT highlighted in grey. While the difference of the energy is minor, there
is a significant improvement in the regularity of the Voronoi cells with the Hammersley initialisation when compared with the random initialisation. (c) and (d)
show the energy of the sites increasing with colour from blue to red to white. The histogram of the energy in each cell is illustrated on the right side and shows that
the energy with the Hammersley initialisation is more concentrated, mostly in the middle two bars. (e) and (f) show the dual triangulation of the CVT with colour
coding of the smallest angle in each triangle: blue indicates 40◦ and red indicates 60◦. The Hammersley initialisation improves the statistics of smallest angles
significantly.

Moriguchi [10] describes a method to improve the initialisa-
tion for CVTs by performing a greedy edge-collapsing decima-
tion on the input mesh and uses the vertices from the decimated
mesh as the set of input sites. It seems that this method re-
duces the number of iterations required to reach the same en-
ergy value. However, as results are only shown for 20 itera-
tions of Lloyd’s method on a single example mesh, it is diffi-
cult to evaluate how this initialisation behaves in general. Per-
forming mesh decimation to generate initialisation sites also
requires considerable computational effort, which may nullify
any speed improvement introduced during the optimisation pro-
cess. Moreover, it is not directly applicable to general bound-
ary representations or parametric surfaces. Finally, if the input
for this method is not a regular mesh, even the greedy edge-
collapsing method does not guarantee a regular distribution of
sites. In fact, if the number of sites required is similar to the
density of the input mesh – a situation common in remeshing –
the resulting initialisation of sites may be extremely poor, mak-
ing the method worse than random initialisation.

Intuitively, if the initialisation sites are close to the sites after
convergence, fewer iterations of the method will be required.
Thus, as the sites in a CVT and ODT are very regularly placed,
we note that using a more regularly spaced set of initialisation

sites has two advantages over a random distribution. Firstly,
it reduces the number of iterations required to achieve conver-
gence. Secondly, it allows the optimisation process to converge
to a more spatially regular set. In particular, a random sam-
pling tends to result in several regions of quite-regular hexagon
tessellation, separated by boundaries. Across these boundaries,
there exist clear mismatches in position and orientation between
the hexagonal tilings. In contrast, the initialisation approach in-
troduced here tends to produce far fewer boundaries, and often
provides a result comprising a single region. For example, see
Fig. 1, discussed in detail in Section 5, for the CVT of a square
generated using random and low-discrepancy initialisation.

Low-discrepancy, or quasi-Monte Carlo, sequences, whilst
not as spatially regular as CVT and ODT site distributions,
are point sets that have the lowest possible order of magni-
tude of discrepancy for an Euclidean region [11]. This means
that whilst they may have high levels of structure in the sam-
pling, as seen in radially averaged power spectrum density mea-
sures [12], they cover a region with a highly uniform density,
resulting in very few ‘holes’ in the distribution. In addition,
they are very fast and simple to compute. Thus, in this paper
we investigate how they may be used as initialisation sites for
CVT and ODT methods in 2D and 3D Euclidean space, for
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both uniform and user-defined site density functions. We fo-
cus in particular on CVT in 2D and then consider more general
cases.

In the remainder of this paper, we summarise CVT and ODT
generation methods (Section 2) and low-discrepancy sequences
(Section 3). We then show how to redistribute the sites in these
sequences to match a specified density (Section 4), and evaluate
and compare CVT and ODT generation with random and low-
discrepancy initialisation (Section 5). Finally, we draw conclu-
sions in Section 6.

2. Computation of CVT and ODT

In this section, we introduce CVT and ODT in more detail
and describe the algorithms used for their computation.

2.1. Computation of CVT

The inputs for CVT are a set of sites X = (x1, x2, . . . , xn) ∈
Rd, to be distributed with respect to a density function δ > 0
in the compact region Ω ⊂ Rd . We define the CVT energy
function CVT as [1]

F(X) =

n∑
i=1

Fi(X) =

n∑
i=1

∫
Ωi

δ(x)‖x − xi‖
2dσ (1)

where Ωi is the intersection of Ω and Vi, i.e. the Voronoi cell
of site xi. Minimising F(X) ensures that each subregion Ωi,
and thus each site xi, represents approximately the same sub-
volume of Ω in the uniform density case. The properties and
computation of CVT have been well studied [1, 13] and several
algorithms, including Lloyd’s method [9], the Lloyd-Newton
method [14] and the Quasi-Newton method [8] have been pro-
posed for computing a CVT for a given region. We briefly re-
view these methods for the reader’s benefit.

