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Abstract

Image colorization is an important and difficult problem in image processing with var-

ious applications including image stylization and heritage restoration. Most existing

image colorization methods utilize feature matching between the reference color im-

age and the target grayscale image. The effectiveness of features is often significantly

affected by the characteristics of the local image region. Traditional methods usually

combine multiple features to improve the matching performance. However, the same

set of features is still applied to the whole images. In this paper, based on the obser-

vation that local regions have different characteristics and hence different features may

work more effectively, we propose a novel image colorization method using automatic

feature selection with the results fused via a Markov Random Field (MRF) model for

improved consistency. More specifically, the proposed algorithm automatically clas-

sifies image regions as either uniform or non-uniform, and selects a suitable feature

vector for each local patch of the target image to determine the colorization results.

For this purpose, a descriptor based on luminance deviation is used to estimate the

probability of each patch being uniform or non-uniform, and the same descriptor is

also used for calculating the label cost of the MRF model to determine which feature

vector should be selected for each patch. In addition, the similarity between the lumi-

nance of the neighborhood is used as the smoothness cost for the MRF model which
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enhances the local consistency of the colorization results. Experimental results on a va-

riety of images show that our method outperforms several state-of-the-art algorithms,

both visually and quantitatively using standard measures and a user study.

Keywords: image colorization, automatic feature selection, Markov random field,

Bayesian inference

1. Introduction

The aim of example-based image colorization is to transfer the chrominance infor-

mation from a reference image with color to a target grayscale image. It is an important

research topic in image processing, and has many applications in different areas, such

as heritage restoration [1] and image stylization [2, 3]. However, it is ill-posed and5

difficult because the common grayscale information between the reference and target

images may not be sufficiently distinctive for reliable transfer. Most existing image

colorization methods use feature matching: given a reference image with color infor-

mation, the target grayscale image will be colorized by finding correspondences from

the reference image based on feature similarity. Therefore, choosing suitable features10

is key to the colorization performance. In the pioneering work by Welsh et al. [4], lumi-

nance features are used to find the correspondences. However, such features perform

poorly for non-uniform (e.g. textured) regions, leading to artifacts in the colorized

images. More recent work has used many advanced texture features for image col-

orization, such as Gabor wavelets [5], SIFT [6], SURF [7], etc. To improve results,15

most existing methods use multiple features as a combined vector for matching, which

implies that individual features contribute equally to region matching across the entire

image. However, a specific type of feature is often more effective for certain types of

regions. It is thus beneficial to treat regions differently according to their local charac-

teristics. For example, pixels in uniform regions are more suitable to be matched by20

intensity features whereas texture descriptors should be used for highly non-uniform

regions. An example is shown in Fig. 1. We can see that the intensity feature is suitable

for the sky region but not the castle (Fig. 1(f)), whereas the texture descriptor performs

well for the non-uniform castle regions but produces erroneous matches in the uniform
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Figure 1: Illustration of automatic feature selection for colorization. (a) target grayscale image, (b) reference

color image, (c)(d) probability maps of uniform and non-uniform regions (black to white for 0 to 1), (e) the

optimal label image learned by an MRF model (black: uniform, white: non-uniform), (f)(g): colorization re-

sults using intensity feature and SURF texture feature respectively, (h) colorization result using our proposed

automatic feature selection and fusion, (i) the result using direct combination of intensity and SURF texture

features.

regions (Fig. 1(g)). Combining these two features improves the result (Fig. 1(i)), but25

numerous matching errors remain which lead to the green tint on the castle and the yel-

low tint in the sky. Our automatic feature selection and fusion is effective at avoiding

such problems (Fig. 1(h)).

In this paper, we propose a novel image colorization method via automatic fea-

ture selection within a Markov Random Field (MRF) framework. To the best of our30

knowledge, this is the first work that exploits automatic feature selection and fusion for

image colorization. Specifically, image regions can be generally classified as being uni-

form or non-uniform. In uniform regions, the luminance of pixels is evenly distributed,

so the intensity distribution can represent these regions well, whereas in non-uniform

regions, texture feature descriptors are effective to represent the patterns. Based on35

the learned distribution of intensity deviation for uniform and non-uniform regions,

the probability of a given region being assigned a uniform or non-uniform label is es-

timated using Bayesian inference, which is then used for selecting suitable features.

Instead of making individual decisions locally, we further develop an MRF model to
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improve the labeling consistency where the probability is used for the label cost and40

similarity between the luminance of the neighboring regions for the smoothness cost.

The MRF model can be efficiently solved by the graph cut algorithm, enhancing the lo-

cal consistency of the colorization result. Finally, the colorization results are obtained

by transferring corresponding chrominance information from the reference image to

the target grayscale image.45

The main contributions of the paper are summarized as follows: 1) We propose a

novel approach to improving image colorization by local feature selection and fusion.

