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Abstract We present a practical system which can provide
a textured full-body avatar within three seconds. It uses six-
teen RGB-depth (RGB-D) cameras, ten of which are ar-
ranged to capture the body, while six target the important
head region. The configuration of the multiple cameras is
formulated as a constraint-based minimum set space-covering
problem, which is approximately solved by a heuristic al-
gorithm. The camera layout determined can cover the full-
body surface of an adult, with geometric errors of less than
5 mm. After arranging the cameras, they are calibrated using
a mannequin before scanning real humans. The 16 RGB-D
images are all captured within 1 s, which both avoids the
need for the subject to attempt to remain still for an uncom-
fortable period, and helps to keep pose changes between dif-
ferent cameras small. All scans are combined and processed
to reconstruct the photo-realistic textured mesh in 2 s. Dur-
ing both system calibration and working capture of a real
subject, the high-quality RGB information is exploited to as-
sist geometric reconstruction and texture stitching optimiza-
tion.
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Fig. 1 Two views of a 3D avatar captured using our system, each show-
ing the reconstructed geometry without and with texture.

1 Introduction

Avatars are used in many computer graphics applications as
representations of users or other persons. Commodity RGB-
D cameras (e.g. Kinect [1], Primesense [2], Xtion Pro Live [3])
provide low-cost scanning hardware which can be used as
a basis for capturing 3D personalized avatars in the form
of textured full-body models. Typical devices currently can
produce both a 640×480 color image and a registered 640×
480 depth image, at a rate of 30 frames per second.

The pioneering KinectFusion [4,5] is a GPU-based cap-
ture system using a Kinect camera for both tracking and
rigid surface reconstruction, allowing users to incrementally
capture geometrically accurate 3D models. It has motivated
many follow-up algorithms [6–20]. Generally, such algo-
rithms fuse successive dense RGB-D frames into a signed-
distance-function (SDF) volume and perform camera track-
ing based on this model. This problem may also be described
in terms of simultaneous localization and mapping (SLAM),
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where both the camera pose and the map (i.e. scene geome-
try) have to be estimated at the same time. Such algorithms
have tried many strategies to improve the tracking speed and
to expand its spatial mapping capabilities to larger scenes
or deformable objects. In particular, the recent DynamicFu-
sion algorithm [20] demonstrates robust performance when
reconstructing a non-rigidly deforming human body in real-
time.

The goal of avatar capture is to build a visually pleasing
result. However, it is well-known that a massive amount of
RGB-D data is not essential and that collecting redundant
data can significantly increase both scanning and processing
time. Until now, a theoretical analysis has not been done to
analyze the best multiple camera configuration for full-body
avatar capture. Ideally the camera setup should completely
cover the entire body, although self-occlusion of a few small
areas such as the armpits means that it is almost impossible
to achieve full-body coverage with a fixed camera setup. The
solution for camera locations should carefully consider var-
ious important factors, such as desired proportion of body-
surface coverage, geometric error bounds, camera capabili-
ties, and number of cameras, and a trade-off between these
is always required.

RGB-D cameras already provide raw high-quality RGB
image data which can be used to build an avatar with good
visual appearance, by using standard texture mapping tech-
niques. Even if the geometric accuracy is low from a single
frame, the textured partial mesh may be visually pleasing.

By considering the configuration of multiple cameras
and by taking advantage of RGB texture, we have devised
a practical system to capture personalized avatars with 16
RGB-D cameras. The system can produce pleasing 3D tex-
tured results (see Figure 1), as well as having very high cap-
ture speed (it takes about 3 s, including all processing, to
deliver the final avatar). Our main contributions includes:

– A configuration solution for multiple RGB-D cameras
for full-body avatar capture. Finding such an optimal
configuration is an NP-hard problem. We utilize a heuris-
tic algorithm to approximately solve it, taking into ac-
count constraints determined by the features of the RGB-
D cameras. Our solution uses 16 appropriately config-
ured cameras, enabling us to provide almost full-body
surface coverage with 5 mm geometric tolerance.