2.1.1. Lloyd’s Method
Lloyd’s method [9], the prevailing method before Liu et

al. [8], introduced a quasi-Newton method for CVT computa-
tion. As an iterative method, in each iteration, Lloyd’s method
moves each seed xi of the Voronoi region Ωi to the centroid ci of
Ωi, followed by updating the Voronoi tessellation of the seeds.

2.1.2. Lloyd-Newton Method
Du and Emelianenko [14] proposed an algorithm for com-

puting a CVT by solving the system of equations xi = ci,
i = 1, . . . , n, iteratively. As pointed out by Liu et al. [8], this
is equivalent to minimising the function F =

∑n
i=1 ‖xi − ci‖

2 and
the result is not always a CVT since the minimisation may get
stuck at a non-zero local minimum of F, in which case the xi

do not coincide with the centroids ci, i = 1, . . . , n.

2.1.3. Quasi-Newton Method
Liu et al. [8] prove that the CVT function F(X) is almost

everywhere C2, except for some configurations seldom met in
practice. Based on the C2 property, they apply a quasi-Newton
method, the P-L-BFGS method, to minimise the CVT function

F(X) directly. This method uses the Hessian when available,
constructed from the gradients of previous iterations. This is
the fastest method currently available.

2.2. Computation of ODT
Compared to CVT, ODT is a more recent concept, proposed

by Chen and Xu [2]. A computational framework is proposed
in the same paper, which is the only existing method for com-
puting ODT.

2.2.1. Chen’s Method
The framework of Chen’s method is similar to Lloyd’s

method; it is also iterative. In each iteration, two steps are per-
formed: (1) compute the Delaunay triangulation of the seeds;
(2) move the seed xi to

Σxi∈S j Vol(Sj)c(S j)
Σxi∈S j Vol(Sj)

,

where S is a d-dimensional simplex for a d-dimensional prob-
lem and c(S) is the centre of the circumsphere of the simplex
S. In step (2) the algorithm moves the seed to a weighted com-
bination of the centres of circumspheres of all simplices ad-
jacent to the seed. To assure the monotonic decrease of the
objective function, in each iteration, only one vertex is moved
and then the Delaunay triangulation is immediately updated af-
ter the movement. This algorithm is extremely slow. Alliez et
al. [5] enhance it by moving all vertices in one iteration.

2.3. Summary of Existing Methods
Lloyd’s method and the quasi-Newton method both gener-

ate CVTs; the latter represents the state of the art and is hence
used in this paper. For ODT we choose the enhanced algorithm
of Alliez et al [5] for efficient computation. In this paper we
investigate the effect of random and Hammersley initialisation
for both of these methods based on timing and regularity of the
results.

3. Low-discrepancy Sequences

In this section we introduce the notion of discrepancy, the
low-discrepancy sequences used in this work, and how we ap-
ply them to CVT and ODT initialisation. A uniform distribution
is one in which any position for a point is equally likely: their
positions are chosen according to a uniform probability distri-
bution; there is an equal likelihood for a single point being at
any position. However, uniformity only refers to the probabil-
ity of each point considered individually, and thus, the posi-
tion of these points is independent of the position of any other
points, i.e. their position is uncorrelated. In practice, this of-
ten leads to areas of the domain which are over-sampled, and
areas which are under-sampled; samples can appear clustered
with large inter-cluster holes. Low-discrepancy sequences have
correlated positions: the probability of a point being at some
position is dependent on its location in the sequence and, in
turn, the positions of its neighbours. This means that the qual-
ity, in particular the spatial coverage, of the whole point set is
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considered, rather than a single, independent point, resulting in
a more even coverage of a region. The spatial correlation can
be measured by discrepancy, which allows us to quantitatively
assess the size of gaps in the coverage. Sequences with low
discrepancy are desirable for this reason.