2) We develop a novel algorithm that classifies local image regions into uniform and

non-uniform regions and applies suitable features. An MRF framework guided by

Bayesian probability inference is further proposed to improve locality coherence. 3)50

We perform extensive experimental analysis both visually and quantitatively, which

shows that the proposed method outperforms state-of-the-art methods.

The rest of this paper is organized as follows. We review work most relevant to this

paper in Sec. 2, and then describe the proposed algorithm in detail in Sec. 3. Experi-

mental results are shown in Sec. 4 and finally conclusions are drawn in Sec. 5.55

2. Related Work

In general, existing image colorization methods can be divided into three cate-

gories: user-scribble based methods, example-based methods and methods that use a

large number of training images. User-scribble based methods are semi-automatic, and

they often require substantial user interaction as input. In the pioneering work by Levin60

et al. [8], some color scribbles on the target image are required as input, and then the

color will be propagated based on least squares diffusion. However, there are obvious

color bleeding effects around edges due to the isotropic nature of the diffusion. In order

to better preserve the edge structure, an adaptive edge detection based colorization al-

gorithm was proposed in [9]. To make the color region boundaries more consistent with65

human judgement, a saliency guided colorization technique was proposed in [10]. The

approach first generates a saliency map of the reference and target images to predict the

visual attention of human viewers, softly segmenting the images into foreground and
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background regions. Color transfer is then performed first to the foreground and then

the background using a weighted color transfer algorithm. In [11], a fast colorization70

method based on the geodesic distance weighted chrominance blending was proposed.

Thanks to the use of luminance-weighted chrominance blending model and efficient

intrinsic distance computation, the method is efficient for both image and video col-

orization. However, for all these scribble-based methods, it is time-consuming and the

quality of colorization results highly depends on the appropriateness of user scribbles.75

Compared with user-scribble based methods, example-based methods can be fully

automatic without any user interaction. For example-based methods, typically only

one reference image with color information is needed, and the target grayscale image

is colorized automatically. The pioneering work by Welsh et al. [4] first finds the

best matching sample in the reference image for each pixel in the target image, and80

then the chrominance information is transferred to the target grayscale image from the

color reference image by the matching results to form the colorized images. Most of

the existing example-based colorization algorithms follow this framework involving

the steps of feature matching and color transfer. As feature matching is critical to

the quality of results and the proposed method, Welsh’s method resorts to manually85

specified swatches when automatic matching fails to produce satisfactory results.

In order to improve the feature matching performance, different features or different

combinations of features have been proposed. Ying et al. [12] proposed using a more

extensive neighborhood descriptor computed using co-occurrence matrix based texture

features. To reduce artifacts caused by outliers, the edit-nearest-neighbor method [13]90

is used to try to remove the outliers. While the paper presents examples showing im-

proved results, the co-occurrence matrix is expensive to compute. Chen et al. [14]

combined [4] with foreground/background image matting to improve the colorization

results but user interaction is needed to guide the grayscale image matting. Most of the

existing methods focus on finding a proper combination of features for the whole im-95

age, rather than selecting proper features for each local pixel or region, as we propose

to do in this paper.

As the methods above match each pixel in isolation, spatial consistency cannot

be guaranteed in general. In order to enhance locality consistency and reduce color
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Figure 2: Colorization results with different reference images. While all the colorized images look plausible,

our method is able to produce different colorized images based on different reference images. In comparison,

deep learning based method [18] can only produce one output.

bleeding effects at edges, an edge-preserving total variation based image colorization100

algorithm was proposed in [15]. However, since only chrominance information is in-

volved in the variational formulation, the results of [15] suffer from halo effects near

strong contours. In [16], a coupled regularization term with luminance and chromi-

nance channels is introduced to preserve image contours during the colorization pro-

cess. The method produces colorization results which are better aligned with edge105

structures. However, significant artifacts can still be produced by incorrect feature

matching. Compared with the local matching based methods, a novel global coloriza-

tion method based on histogram regression was proposed in [17]. The basic assumption

is that the final colorized image should have a similar color distribution as the reference

image, and color matching is conducted by finding and adjusting the zero-points of the110

color histogram. The method however may not work well for complicated scenarios

where the color mapping cannot be effectively represented using global histograms.

An alternative category of approaches resorts to a large number of training images.