– A color-aware reconstruction method. The high-quality
RGB information is fully exploited, both to provide ef-
fective correspondences during the geometric reconstruc-
tion of partial textured scans, and to provide accurate
color constraints during post-optimization to provide seam-
less texture stitching.

– A fast avatar capture system. The hardware can scan a
subject within 1 s to obtain the initial raw data, then per-
form the computations needed to produce an avatar in

about 2 s. Overall, a textured full-body avatar is deliv-
ered in only 3 s, the fastest speed so far as reported.

The remainder of this paper is organized as follows. Af-
ter surveying related work in Section 2, we address four
main aspects of our system: the camera configuration (Sec-
tion 3), data capture (Section 4), geometry processing (Sec-
tion 5) and texture mapping (Section 6). Various results, a
performance analysis, and comparisons are given in Sec-
tion 7, and finally conclusions are drawn in Section 8.

2 Related work

We first briefly review related avatar capture research, con-
centrating on geometry capture and visual texture mapping.
We consider representative papers concerning major devel-
opments leading to the state of the art in these fields.

After the advent of the KinectFusion system [4, 5] using
a single camera, various methods [6, 8–20] have been pro-
posed for full-body capture, using RGB-D data for camera
pose estimation, dense mapping and full SLAM pipelines.

The latest template-free DynamicFusion algorithm [20]
achieves real-time non-rigid reconstruction of a 3D geomet-
ric avatar; it generalizes the volumetric truncated SDF fusion
technique [4, 5] to the non-rigid case, as well as providing a
real-time approach to estimating a volumetric warp to give
the surface of the scanned avatar.

However, DynamicFusion [20] takes over 60 s to capture
sufficient data to produce a full-body avatar, as the scanning
camera moves in a closed loop around the subject. It is obvi-
ous that much redundant input data is collected. Some par-
tial scans are inessential and provide little benefit to the final
result. However, no prior work appears to have been done to
evaluate the amount of input data required to achieve a de-
sired geometric error.

Besides the limitations of slow capture time resulting
from redundant data input, RGB texture information is of-
ten not utilized in SLAM systems [4–6, 8–13, 15–20]. An
exception is [14], which uses a global optimization approach
for mapping the color images produced by an RGB-D cam-
era onto the geometric model reconstructed from the corre-
sponding depth data. It improves the quality of reconstructed
color maps by use of multiple RGB color datasets: visual
quality is rapidly optimized from a few RGB images using
a texture mapping technique.

While [14] only targeted rigid static objects, non-rigid
subjects were considered in [21–24]. These methods do not
utilize a SLAM scheme, and their non-rigid reconstruction
steps are very time-consuming. In contrast by utilizing a
SLAM scheme, and integrating color information, we achieve
a short processing time.

As shown by [25, 26], pre-configured multiple cameras
can greatly shorten the scanning time. Sparse mapping of
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data from multiple carefully configured cameras can rapidly
produce a suitable geometric avatar. However, their config-
urations do not take into account the SLAM scheme used.

We optimize a texture consistency term that takes full
sparse image information into account and is naturally cou-
pled with multiple calibrated cameras (with respect to local-
ization and orientation). Seamlessly texturing a 3D model
from a set of RGB images has also been investigated by [27,
28]. They try to select a single input RGB image per triangu-
lar mesh face and minimize seams, but these approaches are
computationally expensive because of the need for an expen-
sive combinatorial optimization. The computational burden
can be alleviated by using the configuration information to
discard many useless potential combinations.

3 Camera configuration

Determining a suitable multi-camera configuration can be
posed as a constraint-based minimum set space-covering prob-
lem. More formally, given a set of N RGB-D cameras, the
union of each camera’s field-of-view (Fov) should cover the
surface of the human subject (Surface(s)). The objective is
to find the minimal N that meets the coverage requirements,
while also satisfying the constraint that the maximal depth
error ed should be less than δ :

argmin
N

(
N⋃

n=1

Fov(n)⊇ Surface(s)

)
such that ed < δ .