Discrepancy became an important concept since it was
demonstrated that as the discrepancy of a sequence decreases,
so does the approximation error of a (quasi) Monte Carlo evalu-
ation of a multivariate integral [15]; more importantly, the num-
ber of samples needed to achieve a given accuracy increases
more slowly for low discrepancy samples than for random sam-
ples, as the desired accuracy increases. This observation has
lead to the use of low discrepancy sequences in many differ-
ent fields, such as computer graphics [16], surface representa-
tion [17], area computation [18] and volume computation [19].
The discrepancy D∗(P) of a point set P of N points with respect
to a function f : Ω → R can be thought of as the difference
between the point-sampled numerical approximation of the in-
tegral

∫
Ω

f (x) dx and its actual value,∣∣∣∣∣∣∣ 1
N

∑
x∈P

f (x) −
∫

Ω

f (x) dx

∣∣∣∣∣∣∣ ≤ D∗(P)var( f ), (2)

where var( f ) is the variance of the integrand [20]. Discrepancy
is often thought of as the Monte Carlo approximation error as
defined by Eq. 2, but can also be loosely considered as a se-
quences deviation from a uniform sampling of a domain [11].
By Eq. 2, lowering the discrepancy D∗(P) reduces the inte-
gral approximation error. Whilst there are various techniques
to measure the discrepancy of a sample set, we use the com-
mon star discrepancy D∗δ(P) of a set P with respect to a density
function δ,

D∗δ(P) = sup
γ⊆Ω

∣∣∣∣∣∣∣∣ |P ∩ γ|N
−

∫
γ
δ(x)dx∫

Ω
δ(x)dx

∣∣∣∣∣∣∣∣ ,
where Ω is the domain sampled with P and | · | the number of
points in a discrete set. The subsets γ are usually restricted
to axis-aligned rectangles in Ω [11], but other classes of shape
may be used [12].

The Niederreiter and Sobol low-discrepancy sequences are
believed to be optimal [11] for sampling axis-aligned rectan-
gular regions, and use a lattice structure to enforce point dis-
tribution uniformity. However, they are generally avoided for
situations where sampling with non-axis-aligned shapes is re-
quired [21]. The Hammersley [22] and Halton [23] sequences
use the van der Corput sequence [24] for construction, and
whilst having the lowest possible order of magnitude of dis-
crepancy [11], they do not scale well in higher dimensions [11].
However, in low dimensions, they are more geometrically reg-
ular than the lattice-based methods.

Experimentally, we have found that the Hammersley se-
quence produces the best results for CVT and ODT initialisa-
tion, when compared to the Halton, Niederreiter and Sobol se-
quences, all three of which performed in a very similar way for
CVT and ODT initialisation. For this reason, we only compare
pseudorandom sampling with the Hammersley sequence and
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Figure 2: A pseudorandom distribution (left) and the Hammersley sequence
(right), both shown with 100 point samples.

omit the other results here. Moreover, true random sampling
was investigated, seeded using atmospheric noise [25], but was
found to lead to similar results than pseudorandom sampling
and therefore details are also omitted.

3.1. The Hammersley Sequence

The Hammersley low-discrepancy sequence (see Fig. 2)
achieves the lowest possible order of magnitude of discrep-
ancy [11] and also performed best for ODT and CVT initial-
isation in initial experiments. The van der Corput sequence, ψb,
is a method to partition or sample the unit interval by maximis-
ing the distance between sample points, resulting in a uniform
distribution on that interval. The premise is that a positive in-
teger i can be expanded in base b by reflecting the b-ary repre-
sentation of the digits, resulting in a fractional number in [0, 1).
The bases bi are chosen pairwise co-prime. The Hammersley
sequence is deterministic, but, as the first co-ordinate i/N de-
pends on the size of the point set N, adding a single point alters
the entire distribution. Thus, N cannot be increased incremen-
tally, but must be defined prior to construction. For N samples,
we compute a component of the co-ordinate using:

