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Figure 1: Reconstruction results of our multi-column graph convolutional networks (MGCNs).

Abstract

In this work, we introduce multi-column graph convolutional networks (MGCNs), a deep generative model for 3D mesh surfaces
that effectively learns a non-linear facial representation. We perform spectral decomposition of meshes and apply convolutions
directly in the frequency domain. Our network architecture involves multiple columns of graph convolutional networks (GCNs),
namely large GCN (L-GCN), medium GCN (M-GCN) and small GCN (S-GCN), with different filter sizes to extract features
at different scales. L-GCN is more useful to extract large-scale features, whereas S-GCN is effective for extracting subtle and
fine-grained features, and M-GCN captures information in between. Therefore, to obtain a high-quality representation, we
propose a selective fusion method that adaptively integrates these three kinds of information. Spatially non-local relationships
are also exploited through a self-attention mechanism to further improve the representation ability in the latent vector space.
Through extensive experiments, we demonstrate the superiority of our end-to-end framework in improving the accuracy of 3D
face reconstruction. Moreover, with the help of variational inference, our model has excellent generating ability.

CCS Concepts
• Computing methodologies → Shape representations; Mesh models;
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1. Introduction

Human faces contain rich information, such as individual identity,
emotion and intention, and hence occupy a very important posi-
tion in human visual perception. 3D face reconstruction is helpful
to solve poses, expressions and missing features of faces from im-
ages, and has a wide range of applications in computer vision and
graphics, e.g., face recognition, face animation, and face tracking.
However, obtaining a precise 3D face model is challenging because
faces are highly variable, especially for non-linear changes due to
complex expressions.

3D face models are often acquired by using a 3D scanner, but
high-quality 3D scanners are expensive and complicated to operate.
Statistical 3D face models, such as the 3DMM (3D Face Morphable
Model) parametric model [BV99], provide prior knowledge of 3D
faces through statistical analysis. This means a 3D face is repre-
sented as a linear combination of 3D face basis vectors obtained
by principal component analysis (PCA) on densely arranged 3D
faces. However, the representation power of 3DMM-based meth-
ods [BV99,BMVS04] is limited not only by the size of the training
set, but also by its capability of capturing variations in different fa-
cial expressions or poses, which often violate the linear assumption
of PCA-based models. In addition, the PCA-based method is es-
sentially a low-pass filter, which fails to restore the details of faces.
With the development of deep learning, nonlinear 3D face mor-
phable models show improved representation power. From this per-
spective, the linear 3DMM representation is equivalent to a single-
layer network, whereas the deep network architecture naturally in-
creases the model capacity [TL18].

Previous works mostly tackle 3D face generation tasks in the
Euclidean domain, but meshes are naturally in the non-Euclidean
domain. Ranjan et al. [RBSB18] focused on non-Euclidean data
and introduced a versatile model that learns a non-linear represen-
tation of 3D faces using spectral convolutions on a mesh surface,
but this method cannot effectively capture multi-scale spatial infor-
mation, resulting in the learned hidden layer vector having limited
discrimination and generalization abilities.

In this paper, inspired by the work [CMS12] for image classi-
fication, we propose a novel face representation and reconstruc-
tion method with multi-column graph convolutional mesh autoen-
coders, which can achieve higher quality reconstruction. Moreover,
we propose a selective fusion module and utilize self-attention
mechanism to better fuse features of different scales. This makes
convolutions memory efficient and feasible to process high reso-
lution meshes. Experimental results demonstrate that the proposed
method provides significant improvement over the state-of-the-art
generation methods on a standard dataset. An example of recon-
struction results of our network is shown in Figure 1. Our code will
be released online.

The main contributions of this paper are summarized as follows:

• Multi-column graph convolutional networks (MGCNs). We
propose a MGCN architecture to effectively capture information
at different scales on meshes, and learn a better latent space rep-
resentation. The three columns correspond to filters with recep-
tive fields of different sizes (large, medium, small), so that the

features learned by each column graph convolution are adaptive
to large variations on face meshes such as eyes, nose and mouth.
• Selective fusion. We propose a learnable feature fusion method

on the basis of MGCNs. Combining self-attention mechanism
makes fusion more intelligent. This method further boosts poten-
tial representation of 3D faces in a low-dimensional latent space.
• Improved generation capabilities. Experimental results

demonstrate that our method achieves much better results in
terms of reconstruction errors, compared with the state of the
art. Remarkably, we can reduce reconstruction error from 0.845
to 0.390 on interpolation experiments. Simultaneously, our
model can be used in a variational setting to sample a diverse
range of face meshes from a known Gaussian distribution, as
shown in Figure 1.