(1)

Typical applications demand that errors in the captured avatar
model should be less than a few millimetres. Specifically,
we set Surface(s) to be the full surface of an adult subject
s. To take a concrete example, for the body, we set a target
for geometric errors to be less than δbody = 5 mm, while for
the head, we set δhead = 1.6 mm. In practice, self-occlusion
means that some areas (e.g. the armpits) are very tricky to
capture with a reasonable number of cameras, so we re-
place the actual body by a proxy constructed from cylinders,
and aim for full coverage of that. For a general subject, the
body surface is simplified to a cylinder C(rb,hb), with radius
rb = 0.45 m, and height hb = 1.7 m, while the head surface
is simplified to a cylinder C(rh,hh), with radius rh = 0.2 m,
and height hh = 0.4 m.

The constraint-based minimum set space-covering prob-
lem (shorten as c-space-covering) as given in Equation (1)
is a typical minimum set space-covering problem, and is
known to be NP-hard [29].

The maximal depth error ed depends on the properties of
the RGB-D cameras. We utilize Xtion Pro Live cameras [3],
which have an angular field-of-view of 57◦ horizontally and
43◦ vertically, and which can capture points whose depths

Algorithm 1 Heuristic algorithm for constraint-based minimum set
space-covering problem
Input: Fov(n),Surface(s),δhead ,δbody
Output: N cameras configuration
1: Decompose Surface(s) into Sbody and Shead;
2: // Handle the head surface
3: Shead is simplified to a cylinder C(rh,hh);
4: Nhead=1;
5: Place 1st camera with δhead constraint, covering one region of

C(rh,hh);
6: repeat
7: Nhead++;
8: Adding Nhead-th camera with δhead constraint: intersecting

Nhead−1⋃
n=1

Fov(n) and maximizing
Nhead⋃
n=1

Fov(n);

9: until (
Nhead⋃
n=1

Fov(n)⊇ C(rh,hh)).

10: Re-arrange the head cameras to equal distance spacing.
11: // Handle the body surface
12: Sbody is simplified to a cylinder C(rb,hb);
13: Nbody=1;
14: Place 1st camera with δbody constraint, covering one corner region

of C(rb,hb);
15: repeat
16: Nbody++;
17: Adding Nbody-th camera with δbody constraint: intersecting

Nbody−1⋃
n=1

Fov(n) and maximizing
Nbody⋃
n=1

Fov(n);

18: until (
Nbody⋃
n=1

Fov(n)⊇ C(rb,hb)).

19: Re-arrange the body cameras to equal distance spacing.
20: N = Nhead +Nbody;

lie in the range 0.4–3 m when used in near mode. The ac-
curacy of the Xtion Pro Live has been thoroughly analyzed
in [30]. The maximal depth error ed increases quadratically
with distance d according to ed = 2.85× 10−6d2. For the
body, to ensure that ed does not exceed 5 mm, the distance
between the subject surface and the camera center should
not exceed 1.32 m, while for the head, the distance must be
less than 0.75 m.

As the human is represented by a combined cylindrical
proxy, we utilize a heuristic algorithm to find an approxi-
mate camera arrangement. We successively place cameras
to cover as much as possible of the subject, each camera ori-
enting to the proxy with a proper distance constrained by
the accuracy requirement. Consequently, the proxy could be
covered by several horizontal rings of cameras, and the task
is simplified as one of deciding the number and heights of
the rings, and how many cameras to place in each ring. The
framework of the heuristic solution is addressed by Algo-
rithm 1, which determines that 16 cameras provide the de-
sired solution.