ψb(i) =

k−1∑
j=0

ai jb−i−1, (3)

where i = 0, . . . ,N − 1. ai j represents the j’th bit of the b-
ary representation of i, and b the base chosen for the sequence.
In order to define the correct summation range, we compute
the number of bits required for the b-ary representation, k =

dlogb Ne, and thus j = 0, . . . , k−1. This defines a d-dimensional
Hammersley point:

p = ( i
N , ψb1 (i), . . . , ψbd (i)). (4)

4. Initialisation for CVT and ODT

In this section, we discuss the algorithms for generating ran-
dom and Hammersley point samples, which we use as initialisa-
tion sites for CVT and ODT methods. In particular we discuss
the initialisation for density-controlled CVT. Note that there is
no method in the literature to generate an ODT with respect to
a density function.
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It is interesting to note that Romero et al. [6] briefly tried
Hammersley points as an initialisation for CVT, but did not ex-
pect, and therefore notice, the improvement in performance and
quality in their results.

Note that using a hexagonal grid to initialise the distribu-
tion instead of pseudorandom or Hammersley points would also
be an option. However, generating such a distribution which
places an exact number of sites in a given shape is quite dif-
ficult. In addition, due to the local optimality of the initial
packing within a hexagonal grid, there is little possibility for
seeds to change position, which may be a hindrance when sam-
pling shapes with complex boundaries (especially as the gradi-
ent used in the optimisation may become too small, resulting in
immediate convergence). Moreover, using a regular grid ceases
to be useful when a non-uniform density function is desired, as
there is no simple way to generalise it to such a case. Also,
generating a regular grid is not computationally cheaper than
generating Hammersley points.

The k-means algorithm [9] is the discrete analog of the Lloyd
method for clustering n points into k clusters; the clusters parti-
tion these n points into k subsets. The k-means algorithm min-
imises the sum of the distance from each point to the centroid of
the cluster it belongs to. Previously, several attempts at careful
initialisation [26, 27] have been made to improve the k-means
algorithm. However, these methods apply only to a discrete set
of n points, but not a continuous domain and they are oblivious
to the geometric properties of CVT and ODT and therefore take
no special consideration of the regularity of results in CVT and
ODT optimisation.

4.1. Initialisation for Constant Density

The Hammersley sequences used in this work are constructed
using Eq. 4,

p = ( i
N , ψ2(i)) ∈ R2,

in 2D and
p = ( i

N , ψ2(i), ψ3(i)) ∈ R3

in 3D, for i = 0, . . . ,N − 1 and N points. To generate points
in the Hammersley sequence, we use the simple algorithm
described by Wong et al. [28] which requires approximately
log2( j) bitwise shifts, multiplications and additions. This al-
gorithm focuses on generating the Hammersley sequence in the
plane and the sphere, and is therefore extended slightly follow-
ing [29] to allow us to also sample in 3D. We use the prime
bases b1 = 2 and b2 = 3 in order to generate samples with the
most uniformly distributed pattern, and shift i/N by 0.5 to cen-
tre the sequence [28]. To generate pseudorandom numbers, the
C++ Standard Library random number generator is used.

As an example of the sequence construction, we present the
case of generating N = 5 points in R2 in base b = 2. Using
Eq. 3, Table 1 shows the sequence expansion. Column ai shows
the integer input for i and its binary expansion. Columns 2–4
show the expansion of the digits. Column 5 shows the x value of
the co-ordinate, and 6, the y value; the summation of columns
2–4.

ai ai22−2−1 ai12−1−1 ai02−0−1 (i + 0.5)/N ψ2(i)
0→ (000) 0 0 0 0.1 0
1→ (001) 0 0 0.5 0.3 0.5
2→ (010) 0 0.25 0 0.5 0.25
3→ (011) 0 0.25 0.5 0.7 0.75
4→ (100) 0.125 0 0 0.9 0.125

Table 1: Generation of 2D Hammersley point set for N = 5 and b = 2. The
final two colums represent x and y positions for a point.