2. Related Work

2.1. Face Representation

Face modeling is a challenging topic in computer vision snd graph-
ics. Most methods use statistical priors to model the structure and
expression of faces. However, facial variations are nonlinear in the
real world, e.g., the variations in different facial expressions. Ex-
isting work can be mainly divided into two categories: PCA-based
linear approaches and deep learning based nonlinear approaches.

PCA-based Linear Approaches. The earliest face parameter-
ization model 3D Morphable Model (3DMM) was proposed by
Blanz and Vetter [BV99], which is a statistical model of 3D facial
shapes and textures. The 3D faces with only neutral expressions
were captured in well-controlled conditions and obtained by laser
scanning. The widely-used Basel Face Model (BFM) [PKA∗09] is
also built with 200 subjects in only neutral expressions. Lack of
expression can be compensated for using the expression basis from
FaceWarehouse [CWZ∗13]. There are various variants of 3DMM.
Yang et al. [GGSC96] used multiple PCA models, each of which
corresponds to a kind of expression. Amberg et al. [AW92] com-
bined the neutral shape PCA model with the PCA model of ex-
pression residuals obtained from neutral shapes. A similar model
with an albedo model was proposed in the Face2Face framework
[WJV∗04]. Tena et al. [TDLTM14] presented a linear face mod-
eling approach that better generalizes to unseen data than tradi-
tional holistic approaches and also allows click-and-drag interac-
tion for animation. Wu et al. [WBGB16] combined an anatomical
subspace with a local patch-based deformation subspace to realisti-
cally model the facial performance of three actors. But their method
uses personalized subspaces to capture shape details and therefore
is not applicable to arbitrary target subjects.

Nonlinear 3D Face Models. Recently, some work proposed to
embed 3D face shapes by nonlinear parametric models with the
power of deep learning methods. Conventional 3DMM is learned
from a set of well-controlled 2D face images with associated 3D
face scans, and represented by two sets of PCA basis functions.
Due to the type and amount of training data, as well as the lin-
ear bases, the representation power of 3DMM is limited. To ad-
dress these problems, Tran and Liu [TL18] proposed an innovative
framework to learn a nonlinear 3DMM model from a large set of
unconstrained face images, without collecting 3D face scans. Feng
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et al. [FWS∗18] proposed a straightforward method that simultane-
ously reconstructs the 3D facial structure and provides dense align-
ment. Tan et al. [TGLX18] represented facial expressions with deep
learning, but their method uses fully connected layers, rather than
convolutions in the mesh domain.

2.2. Graph Convolution Networks

Recent work about convolution on graphs can be categorized
into spectral approaches and non-spectral approaches. Spectral ap-
proaches adopt a spectral representation of graphs that relies on the
eigen-decomposition of their Laplacian matrices [KW17,DBV16].
The corresponding eigenvectors are regarded as the Fourier basis in
the harmonic analysis of spectral graph theory, and then the spectral
convolution is defined as the element-wise product of two signals’
Fourier transforms on the graph [BZSL14]. However, as spectral
approaches are associated with their corresponding Laplacian ma-
trix, a spectral CNN model learned on one graph cannot be directly
transferred to a different graph, as it usually has a different Lapla-
cian matrix, and special treatment is required [YSGG17].

Non-spectral approaches aim to define convolutions directly on
a graph with local neighbors in a spatial or manifold domain.
The key for non-spectral approaches is to define a set of shared
weights applied to the neighbors of each vertex [AT16]. Duve-
naud et al. [DMAI∗15] computed a weight matrix for each vertex
and multiplied it to the neighbors, followed by a sum operation.
Inductive representation learning on graphs [HYL17] introduced
an inductive framework by applying a specific aggregator over the
neighbors, such as the max/mean operator or a recurrent neural net-
work (RNN).

However, these graph convolution networks are not directly ap-
plicable to 3D meshes. CoMA [RBSB18] used truncated Cheby-
shev polynomials [DBV16] for mesh convolutions, but it is difficult
to capture features of all different scales. To address these prob-
lems, in this work, we propose a novel multi-column graph con-
volutional network (MGCN) inspired by microcolumns of neurons
in the cerebral cortex, in which we combine several graph convo-
lutional columns to form a MGCN. Each column involves a graph
convolutional neural network with mesh-based down-sampling and
up-sampling layers to extract features with receptive fields of dif-
ferent sizes. We also exploit self-attention mechanism to capture
non-local relationships. Overall, we obtain a complete mesh au-
toencoder structure to represent highly complex 3D faces, which
outperforms existing state of the art.