A configuration of 16 RGB-D cameras, computed by
this algorithm, is used by our capture system. It is illustrated
in Figure 2: the system uses ten for the body, and six for the
head.
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Fig. 2 System configuration with 16 RGB-D cameras. (a) Ten cameras capture the body, simplified as a cylinder (0.45 m radius, 1.7 m height)
standing on an adjustable platform. Ten cameras are organized into five vertical pairs, uniformly located around a circle with radius 1.3 m. The
two cameras in each pair are placed at 0.5 m and 1.4 m above the floor. Six cameras capture the head, simplified as a cylinder (0.2 m radius, 0.4
m height). Five of these are placed uniformly around a circle with radius 0.75 m, 1.8 m above the floor, while the final camera is placed vertically
above the head 2.7 m from the floor. (b) Top-view of the body capture space, formed by the union of the fields-of-view of the cameras. (c) The
head capture space formed by the other six cameras.

– Head capture. Six cameras are computed from Algo-
rithm 1 Lines 3-9, then re-arranged at equal angles around
the head (Line 10) as shown in Figure 2. Five cameras
are placed on a horizontal ring 1.8 m above the floor to
cover the sides the cylinder representing the head, uni-
formly located around a circle of radius 0.75 m. The sub-
ject stands on an adjustable platform to raise his or her
height so that the subject’s nose is at a height of 1.8 m.
One camera is placed vertically above the head, looking
down, at a height of 2.7m.

– Body capture. Ten cameras are computed from Algo-
rithm 1 Lines 12-18, then re-arranged into five vertical
pairs at equal angles around the body (Line 19) as shown
in Figure 2.b, lying around a circle of radius 1.3 m. In
each pair, one is placed 0.5 m above the floor, and the
other is 1.4 m above it. The fields-of-view of these ten
cameras form a polyhedral volume (see Figure 2.b), cov-
ering the simplified body C(rb,hb).

4 Scanning and offline multi-camera calibration

After placing the cameras close to the above layout, they are
used to scan a full-sized human mannequin, placed on the
adjustable platform. The scanned data is cleaned in a pre-
processing step, then these cameras are calibrated to deter-
mine their precise layout before they are used for real avatar
capture. The calibration is performed just once in an offline
process.

4.1 Scanning

Figure 3 shows the mannequin data captured by the 16 cam-
eras, in RGB and depth images. The cameras must essen-

tially sequentially capture data to avoid interference between
the active cameras: if multiple depth maps are simultane-
ously scanned, major quality degradation is found to occur
in overlapping areas. Each camera captures only a single
RGB-D frame, then turns off, allowing the next camera to
capture a frame and so on.

To shorten the scanning time, in practice certain cameras
may be paired such that in each pair, scanning regions do not
overlap, allowing the cameras in a pair to work simultane-
ously. Specially, when a head-related camera is scanning,
one body-related camera without scanning overlap works at
the same time. After the 6 head cameras and related body
cameras have scanned, the final 4 body-related cameras cap-
ture data sequentially. A camera takes under 0.1 s to turn on,
capture data, and turn off. Therefore, the whole scanning
time using 16 cameras is about 1 s.

4.2 Data pre-processing

After scanning, we perform pre-processing on the initial raw
RGB-D data. The steps include data cleaning, RGB-D to
surface conversion, and platform removal.

We adapt the fast-speed filtering technique in [31] to per-
form data cleaning. We first employ the Sobel operator to
detect boundary pixels at depth edges, and remove unreli-
able boundary points (pixels near depth edges) by threshold-
ing depth gradient magnitudes. The main difference between
our method and the one in [31] is that we only consider spa-
tial filtering rather than spatitemporal filtering. Such spatial
filtering can effectively denoise the depth data obtained by
the RGB-D cameras.

Each frame is a partial scan of the captured subject, com-
prising a color image registered with a depth image. This
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Fig. 3 Mannequin raw data captured by all 16 cameras, as RGB and depth images.

pair of images is converted to a 3D mesh surface with texture
information using the OpenNI package [32]. The conversion
is fast, taking about 1 ms per frame.