For example, the proliferation of internet images can be utilized for image coloriza-

tion. In [19, 20, 21], target grayscale images are colorized by internet images. The115

reference images are searched from the internet based upon a semantic label given by
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Target grayscale image 
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Figure 3: The pipeline of the proposed method.

the user and from the vast number of returned images a subset is chosen by means of

a combined similarity metric. However, it is computationally expensive and depends

on the accuracy of the semantic segmentation. Recently, deep learning based methods

have been proposed for image colorization [6, 7, 18, 22] and produce promising results.120

However, unlike example-based methods, the colorization results cannot be controlled

by users. Since image colorization is essentially an ill-posed problem: the target im-

ages can often be naturally colorized in different ways due to semantic ambiguities and

style preference. One example is shown in Fig. 2. We can see that given different style

reference images, our method, as an example-based method, can generate multiple dis-125

tinct and plausible colorization results (e.g. the sky can be blue for a sunny day or gray

for a cloudy day), while the recent deep learning based method [18] does not provide

flexible control and can only produce one output image.

In this paper, a novel example-based image colorization method is proposed. Un-

like existing methods, we aim to automatically find suitable features for each local130

region rather than using the same feature for the whole image globally. We further pro-

pose an MRF framework to solve feature selection and locality consistency simultane-

ously, which can be efficiently solved using the graph cut algorithm. As we will show

later, our automatic feature selection helps to significantly improve feature matching,
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and thus provides an effective solution to a major challenge of image colorization.135

3. Our Method

The pipeline of the proposed algorithm is shown in Fig. 3. In order to suppress

the influence of global luminance difference between the reference and target images,

a global linear luminance remapping to the reference image is applied as in [4]. For

computational efficiency, and to help improve the spatial consistency of the results,140

both the reference and target images are segmented into superpixels, and intensity and

texture features are extracted from each superpixel. Using either of these features,

we can find the corresponding best matching result for each target superpixel based

on the Euclidean distance in the feature space (efficiently computed using the ANN

library [23]). Then a two-label MRF model is formulated to choose the optimal cor-145

respondence according to different features, based on the probability of superpixels

belonging to uniform or non-uniform regions. Following the initial labeling, a multi-

scale voting process is performed to eliminate the isolated outliers and enhance locality

consistency. Finally, the chrominance channels are filtered by the standard guided fil-

ter [24] with the guidance of the luminance channel.150

3.1. Image Segmentation and Feature Extraction

For example-based image colorization, the most time-consuming step is finding the

correspondence from the reference color image for each pixel in the target grayscale

image. It is computationally expensive, especially when the feature dimensionality is

high. On the other hand, neighboring pixels in natural images often share similar char-155

acteristics, and can be processed simultaneously and in the same manner. As we will

demonstrate later, doing so also ensures coherent colorization in local neighborhoods

and reduces mismatches. Based on the above observation, both the reference image

and the target grayscale image are first segmented into superpixels. For the reference

image, superpixel segmentation is performed using the color information, whereas the160

target grayscale image is segmented using the luminance information only. In this pa-

per, we adopt the Turbopixel algorithm [25], which can process color and grayscale
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Figure 4: Examples of superpixel segmentation shown with magnified selection.

images while preserving the edge structure well. The superpixel number is set to 4000

in our experiments which provides a good balance between efficiency and quality, as

we will demonstrate later. Note that the required number of superpixels depends on165

the image content, rather than its resolution. Fig. 4 shows the superpixel segmentation

results for both color and grayscale images. From the magnification of the boundary

areas, we can see that the edge structure is well preserved.

For each superpixel from the reference color image and the target grayscale image,

two types of features are extracted:170

Intensity feature. The intensity feature we used is a 27-dimensional vector computed

based on the luminance value. It is composed of three parts: the mean intensity within

the superpixel (l̄1), the mean intensity of the neighboring superpixels (l̄2) and the in-

tensity distribution within the superpixel (hl), where l̄2 = 1
|Ni|

∑

j∈Ni
l̄1(j) and Ni is

the set of neighboring superpixels of the ith superpixel. The intensity distribution hl175

is a histogram of the intensity distribution within each superpixel. In our experiments,

the intensity range 0–255 is divided into 25 bins, and each entry represents the propor-

tion of the pixels whose the intensity is in the range of the bin compared with the total

number of pixels in the superpixel. The intensity feature is denoted as f I .
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Texture feature. In this paper, the scale-invariant and rotation-invariant SURF fea-180

ture [26] is used as the texture descriptor. At each pixel a 128-dimensional SURF

descriptor is extracted, and then the average SURF feature within the superpixel is

computed as the texture feature of the superpixel. We denote the texture feature as fT .

These intensity and texture features are chosen because they are representative for

their feature types and produce competitive results (see also the comparative results185

between our method and state-of-the-art methods). Since the focus of this paper is

novel feature selection and fusion, these elementary features are fixed, although our

method can be directly combined with alternative features. To help choose intensity or

texture feature for matching, the intensity standard deviation di within each superpixel

i is also computed. A small value of the standard deviation implies that the intensity190

distribution within the superpixel is even. The standard deviation is used for automatic

selection of features (see the next subsection for detail), rather than finding the best

candidate.