4.2. Density Controlled CVT Initialisation

For a non-constant density function δ in Eq. 1 the initiali-
sation for CVT generation has to be done more carefully. Du
and Wang [30] show that the energy of a seed x in a CVT is
inversely proportional to the density function, i.e.,∫

Vi

‖x‖2dσ ∝ (1/δ)d+2/d,

for a d-dimensional Voronoi cell Vi. So initialising the optimi-
sation with respect to this relation is advantageous because it
avoids long-distance migration of sites during the optimisation
process, which would slow down convergence and potentially
inhibit any improvement over the random initialisation in the fi-
nal distribution. To adjust the Hammersley and pseudorandom
sequences, we introduce a function which maps a set of uni-
formly distributed sites X to a set X′ of sites that are distributed
according to the density function δ. This function should ide-
ally preserve the geometric properties of X, such that we can
still improve the CVT by using the Hammersley sequence as an
initialisation.

One approach is to use an error diffusion strategy [31]. How-
ever, this method produces an initial distribution which only ap-
proximately follows the prescribed density. We improve upon
this by implementing a discrete approximation of the inverse
density (if an analytic expression is not given) in order to ini-
tialise a CVT with respect to δ: X′ = CDFδ(X), where CDF
represents the cumulative density function. As δ is defined on
the whole d-dimensional region, we integrate over each inde-
pendent component of this joint function to get a piecewise
quadratic approximation of the CDF for each component of the
joint δ. Then for each coordinate of the uniformly distributed
site xi, we compute the previous and next values, ai and bi, of
the respective CDF along the axis, bounding the co-ordinate of
xi on that axis. We then solve the quadratic bounded by ai and bi

for the co-ordinate of xi, resulting in a new co-ordinate. Solving
this for each component of xi gives us a new site x′i distributed
with respect to δ. Doing this for the set of all uniformly dis-
tributed sites X gives us a set of sites X′ distributed according
to δ.

Currently, our method does not extend to density controlled
initialisation for non-regular domains. A näive solution to this
problem would be to compute the CDF in a bounding box of
the domain, and reject samples not within this domain. This
process may then be accelerated with a quad-tree data structure.
However, we have not currently investigated this, and it may
be considered as future work. In Section 5.4, we show results
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Figure 3: Two CVTs with 1, 500 seeds in a square. Left column: random initial-
isation, converging to an energy of 1.29685× 10−3; right column: Hammersley
initialisation, converging to an energy of 1.29328 × 10−3.

for our inverse method in order to produce density-controlled
CVTs.

5. Experimental Results

In this section, we compare CVT and ODT generation us-
ing pseudorandom and Hammersley initialisations. Other low-
discrepancy sequences performed well, too, but Hammersley
was consistently better and hence these results are omitted.
Since the criteria to measure the quality of the results are dif-
ferent in 2D and 3D domains, we categorise the experiments
accordingly.

In 2D we investigate three properties of the CVTs and ODTs,
focusing mainly on CVTs. Firstly, the regularity of Voronoi re-
gions, or the regularity of the vertices in the dual triangle mesh,
is highly important in computer graphics [32]. We assess this
regularity by drawing the Voronoi tessellation of the output sites
and by highlighting any non-six-sided Voronoi cell in grey (de-
noted (a) and (b) in the figures with pseudorandom and Ham-
mersley initialisation respectively). Fewer than six edges im-
plies a non-regular tessellation, which is undesirable. Accord-
ing to Gersho’s conjecture [33], asymptotically the energy of
each seed within a CVT should be the same in 2D. Therefore,
secondly, we show the energy value of each site (denoted (c)
and (d) in the figures): high energy is shown in white and low
energy in blue, along with a histogram representing the propor-
tion of the cells with that energy. A uniform cell energy across
the tessellation is desirable. Thirdly, the smallest angle, mea-
sured for each triangle in the dual triangulation of the Voronoi

(a) (b)

(c) (d)

(e) (f)

Figure 4: Two CVTs with 3, 000 seeds in a square. Left column: random initial-
isation, converging to an energy of 6.47582× 10−4; right column: Hammersley
initialisation, converging to an energy of 6.46110 × 10−4.

tessellation, is also important in computer graphics and finite
element analysis (denoted (e) and (f) in the figures): a large
smallest angle is shown in white and a small minimum angle in
blue. The larger the smallest angle the better the triangulation;
optimally each triangle should be equilateral and therefore the
smallest angle within a triangle would be 60◦. In addition we
show the graph of the CVT function value against the number
of iterations. Note that the cell energy is not shown for ODT
and thus the smallest angle is denoted by (c) and (d) in these
figures.