The partial surfaces resulting from the lower body cam-
eras still contain data captured from the platform upon which
the subject stands. Following the floor removal step in [26],
we estimate a lowest horizontal plane P for all points. Any
points below P and up to 10 mm above it are treated as out-
liers belonging to the floor and removed.

All preprocessing steps take in total about 10 ms on a
single CPU.

4.3 Offline multi-camera calibration

The goal of multi-camera calibration is to allow the 3D co-
ordinates of every point captured by every camera to be put
into a common reference frame.

A mannequin is serving as the calibration template, since
it is mostly similar to a real adult in the shape space. The
mannequin is accurately pre-scanned offline by an accurate
laser scanner. Obviously, this template model can be pro-
vided to users of our capture system, who therefore do not
need to also own a laser scanner, just a mannequin. The man-
nequin is placed in the center of our system, and each cam-
era captures its own view. We then employ a matching algo-
rithm [33] to determine rigid alignment between each partial
scan and the whole template. This provides an initial align-
ment for each partial scan (see Figure 4.b), as well as the
initial parameters of our revised SLAM-based multi-camera
calibration.

Based on the initial alignment, we optimize the multi-
camera calibration by a revised rigid SLAM scheme. We
utilize the SLAM scheme, rather than the bundle adjustment
(e.g. [34]), to achieve the global error optimization, since it
is fast due to the linearized numerical solution. Our approach

is based on [13], which performs real-time volumetric 3D
mapping on a CPU, based on depth information. We extend
it by integrating texture color information to optimize the
calibration.

In an RGB-D camera frame, a 3D point is defined in
homogeneous coordinates as p = (X ,Y,Z,1)T. We recon-
struct a point from its pixel coordinates x = (x,y)T and a
corresponding depth measurement Z = Z(x) using the in-
verse projection function π−1:

p = π
−1(x,Z) =

(
x−ox

fx
Z,

y−oy

fy
Z,Z,1

)T

, (2)

where fx, fy are the focal lengths and ox, oy are the coor-
dinates of the camera center in the standard pinhole camera
model. fx, fy, ox, and oy are already known intrinsic parame-
ters of the RGB-D camera. The pixel coordinates for a point
can be computed using the projection function π:

x = π(p) =
(

X fx

Z
+ox,

Y fy

Z
+oy

)T

. (3)

With the previously defined projection function π and
rigid camera motion T between two cameras, we can derive
a warping function τ , which computes the location of a pixel
from the first image I1 in the second image I2, given the rigid
motion T:

x′ = τ(x,T) = π2

(
Tπ
−1
1
(
x,Z1(x)

))
. (4)

Based on the warping function τ we define the intensity
error rZ for a pixel x as

rZ = Z2
(
τ(x,T)

)
−Z1(x), (5)

Similarly, the depth error is given as

rZ = Z2
(
τ(x,T)

)
−
[
Tπ
−1
1
(
x,Z1(x)

)]
Z
, (6)
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where [·]Z returns the Z component of a point, i.e., [p]Z = Z.
Therefore, the second term is the depth of the transformed
point, which was reconstructed from the first depth image.

The previous work [13] gave a probabilistic formulation
for the estimation of the camera motion T given the depth
error rZ . They determined the motion T∗ by maximizing an
iteratively re-weighted (w) least squares formulation:

T∗ = argmin
T

N

∑
i=1

wir2
Z,i, (7)

where N is the total number of RGB-D images; in our sys-
tem, N = 16. We extend the previous formulation by in-
corporating the photometric color error rC. Therefore, we
model the photometric and the depth error as a bivariate ran-
dom variable r = (rC,rZ)

T, In the bivariate case, Equation
(7) becomes:

T∗ = argmin
T

N

∑
i=1

wirT
i ri. (8)

The error function (8) we seek to minimize is nonlinear in
the motion parameters T. Therefore, we linearize it around
the current motion estimate Tk using a first order Taylor ex-
pansion. Furthermore, we employ a coarse-to-fine scheme
(in a similar way to the multi-resolution octree implementa-
tion in [13]) to account for a larger range of camera motions.