Figure 5: Examples of training samples from uniform and non-uniform regions.

3.2. MRF-based Automatic Feature Selection

In this subsection, we discuss our novel automatic feature selection for image col-195

orization. The intuition is that different regions can be better represented by different

features. In general, a natural image can be decomposed into uniform and non-uniform

regions. We use the term non-uniform in a broad sense to refer to regions containing

sufficient details, to allow texture descriptors to work effectively. This is different from
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(a) uniform regions (b) non-uniform  regions 

Figure 6: The histograms of standard deviation of superpixels extracted from uniform and non-uniform

training examples, and their fitted Gamma distributions.

the standard texture/non-texture classification [27, 28] so we develop a simple approach200

for our purpose. In uniform regions, the luminance of pixels is evenly distributed, and

the intensity feature f I can represent these regions well. While in non-uniform regions,

texture feature descriptors fT are a good choice to represent repeated patterns. One of

the main contributions of this paper is to design an automatic feature selection frame-

work for each superpixel within an MRF framework. In addition to feature selection,205

locality consistency can also be simultaneously enhanced by the MRF model.

3.2.1. Probability Estimation for Region Uniformity

When the superpixel segmentation is dense enough, the intensity standard deviation

of each superpixel can be seen as a good descriptor to determine its characteristics, i.e.

smaller deviation implies uniform while bigger value means non-uniform. Therefore210

we adopt intensity standard deviation as the feature variable to estimate the probability

distribution of each type of region.

In this paper, Bayesian inference is used to determine the probability of each super-

pixel belonging to each type of region. For the ith superpixel xi, given its correspond-

ing standard deviation di, we denote its probability of belonging to a uniform region as

P (xi ∈ U |di). Using Bayesian inference, the posterior probability can be computed

by

P (xi ∈ U |di) =
P (U)P (di|xi ∈ U)

P (U)P (di|xi ∈ U) + P (N)P (di|xi ∈ N)
, (1)
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where P (U) (or P (N)) denotes the a priori probability for a region to be uniform (or

non-uniform), and P (di|xi ∈ U) (or P (di|xi ∈ N)) is the conditional probability of

having given standard deviation di for a region known as uniform (or non-uniform). In215

general, we assume uniform and non-uniform regions are equally common and the a

priori probabilities P (U), P (N) can be set as 0.5.

In order to estimate the conditional probability P (di|xi ∈ U) and P (di|xi ∈ N),

we create a training set by manually selecting superpixels from uniform and non-

uniform regions, and calculating the corresponding standard deviation values. In this

paper, we collected 3000 superpixels for each type of region from 10 images, which are

sufficient to estimate the distributions of standard deviation. An example is shown in

Fig. 5. The histograms of the standard deviation for uniform and non-uniform regions

are shown in Fig. 6. The shape of the histogram can be well approximated by a Gamma

distribution

Γ(α, β) =
βαxα−1e−xβ

Γ(α)
(2)

where α and β are the shape and scale parameters of the Gamma distribution. Given

our training samples, the Gamma distributions fitted are shown in Fig. 6, with the

parameters for uniform regions and non-uniform regions being: {αU = 0.9544, βU =220

2.3424} and {αN = 2.8295, βN = 9.8095}.

Given a superpixel with luminance standard deviation di, its probability of belong-

ing to uniform regions P (xi ∈ U |di) can be computed using Eqn. 1. We can similarly

compute its probability of belonging to non-uniform regions P (xi ∈ N |di), which

satisfies P (xi ∈ U |di) + P (xi ∈ N |di) = 1. The probability of uniformity is also225

useful for feature matching as uniform regions should generally be colorized using

samples from uniform regions, and the same for non-uniform regions. We thus add

P (xi ∈ U |di) to each type of the features introduced in the previous section which

serves as a soft constraint.

3.2.2. MRF-based Labeling for Feature Selection230

With the estimated posterior probability, a trivial way of labeling superpixels as

uniform or non-uniform is thresholding. Such approach however does not take into ac-

count spatial consistency. In this paper, we propose a novel automatic feature selection
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approach for image colorization within an MRF framework. For each superpixel in the

target image, we can find two matched superpixels from the reference image based on235

the intensity and texture features. The searching process can be efficiently performed

using the approximate nearest neighbour (ANN) tree searching algorithm [23]. An ex-

ample is shown in Fig. 1. We can see that the intensity features perform well within

uniform regions (Fig. 1(f)), whereas the texture descriptor is effective at non-uniform

regions (Fig. 1(g)). Most existing methods combine these two types of features as240

a combined feature and use the same searching process in both cases. The result as

shown in (Fig. 1(i)) still contains many incorrect matching results. Rather than com-

bining the two features, in this paper we assume that for each superpixel the matching

result is determined by only the single optimal feature. We assume that in uniform

regions the colorization should be determined by the intensity feature, whereas in the245

non-uniform regions the texture feature should be dominant. Therefore, the problem of

feature selection can be regarded as a binary labeling problem, where label 0 denotes

intensity feature and label 1 means texture feature.