In 3D, even in infinite space, there is no widely accepted op-
timal tetrahedral partition (as dual of the Voronoi tessellation).
Therefore, we do not compare the regularity between the dif-
ferent initialisations. However, the dihedral angles (the angle
between two planes) of the tetrahedrons are important to eval-
uate tetrahedral mesh quality. A tetrahedron with a dihedral
angle close to 0 or π is often called a sliver [4] and can lead
to a matrix with a large condition number in numerical simula-
tion. This in turn indicates numerical instability and is therefore
undesirable.

For each figure (both CVT and ODT), results were run mul-
tiple times for the pseudorandom distribution, and a typical
example is shown. In addition, the stopping criteria is set to
‖g‖/‖X‖ < 1 × 10−10 in all examples, where g is the gradient,
and X the variable (vector of seed point coordinates).

5.1. 2D CVT and ODT Examples

We first show the 2D CVT and ODT generation results, start-
ing with a square domain with number of sites gradually in-
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creasing from 800 to 10, 000. Fig. 1 shows the CVT in a square
with 800 sites. The top row of images shows results for a ran-
dom initialisation and the bottom row for the Hammersley ini-
tialisation. Random initialisation leads to many non-hexagonal
Voronoi cells, spread throughout the region. Using the Ham-
mersley initialisation significantly improves the regularity of
the Voronoi cells, showing significantly fewer irregular cells to-
ward the centre of the region with most of the irregular cells lo-
cated along the boundary. Moreover, the energy per cell statistic
shows that each cell has a more uniform energy distribution for
the Hammersley initialisation compared to the random initial-
isation. In addition, the triangulation (the dual of the Voronoi
tessellation) has only a few triangles with a small smallest an-
gle for the Hammersley initialisation. In comparison, using a
random initialisation results in a very inconsistent triangulation
with a large quantity of the triangles with a small smallest an-
gle.

The result of Hammersley initialisation is consistently bet-
ter in all the experiments on the square region as shown in
Figs. 3, 4, 5, 6. In these figures the left column shows results
for a random initialisation and the right column for the Ham-
mersley sequence. We also include several examples for some
general regions, including the hexagon in Fig. 7, the flower in
Fig. 8, the butterfly in Fig. 9 and the cross in Fig. 10.

Fig. 11 shows the CVT function value against the number
of P-L-BFGS iterations for random initialisation and Ham-
mersley initialisation for 2300 sites within the butterfly region
(see Fig.9). We show only this example, as the results are very
similar for all other shapes tested. The Hammersley initialisa-
tion starts with a much lower energy value than random initial-
isation and reaches a value very close to the converged value
after fewer than 10 iterations. The random initialisation does
not reach this function value even after several hundred itera-
tions. The pseudorandom case was initialised three times, and
the average function value is shown.

Fig. 12 shows results for ODT using 800 sites in a square,
showing the regularity of the Voronoi regions and the smallest
angle measurement. The left column shows results for a random
initialisation and the right column for the Hammersley initiali-
sation. Using the Hammersley initialisation improves the result
considerably, but each result is worse than that for the CVT
counterpart (see Fig. 1). This is largely due to the less optimal
algorithm used for computation of the ODT.

5.2. 2D CVT Generation Timing
Next we discuss timing results for CVT generation in 2D

with the random and Hammersley initialisation. For all tests
we generate initialisation sites in the unit square with uniform
density. We run the P-L-BFGS method terminating the optimi-
sation process when the function value drops below 1 × 10−4

for 103 samples, 1 × 10−6 for 104 samples, and 1 × 10−7 for
105 samples. For each point set, we run the initialisation and
optimisation process ten times and record the mean computa-
tion time. Whilst the Hammersley sequence is deterministic,
the optimisation process is not. Thus, results may vary slightly.