Consequently, the revised rigid SLAM scheme finds the
camera motions, giving the multi-camera calibration. Fig-
ure 4 shows intermediate results in the steps of this process,
including coarse alignment, and the revised rigid-SLAM op-
timization integrating color information. The textured tem-
plate of the mannequin, reconstructed by our approach, is
also shown in Figure 4.

5 Geometric reconstruction of a real subject

After calibrating the camera locations, the system is ready
to capture real subjects.

Firstly, the subject stands on the platform, which auto-
matically adjusts according to the subject’s height, placing
the nose at a height of 1.8 m above the ground. The sub-
ject then holds as stationary a pose as possible for about a
second. During this time, the system scans the raw RGB-D
images, as described in Section 4.1.

Next, the raw RGB-D images are pre-processed as in
Section 4.2.

Thirdly, by using the multi-camera calibration informa-
tion as the initialization, revised rigid SLAM optimization
(as in Section 4.3) is performed to find the global rigid align-
ment of the multiple overlapping partial datasets.

Fourthly, a non-rigid optimization algorithm is used to
compensate for any misalignments due to deformation. A
human subject cannot hold perfectly still during scanning,

Fig. 4 Calibration with mannequin. Left to right: 2D snapshot from a
high-resolution digital camera, 3D coarse alignment from partial scans,
alignment after the revised rigid SLAM optimization integrating the
color information, and the final textured result.

leading to small non-rigid deformation between scans. In
each overlapping region, we first build an embedded graph
on each overlapped surface, following [35], and use it to de-
termine deformation. Local transformations are defined at
each node of the embedded graph, with the transformation
at each vertex being obtained by a weighted average of trans-
formations at neighboring nodes. Each weight is propor-
tional to the inverse of the distance between the vertex and
the node. Corresponding points on overlapping surfaces are
established using ORB features [36], which allow real-time
performance without use of GPUs, and provide good invari-
ance of RGB images to changes in viewpoint and illumina-
tion. We prune the ORB feature matching pairs using local
region constraints, and only use a few high-confidence pairs
as the correspondences. Driven by these correspondences,
the embedded deformation algorithm [35] can quickly per-
form non-rigid registration.

Finally, we make use of the volumetric SDF method in [13]
to fuse the warped triangle meshes. The resulting triangle
mesh is closed, since holes are filled when reconstructing
from the octree volume.

6 Texture stitching

After reconstructing the geometric mesh, the texture infor-
mation is attached to it using a texture stitching approach,
which minimizes texture seams between adjacent triangles.

We assign a label l j to each face f j( j = 1, . . . ,F) that
identifies its associated single input image Ii from the input
RGB images {I1, . . . , IN} (N = 16). This projection between
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faces and images uses the previous camera parameters and
the geometric mesh M. This is essentially a discrete label
assignment problem, which can be formulated as:

arg min
l1,...,lF

F

∑
j=1

Edata(l j)+λ ∑
{ f j , fk}∈M, f j∈N ( fk)

Esmooth(l j, lk),

(9)

where λ is the weight of the smoothness term, empirically
set to λ = 10, and N (·) is the set of neighboring faces.

We experimentally set Edata(l j) = sin2
θ , where θ is the

angle between the local viewing direction of the correspond-
ing camera and the face normal. It is smaller for RGB im-
ages with better quality (smaller angle θ ), seeking to texture
each face from the best image that contains it.

Esmooth(l j, lk) =
∫

e( j,k)

∥∥Il j

(
φl j(p)

)
− Ilk

(
φlk(p)

)∥∥2d p, to
measure the integrated difference of the colors along each
shared edge (e( j,k)) between adjacent triangles f j and fk. φl j

is the perspective map from mesh face f j into image Il j . This
term is zero for pairs of faces with the same label.

Equation (9) is a typical discrete energy minimization
problem. Different to [28] using the slow tree-reweighted
message passing solution, we solve Equation (9) using the
efficient α-expansion solution [37]. As explained in a recent
survey [38], the global minimum can be computed rapidly
by α-expansion graph cut, especially in multi-camera con-
figurations.