Let us denote the i-th superpixel in the target image as xi, and the set of all su-

perpixels in the target image as Ω. N represents the set of adjacent superpixel pairs.

The task of feature selection is to divide the whole set Ω into two disjoint sets, ΩI

for regions determined by intensity features and ΩT for regions determined by texture

features. The binary labeling problem can be formulated as the minimization of the

following MRF energy function

min
S

E(S) =
∑

i∈Ω

D(Si) + λ
∑

(i,j)∈N

f(Si, Sj), (3)

where Si is the label for the i-th superpixel, which takes 0 or 1 to indicate whether the

intensity feature or the texture feature is selected.250

The first term D(Si) is the label cost which measures the cost to assign label Si

to the i-th superpixel xi. Based on our assumption, the label cost of each superpixel

should be determined by its probability of belonging to either the uniform regions or
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non-uniform regions, i.e. the posterior probabilities:

D(Si) =







P (xi ∈ N |di) if Si = 0,

P (xi ∈ U |di) if Si = 1.
(4)

The second term f(Si, Sj) is the pairwise term, which indicates the cost for assign-

ing label Si to the i-th superpixels while assigning label Sj to the j-th superpixel. In

this paper, the pairwise term is defined as

f(Si, Sj) =







0, if Si = Sj

s(i, j), otherwise
(5)

where s(i, j) describes the similarity between adjacent superpixels. For improved co-

herence, we assume that neighboring superpixels with similar intensity values are likely

to have the same label. Therefore, the function s(i, j) is defined as follows:

s(i, j) = exp

{

−
‖ci − cj‖

2

2σ2
1

}

exp

{

−
(l̄1(i)− l̄1(j))

2

2σ2
2

}

, (6)

where ci and l̄1(i) are the central location and the mean intensity of the i-th superpixel.

σ1, σ2 are parameters set as σ1 = 100 and σ2 = 1 (for images with approximately 1

megapixels). From the definition, the pairwise costs only exist for adjacent superpixels

with different labels, and the effect is determined by the similarity between superpixels:

i.e., the cost will be big if different labels are assigned to nearby superpixels with255

high similarity. Therefore, the main effect of the pairwise term is to enhance locality

consistency, which is important for colorization.

Given the label cost and the pairwise terms, the two-label MRF model (3) can

be optimized by the graph cut algorithm [29, 30]. Since our energy function is not

sub-modular, the alpha-beta swap algorithm is adopted, which randomly selects two260

labels from the label set and tries to reduce the energy by swapping these labels. The

algorithm is efficient, and runtime is less than 0.1 s for 4000 superpixels.

Finally, feature selection is determined by the labeling. For regions with label 0,

i.e., uniform regions, the intensity feature is used for feature matching. Otherwise,

the texture feature is used. Fig. 1 shows the colorization result by the proposed fea-265

ture selection method. (c) and (d) are the corresponding label costs for the intensity
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feature and the texture feature. (f) and (g) are the corresponding best matches using

intensity and texture features, respectively. (e) is the optimal labeling obtained by the

MRF model and (h) is the final colorization result. Our feature selection performs sig-

nificantly better than using individual features, or their simple combination as shown270

in (i).

3.3. Consistency enhancement by multiscale voting

Although locality consistency has been taken into account in the MRF energy func-

tion, there still exist isolated wrong matches as shown in Figure 7(a). In order to

improve the color consistency, a multiscale voting is further performed. The basic in-275

tuition is that the label assignment for a superpixel is likely to be wrong if most of

its neighboring superpixels with similar image properties are assigned another label.

Therefore, we can exploit neighboring superpixels to identify and correct invalid label

assignments.

The target image is also oversegmented to produce coarse-scale superpixels by the280

Turbopixels method. In this paper, the number of coarse-scale superpixels is chosen

as a quarter of the original superpixel segmentation. For each superpixel in the coarse

scale, the final label is determined by the majority label obtained in the fine scale.

Finally, median filtering is applied for the chrominance channels in the lab color space

such that the color of each superpixel is replaced by the median of its neighboring285

superpixels, to further enhance color consistency. The result of multiscale voting is

shown in Fig. 7(b). From the magnified selection, we can see that many isolated wrong

matches are corrected.

3.4. Color propagation by guided filter

Although the multiscale voting process can reduce isolated matching errors, the re-290

sulting color images still show block effects as chrominance information is transferred

on a superpixel basis, and can have quite a few sparse outliers, as shown in Fig. 8(a).