Table 2 lists the timing results for this experiment. These
show that when CVT is initialised with Hammersley instead of

(a) (b)

(c) (d)

(e) (f)

Figure 5: Two CVTs with 5, 000 seeds in a square. Left column: random initial-
isation, converging to an energy of 3.88301× 10−4; right column: Hammersley
initialisation, converging to an energy of 3.86539 × 10−4.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Two CVTs with 10, 000 seeds in a square. Left column: a random
initialisation, converging to an energy of 1.94032 × 10−4; right column: the
Hammersley initialisation, converging to an energy of 1.93726 × 10−4.

pseudorandom point samples, a large reduction in the time re-
quired for the P-L-BFGS optimisation process to reach the fixed
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Two CVTs with 1, 150 seeds in a regular hexagon. Left column:
random initialisation converging to an energy of 1.14076 × 102; right column:
Hammersley initialisation converging to 1.14064 × 102.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Two CVTs with 1, 000 seeds inside a flower shape. Left column:
random initialisation converging to an energy of 1.93848 × 102; right column:
Hammersley initialisation converging to 1.92862 × 102.

energy value. Using the Hammersley initialisation reduces the
total computation time by 49% for 1, 000 samples, and 45%

(a) (b)

(c) (d)

(e) (f)

Figure 9: Two CVTs with 2, 300 seeds in a butterfly. Left column: random
initialisation converging to an energy of 2.20264 × 10−2; right column: Ham-
mersley initialisation converging to 2.19553 × 10−2.

(a) (b)

(c) (d)

(e) (f)

Figure 10: Two CVTs with 2, 000 seeds in a cross. Left column: random initial-
isation converging to an energy of 5.88808 × 10−3; right column: Hammersley
initialisation converging to5.86236 × 10−3.

for 10, 000 and 100, 000 samples. In addition, the number of
energy function evaluations is reduced by 55% for 1, 000 sam-
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Figure 11: The CVT function value plotted over the number of iterations for
2300 sites in the butterfly using pseudorandom and Hammersley initialisation.

(a) (b)

(c) (d)

Figure 12: Two ODTs with 800 seeds in a square. Left column: random initial-
isation converging to an energy of 4.65419 × 10−4; right column: Hammersley
initialisation converging to 4.52950 × 10−4.

ples, and 44% for 10, 000 and 100, 000 samples. This signif-
icant speed increase is largely due to the lower energy value
achieved by the Hammersley initialisation.

For small point sample sets, e.g. 1, 000, random points are
actually more expensive to generate, per-point, than Hammer-
sley points. This is due to the cost of generating the seeding
object from which the samples are generated. For larger sample
sizes, reaching 100, 000, this overhead is no longer noticeable
and a random sample takes approximately 7.2 nano-seconds to
generate, compared to approximately 8.5 nano-seconds for a
Hammersley sample.

5.3. Volumetric CVTs

For volumetric CVTs we see similar improvements to the 2D
case when using the Hammersley initialisation. In a cube the

Sites Method Init Optim. Total #Func. Eval
Random. 0.000130 0.5843 0.5844 31.31, 000
Hamm. 0.000087 0.2951 0.2952 14.0

Random. 0.00080 18.6304 18.6312 165.310, 000
Hamm. 0.00086 10.1640 10.1649 93.2

Random. 0.00723 186.8009 186.8081 187.4100, 000
Hamm. 0.00853 101.8421 101.8506 104.4

Table 2: Mean timing results in seconds for initialisation, CVT optimisation,
and total time, and the mean number of function evaluations using random and
Hammersley initialisation.

Hammersley initialisation with 2, 000 sites reduces the number
of slivers in the dual tetrahedrisation (see Fig. 13). The Ham-
mersley initialisation results in 10 slivers with dihedral angle
less than 10◦, compared with 15 for the random initialisation.
In addition, the number of slivers with dihedral angle less than
15◦ for the Hammersley sequence is 20, compared with 21 for
the random initialisation. Fig. 14 shows results for the Fandisk
model, sampled with 10, 000 sites. The Hammersley initialisa-
tion has 96 slivers with dihedral angle less than 10◦, compared
with 118 for the random initialisation. Also, the number of
slivers with dihedral angle less than 15◦ for the Hammersley
initialisation is 181, compared with 183 for the random initiali-
sation.