More important, before solving Equation (9), the angle
θ is first used to remove obviously unreasonable labeling
candidates. If the image Ii does not map on the triangular
face f j, θi is set as 180◦ and directly removed from the can-
didates. Then, all labeling candidates are reversely sorted
by the corresponding angle θ . Assuming the first candidate
with smallest angle θ1, we directly remove the candidates
whose corresponding angles are larger than θ1 + 30◦. This
discards some useless combinations, and helping to reduce
the computation costs.

Benefiting from the efficient α-expansion solution [37]
coupled with angle thresholding scheme, Equation (9) could
always be solved about 0.7 second. This means our texture
stitching is fast, avoiding the slow computation time as [28].

After texture stitching, local luminosity variations along
optimized texture boundaries are further handled by using
Poisson blending [39]. Furthermore, small holes without map-
ping images are also filled by methods in [39] to produce the
mapped textures. Note that, we combine and layout all 16
RGB images to form a large texture image. Given the recon-
structed geometric model and the 16 RGB views around it,
the establishment of texture coordinate is a simple process:
each point on the model can be back-projected to views to
retrieve color at that point, by utilizing the known camera
parameters and calibration information.

Fig. 5 Accuracy of reconstruction, compared to the laser-scanned
mannequin template. Left to right: accurate template, reconstructed
mesh, L2 distance error on the template surface.

7 Results

7.1 Evaluation

Our system meets its goals of rapidly constructing an avatar
with photorealistic visual appearance, and whose geometric
errors do not exceed 5 mm.

The visual quality of the result is determined by two
considerations: accuracy of captured geometry, and visual
appearance. The visual appearance is provided by texture
stitching of the RGB images mapped onto the geometric
surface. Geometric accuracy is determined by the RGB-D
camera, whose accuracy falls offf quadratically with dis-
tance as noted in [30]. Our configuration ensures geometric
errors are less than 5 mm on the body regions where data
is captured. The remaining holes due to self-occlusion are
small (see the calibrated data in Figure 4), and cover less
than 5% of the whole surface area. Figure 5 validates our re-
constructed avatar against an accurate template of the man-
nequin produced by a higher quality 3D scanner, which has
an accuracy of about 0.1 m. The L2 distance error between
the reconstructed mesh and the template is shown on the
right. The maximal distance error is about 5 mm.

7.2 Experimental tests

The system has been validated by capturing and reconstruct-
ing personalized avatars for many human subjects; typical
results are shown in Figures 1 and 6. The reconstructed sur-
faces contain rich geometric details specific to the subject,
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Fig. 6 Avatars of several different people, showing for each subject the
reconstructed surface and textured model. Personal geometric details,
such as the face, salient cloth wrinkles, and hairstyle, are well captured.

Table 1 Typical running times.

scanning pre-process rigid SLAM non-rigid texturing
1 s 0.1 s 0.1 s 0.8 s 1 s

such as their individual faces, hairstyles and folds of their
clothing. Moreover, since an RGB-D camera captures both
color and depth images simultaneously, the final avatar is
textured, as also shown in Figure 6.

Running times for a PC laptop with a 1.6 GHz Intel Core
i7 processor are reported in Table 1. The whole capture pro-
cess takes about 3 s, including 1 s for scanning, and 2 s for
data processing. (Multi-camera calibration is performed of-
fline and is not included in these timings). As pre-computed
calibration matrices are used, alignment using rigid SLAM
scheme is very fast. Reconstruction time is mainly spent on
non-rigid registration and texture stitching.

Thanks to the effective use of RGB color information in
the rigid SLAM framework, our revised color-aware method

(a) (b) (c)

Fig. 7 Effectiveness of use of color information during rigid and non-
rigid geometric optimization. (a) Original SLAM method [13] without
using color. (b) Our rigid SLAM scheme integrating color informa-
tion. (c) Our non-rigid scheme using RGB correspondences. Compare
results in the regions marked by red rectangles.