Different from other image processing tasks, the target grayscale image is accurate for

image colorization. Therefore, the intensity information of the target image can be

15



(a) Fine scale (b) Coarse scale 

Figure 7: Example of multiscale voting. (a) fine scale matching without multiscale voting, (b) result with

multiscale voting. From top to bottom: fine and coarse scale superpixels, uniform/non-uniform labels with-

out and with multiscale voting, and colorization results without and with multiscale voting.
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(a) (b) 

Figure 8: Example of luminance guided image filtering. (a) the original matching result, (b) the result after

guided image filtering.

used to enhance the results, by exploiting the fact that nearby pixels with similar in-295

tensity values should come with similar colors. For this purpose, we adopt the guided

filter [24] for color propagation where the target grayscale image is used as guidance,

which is an edge-preserving smoothing operator which better utilizes the structures in

the guidance image.

J
∗ =

∑

j

Wij(I)Jj (7)

where I means the target grayscale image which is used as the guidance image, J is300

the obtained chrominance channel from the last step, and W is the adapted weight

function as defined in [24]. The filtered image is shown in Fig. 8(b). We can see that

block effects are smoothed while the edge information is preserved well.

4. Experiments

In this section, experimental results are presented to evaluate the performance of the305

proposed method, and compare it with several state-of-the-art methods [15, 16, 17]. In
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order to make a fair comparison, the results of [17] are generated using the code pro-

vided by the author, and the results of [15] and [16] are provided by the authors. The

results of different algorithms are evaluated both by visual inspection and by quantita-

tive evaluation. In addition to example-based methods, two of the latest deep learning310

based methods [18, 22] are also included for visual comparison, using the code pro-

vided by authors. Since the standard quantitative measures we used to compare the

results are not designed for the task of image colorization, in order to get fair and reli-

able comparison, a user study is also performed. The experiments were carried out on

a computer with an Intel i7 2.8GHz CPU and 16GB memory.315

4.1. Visual inspection

Thirteen natural images of different types, e.g., landscape, animals, and buildings,

are chosen for the experiment. The colorization results are shown in Fig. 9. In order

to evaluate the performance of automatic feature selection, the colorization results us-

ing the combined intensity and texture features are also presented as a baseline. From320

visual inspection, we can see that in most cases the proposed algorithm achieves the

best results compared against the other four methods. In particular, our method sub-

stantially reduces wrong color matches, especially between uniform and non-uniform

regions.

Method [17] is based on finding and adjusting the zero-points of the histograms of325

both the reference and target images. While less likely to be affected by local content,

the global mechanism can result in mismatches within large regions when the zero-

point based correspondence contains errors (see the 1st, 3rd and 4th rows of Fig. 9).

Both the methods [15] and [16] solve the image colorization problem by automati-

cally selecting the best color among a set of color candidates via a total variational330

framework. Method [15] only retains the U and V channels without coupling of the

chrominance channels with the luminance, and as a result their regularization algo-

rithm creates halo effects near strong contours, as shown in the 1st, 4th, 7th and 11th

rows of Fig. 9. In [16], a strong regularization coupling the luminance and chromi-

nance channels is proposed to preserve the structural information of the image during335

the colorization process, such as edge and color consistency. It achieves significant
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target reference [15] [17] Combined 

feature 
proposed [22] [18] [16] 

Figure 9: Comparison of our colorization results with alternative methods. From left to right: target and

reference images, and the results of different methods.
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[17] Reference image [16] Ours Target image 

Figure 10: Comparison of our colorization results with alternative example-based colorization methods.

improvement over the method [15]. However, wrong matches remain for challenging

scenarios (e.g. 1st-3rd rows of Fig. 9). The sixth column shows the results generated

with trivially combined intensity and texture features. We can see that there are numer-

ous incorrect matches, e.g., the green grass is mistakenly matched to the blue sky in the340

2nd row of Fig. 9, and the uniform gray sky is mistakenly matched to the grass in the

3rd row of Fig. 9. In contrast, with automatic feature selection using our optimization

framework, the proposed method improves color matching substantially and achieves

better results as shown in the seventh column.

In addition to example-based methods, we also compare our colorization results345

against the latest deep-learning based methods [18, 22]. Compared with example-

based methods, the deep learning based colorization algorithms use millions of images

for training the neural networks. In general, they can generate reasonable color images,

as shown in the 8th and 9th columns of Fig. 9. However, there are some obvious

artifacts shown e.g. in the 1st and 5th rows where parts of the meadow and elephant350

are colored in blue. In addition, the output of such deep learning based methods cannot

be controlled by the user.