5.4. Density-controlled CVTs

Fig. 15 shows results for CVT computation using the den-
sity function x4 + y4 + 0.001 with random and Hammersley
initialisation. The inverse method introduced in Section 4.2
is used to adjust the density of the random and Hammersley
initialisations. The Hammersley initialisation shows improved
results when compared to the random initialisation and the tes-
sellation appears to be more natural. However, these gains are
quite marginal compared to the improvements shown for uni-
form density cases.

5.5. Summary

In summary, in almost all cases the Hammersley initialisa-
tion achieved better results than the random initialisation. This
is particularly true for generating CVTs in 2D with uniform
density where the Hammersley initialisation has the clear ad-
vantage of creating an overall considerably more regular tessel-
lation with more evenly distributed energy. As, in general, the
Hammersley initialisation starts with a smaller function value,
we see an almost 50% reduction in the the total optimisation
time and the number of function calls required to reach a spe-
cific energy threshold. In addition, a smaller energy value and
hence, a more regular triangulation can be achieved. While
there is also a clear improvement for ODT generation, it seems
that the distributions could be further improved. This is likely
a result of less well-developed algorithms for ODT generation.
For volumetric CVTs we obtained results similar to the 2D CVT
case, even if the effect is less prominent. For density controlled
CVTs only a small improvement could be achieved; better re-
sults may be obtained by improving the computation of the in-
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Two CVTs with 10, 000 seeds in the Fandisk. Left column: (a) random initialisation converging to an energy of 1.96159 with 183 slivers (< 15◦) in (c)
and 118 slivers (< 10◦) in (e); right column: (b) Hammersley initialisation converging to an energy of 1.95919 with 181 slivers (< 15◦) in (d) and 96 slivers (< 10◦)
in (f).

verse of the density function in order to better preserve the ge-
ometric properties of the Hammersley sequence.

6. Conclusion

We have considered the use of different distributions of sites
to initialise algorithms for generating CVTs and ODTs. In par-
ticular, the Hammersley low-discrepancy initialisation yields
improved results compared to (pseudo-)random initialisation
and other low-discrepancy sequences. The results are more reg-
ular and the total computation time is reduced by almost 50%.
In addition, the Hammersley sequence is essentially as quick to
compute as random samples, avoiding any computational over-
head in the initialisation. It has similar regularity to regular grid
initialisations, but can be easier adjusted to domains with com-
plicated boundaries.

Overall, the experimental results show that CVT and ODT

clearly depend significantly on how the algorithms are ini-
tialised. Large improvements can be achieved by finding a bet-
ter initialisation, which is not necessarily expensive to compute.
For CVT and ODT generation with uniform density a clear im-
provement in the resulting distribution could be demonstrated
by using the Hammersley sequence. For non-uniform densi-
ties the effect is marginal and improved initialisations may be
found by improving the inverse density computation in order to
preserve the geometric properties of the Hammersley sequence
better [34]. In future work, improvements for non-uniform tes-
sellations and an extension to higher-dimensional domains may
be achieved by better understanding the properties of the ini-
tialisation that help to improve the regularity of the results and
the “landscape” of the energy functions for ODT and CVT. In
addition to this, we intend to pursue this initialisation approach
to consider CVT generation on surfaces [35], though we be-
lieve that the Hammersley sequence may be too sensitive to the
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Two CVTs with 2, 000 seeds in a cube. Left column: (a) random
initialisation converging to an energy of 4.84254× 10−2 with 21 slivers (< 15◦)
in (c) and 15 slivers (< 10◦) in (e); right column: (b) Hammersley initialisation
converging to an energy of 4.83987×10−3 with 20 slivers (< 15◦) in (d) and 10
slivers (< 10◦) in (f).

distortion introduced by a standard parameterisation method.
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