Table 2 Comparison of typical RGB-D methods. Nc: number of RGB-
D cameras, Ts: scanning time, Tp: processing time, E: maximal L2 ge-
ometric distance error, C: color results supplied.

From [25] From [20] Our method
Nc 3 1 16
Ts 30 s >60 s 1 s
Tp 360 s real-time 2 s
E 10 mm a few mm 5 mm
C color no texture

produces better results than the original depth version [13].
As shown by Figure 7, in the regions marked by red rectan-
gles, visual alignment is more accurate than produced by the
method in [13]. While the combined RGB and depth method
is slightly slower than the depth-only version, the speed is
still acceptable.

7.3 Comparison

The results of a comparison between our system and other
typical RGB-D camera systems described in [20, 25], are
shown in Table 2. Here Ts and Tp are the scanning time and
data processing times respectively, while E is the maximal
L2 distance error.
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(a) Front

(b) Back

Fig. 8 Visual comparison of our result (left), and those using using the
method in [25] (right).

A key advantage of our system is the scanning speed,
about 1 s, which is short enough to allow the person being
captured to hold a fairly static pose stably and comfortably.

The differences between our method and the one in [20]
should be further examined. Initially it seems that the latter
approach is better in terms of geometric accuracy. In fact,
their accuracy of a few mm can only be achieved if a long
enough time (> 60 s) is spent to acquire sufficient dense
scans; in practice subjects will find it very difficult (as well
as inconvenient) to stand still for such a length of time. More
importantly, as is also the case for [13], RGB information is
not utilized—yet it can definitely improve the visual appear-
ance of the reconstructed avatar.

A visual comparison of the results of our approach and
those provided by [25] is shown in Figure 8. The input RGB-
D raw data was provided by the author of [25]. We manually
selected 16 RGB-D images of one subject, and the process-
ing steps were automatically performed to build the results.
Our stitched texture appearance is noticeably better than the
one produced by [25], which simply utilizes the color as-
signment on the reconstructed geometry without texture op-
timization.

We finally discuss the impact of varying number of RGB-
D images. From representative KinectFusion [4] and Dy-

Fig. 9 Varying the number of RGB-D images. Left: our result using
sixteen RGB-D images. Right: result from [26] using six RGB-D im-
ages.

namicFusion [20] work, it is easy to imagine the effect of us-
ing a large number RGB-D images—the reconstructed mesh
would be more detailed, at the expense of processing much
redundant data. In fact, we met the requirement for geomet-
ric error to be under 5 mm in earlier work [26], using six
RGB-D images produced by two Kinects to capture a per-
sonalized avatar. As noted in that paper, however, the results
do not cover a full adult full body, resulting in noticeable ar-
tifacts. A comparison between our current results and those
of [26] are shown in Figure 9 for a typical example.

8 Conclusions

We have described a fast photorealistic avatar capture sys-
tem based on a configuration of multiple cameras, allowing
a user to quickly and easily produce a textured avatar. Data
scanning takes about 1 s, avoiding the need for the user to
hold steady in an awkward pose for a long time. After scan-
ning, the textured avatar is automatically reconstructed on a
commodity PC in about 2 s.

As a next step, we plan to generalize the color-aware
SLAM framework from the rigid to non-rigid case, follow-
ing [20]. Furthermore, we hope to improve the geometric
quality by using high-quality structured light scanners. Other
techniques will be investigated to accelerate the scanning
and computation to provide real-time results.
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13. F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3D map-
ping in real-time on a CPU,” in Int. Conf. on Robotics and Au-
tomation, pp. 2021–2028, IEEE, 2014.

14. Q.-Y. Zhou and V. Koltun, “Color map optimization for 3d recon-
struction with consumer depth cameras,” ACM Transactions on
Graphics, vol. 33, pp. 155:1–155:10, July 2014.
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