Some colorization results for scenes with complex structure and large color varia-
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(a) Result generated by pixel (b) Result generated by superpixel 

Figure 11: Colorization results by matching of pixels and superpixels.

tions are shown in Fig. 10. These examples are more challenging, as regions with sub-

stantially different colors can have similar local characteristics in grayscale images. We355

compare our results with state-of-the-art example-based colorization methods1. Due to

the global mechanism of the method [17], it fails to reproduce correct colors from the

reference images, as shown in the first two rows of Fig. 10. More specifically, it con-

fuses the sand beach with the sea (first row) and grass meadow with the sky (second

row), and produces large wrongly colored blue regions. It also generates obvious halo360

effects around the boundary in the third row. The method [16] finds the optimal color

matching using a variational framework. Thanks to the edge preserving capability of

the variational function, [16] can reduce the halo effects around the boundary effec-

tively. However, as only one type of feature is used to find the matching candidates,

many obviously wrong colors are assigned. For example, in the first row, a large por-365

tion of the beach is wrongly colored in blue as it is matched to the sky. This can be

effectively avoided by using intensity feature in uniform regions as suggested in the

proposed method. Similar problems can also be found in the remaining examples. In

comparison, our method produces significantly better results than [15] and [16] for all

of these cases.370

1For this experiment, we compare with methods where code is publicly available, so the result of [15] is

not included.
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Our method uses superpixels rather than pixels for matching. In this paper, an ap-

proximate nearest neighbour (ANN) tree search algorithm is used to find the nearest

match. ANN is computationally expensive when the feature dimensionality is high. For

example, assuming both the reference image and the target image are of size 300×400,

for the 128-dimensional SURF descriptor, it takes over a day to find matching pixels375

by using the fast ANN algorithm2. In contrast, if the images are segmented into 4000

superpixels, the ANN algorithm just needs 1.58s. In addition, neighboring pixels in

natural images often share similar characteristics, so processing them simultaneously is

not only substantially faster, but also improves local coherence and reduces the chance

of mismatches. An example is shown in Fig. 11. To make pixel-based colorization380

more tractable, we reduce the SURF feature dimension to 30 using PCA (Principal

Component Analysis) which generally produces an output with similar quality. How-

ever, the ANN step still takes 863.82s, and the result is clearly less coherent than that

with superpixels. Based on the above observation, both the reference image and the

target grayscale image are firstly segmented into superpixels.385

An additional experiment is designed to evaluate the influence of the number of

superpixels. We choose the number of superpixels as 1000, 2000, 4000, 6000 and

8000, and apply our colorization algorithm. Fig. 12 shows the results with different

number of superpixels and Table 1 shows the corresponding total running times, where

both target and reference images are of the size 300 × 400. It can be seen that when390

the number of superpixels is too small, e.g., 1000, a superpixel may cover regions of

mixed characteristics, which could result in a small number of mismatches. When

the superpixel number is larger than 4000, the result is visually similar. However, the

computational complexity and running times increase dramatically. In this paper, the

number of superpixels is set to 4000 by default.395

Table 1: The running times of our algorithm using different numbers of superpixels.

Number 1000 2000 4000 6000 8000

Time (s) 41.53 73.27 135.07 262.53 381.13

2http://www.cs.ubc.ca/research/flann/
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(d) (b) (c) (e) (a) 

Figure 12: Colorization results with different numbers of superpixels. The first and third rows are the target

and reference images. (a)-(e) in the second and fourth rows are the corresponding results with 1000, 2000,

4000, 6000 and 8000 superpixels.

4.2. Quantitative comparisons

In addition to visual inspection, we also make quantitive comparisons for the results

shown in Figure 9. In this subsection, the results of deep learning methods [18, 22]

are not included. On one hand, deep learning methods use millions of images for

training while example-based methods take only one reference image. On the other

hand, example-based methods generate results according to the given reference im-

age, whereas the results of deep models are not controlled and thus can be irrelevant

to the reference image. We thus focus on comparing our method with state-of-the-art

example-based methods in the quantitative analysis to avoid misinterpretation. In this

paper, we use the standard Peak Signal to Noise Ratio (PSNR) and Structural SIMilar-

ity (SSIM) [31] as the measurements. Given an m×n ground truth color image u0 and

the colorization result u, PSNR (in db) is defined as

PSNR = 10 · log10(
MAX2

I

MSE
) (8)
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Table 2: The quantitative comparisons of different algorithms using the standard PSNR and SSIM measures.

I–III are the corresponding results of methods [17, 15, 16], IV are the colorization results obtained by the

combined features, and V are the results of the proposed feature selection method. 1–13: corresponding test

images as shown in Fig. 9.

PSNR

I II III IV V

1 20.91 16.01 21.63 20.71 24.71

2 22.66 17.40 22.68 20.91 24.49

3 21.03 17.97 24.88 24.03 25.61

4 20.28 17.09 26.92 23.58 23.19

5 23.38 22.65 24.31 21.36 22.39

6 24.39 22.39 24.55 18.18 23.49

7 19.78 14.94 21.84 20.84 23.02

8 18.37 17.89 18.82 18.37 18.91

9 20.17 16.26 18.35 18.07 19.598

10 23.93 22.75 31.12 25.15 23.50

11 14.33 13.06 14.04 14.31 14.38

12 19.76 19.61 20.33 18.40 24.42

13 23.06 20.36 25.51 24.59 23.89

SSIM

I II III IV V

0.64 0.25 0.72 0.68 0.79

0.72 0.39 0.69 0.64 0.75

0.73 0.39 0.84 0.82 0.87

0.69 0.45 0.91 0.80 0.87

0.69 0.65 0.75 0.64 0.68

0.87 0.75 0.85 0.56 0.83

0.68 0.37 0.82 0.79 0.83

0.53 0.51 0.59 0.55 0.63

0.78 0.30 0.68 0.63 0.76

0.66 0.42 0.90 0.69 0.79

0.47 0.33 0.46 0.48 0.49

0.71 0.64 0.73 0.55 0.85

0.87 0.54 0.89 0.88 0.86

where MAXI is the maximum possible pixel value of the image, which is 255 (with

standard 8-bit samples). MSE is the mean squared error, which is defined as

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[u(i, j)− u0(i, j)]
2. (9)

SSIM is designed to improve on traditional methods such as PSNR and MSE for better

consistency with human visual perception. The scores for different algorithms are

shown in Table 2. The quantitive measurements are generally in line with our visual

inspection.400
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4.3. User study

However, since the standard measures are not designed for the task of image col-

orization, in some cases, visually better results may get worse scores. For example, for

the examples in 9th and 10th row of Fig. 9, the results of the proposed method appear

more natural by visual inspection, but the PSNR and SSIM scores of our method are405

lower than those of [16, 17]. Therefore, in order to make a fair comparison, we also

perform a user study to quantitatively evaluate our method against other methods.

We designed the user study following the 2AFC (Two-Alternative Forced Choice)

paradigm, which is widely used in psychological studies as it is both simple and reli-

able. 200 users participated in the user study, with ages ranging from 18 to 38. For410

each test image, every pair of results generated by the different algorithms is shown

to the user and he/she is asked to choose the one of them, that looks better. To avoid

potential bias, we randomize the order of image pairs shown to the user as well as their

left/right position. We record the total number of user preferences (clicks) for each

method, and treat these as random variables. The distribution of user preferences for415

each method is summarized in Fig. 13. Note that since each method is compared with 4

alternative methods, and 13 examples were tested, the maximum number of user pref-

erence for each method is 52. The one-way analysis of variance (ANOVA) is used to

analyze the user study results. ANOVA is designed to determine whether there exist

statistically significant differences between two or more independent groups. ANOVA420

analysis gives the p-value for the null hypothesis that the means of the groups are equal.

Smaller p-value means the groups are more significantly different.

In this paper, the p-values are computed between our method and each alterna-

tive method. The results are shown in Table 3. It is clear that all of the p-values are

very small which demonstrates the difference between our method and each alternative425

method is statistically significant, based on the user study. From Fig. 13 we can see

that majority of users prefer the method proposed in this paper (Fig. 13 V) which has

the highest mean score.
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Figure 13: Boxplots of user preferences for different methods, showing the mean (red lines), quartiles (blue

lines), and extremes (black lines) of the distributions.

Table 3: The p-values of the ANOVA tests of the proposed method against other methods based on the user

study results.

method I [17] II[15] III[16] IV (combined)

p-value 3.22e-30 2.05e-93 4.09e-38 1.43e-59

5. Conclusion

In this paper, we propose a novel approach to image colorization based on auto-430

matic feature selection. By using suitable features for local regions based on their

uniform/non-uniform characteristics, feature matching quality can be significantly im-

proved, producing visually better colorization results. To achieve this, Bayesian infer-

ence is used to estimate the label (type) of each region, and the optimization of feature

selection is effectively formulated using a two-label MRF model. We further use mul-435

tiscale voting and luminance guided image filtering to improve the consistency of the

final colorization results. By feature selection, our method is able to produce coloriza-

tion results better than individual features. However, both intensity and texture features

used are low-level features and may fail to find semantically correct matches. Our
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method can produce unsatisfactory results in case both features give wrong matches.440

To address this, as the idea of using feature selection for improved image coloriza-

tion is general, in addition to the algorithm pipeline proposed in the paper, we would

like to investigate automatic feature selection in alternative colorization frameworks

e.g. by using more robust and semantically meaningful features, as well as for other

applications such as color transfer.445
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