3. Methodology

This section describes the framework and the details of our pro-
posed method. Firstly, we define a 3D face representation which
uses convolutional layers with graph convolution operators to rep-
resent faces (Section 3.1). Then, we elaborate the network architec-
ture and the loss function designed specially for minimizing errors
(Section 3.2). Finally, we give variational autoencoder formulation
that has generation capabilities (Section 3.3).

3.1. Overview

3D Face Representation. Given a collection of 3D face meshes,
we aim to obtain generated faces from the model. We represent a
facial surface as a set of vertices V and edges E . |V|= n vertices lie
in 3D Euclidean space, so the coordinates of all the vertices form
a matrix V ∈ Rn×3. The edges are represented using an adjacency
matrix A ∈ {0,1}n×n where ai j = 1 denotes an edge connection
between vertices vi and v j, and ai j = 0 otherwise. An embedding
M= (V,A) is realized by assigning 3D coordinates to the vertices
V , which is encoded as an n× 3 matrix V containing the vertex
coordinates as rows.M = (V,A) is the input of network, and the
network uses an encoder-decoder architecture to generate a new
meshM′ = (V′,A′) which can be expressed as a new sample.

Graph Convolution Networks. In order to deal with this non-
Euclidean data, we use graph convolution [DBV16] for feature
learning. We first provide some background about this convolution.
The Laplacian operator is discretized (using the distance-based
equivalent of the cotangent formula [JSH12]) as an n× n matrix
L = D−A, where the diagonal matrix D represents the degree of
each vertex in V as dii = ∑ j ai j. The Laplacian is diagonalized by
the Fourier basis U ∈ Rn×n (since L is a real symmetric matrix) as
L = UΛUT , where the columns of U = [u0,u1, . . . ,un−1] are the
orthogonal eigenvectors of L, and Λ = diag([λ0,λ1, . . . ,λn−1]) ∈
Rn×n is a diagonal matrix with the associated real, non-negative
eigenvalues. The graph Fourier transform [Chu96] of the mesh ver-
tices V ∈ Rn×3 is then defined as Vω = UT V, and the inverse
Fourier transform as V = UVω.

Graph convolution is defined in the graph Fourier trans-
form domain, which contains eigenvectors U of Laplacian ma-
trix L. The convolution in Fourier space is defined as x ∗ y =

U
((

UT x
)
⊗
(

UT y
))

, where ⊗ is the element-wise Hadamard

product. It follows that a signal x is filtered by gθ as y= gθ(L)x. An
efficient way to compute the spectral convolution is to parametrize
gθ as a Chebyshev polynomial of order K, given input x ∈ Rn×Fin :

y j =
Fin

∑
i=1

K−1

∑
k=0

θ
k
i, jTk(L̃)xi, (1)

where y j is the j-th feature of y ∈ Rn×Fout , L̃ = 2L/λmax− In is
a scaled Laplacian matrix. In is the n× n unit matrix. λmax is the
maximum eigenvalue. Tk is the Chebyshev polynomial of order K
and can be computed recursively as Tk(x) = 2xTk−1(x)−Tk−2(x),
T0 = 1 and T1 = x. Each convolution layer has Fin×Fout vectors of
Chebyshev coefficients, θi, j ∈ Rk, as trainable parameters.

3.2. Multi-column Graph Convolution Networks

The overall structure of our MGCN is illustrated in Figure 2. Our
autoencoder consists of an encoder and a decoder. The detailed
structures of the encoder and decoder are shown in Table 1 and
Table 2, respectively. The encoder contains three parallel GCNs
whose filters are with local receptive fields of different sizes. Each
parallel GCN consists of 4 Chebyshev convolutional filters with
K Chebyshev polynomials. Each of the convolutions is followed
by a biased ReLU [GBB11]. The down-sampling layers, similar
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Figure 2: Overview of our pipeline: 1) A multi-column GCN, including L-GCN, M-GCN, and S-GCN, 2) Selective fusion for feature fusion
from different column graph convolutions, 3) Self-attention mechanism to explore local features across spatial dimensions to improve the
representation ability of deep models, 4) Variational loss with latent vector.

to [RBSB18], are interleaved between convolutional layers. Each
down-sampling rate is approximately 1/4. The encoder transforms
the face mesh from Rn×3 to a 64 dimensional latent vector using a
fully connected layer at the end. The decoder is a mirrored struc-
ture of the encoder. We concatenate a selective fusion unit after
the parallel structure, where the extracted features are selectively
blended. Moreover, we explore local features across spatial dimen-
sions to improve the representation ability of deep models through
self-attention mechanism.

Multi-column Architecture. Due to the characteristics of 3D
graph structure data, sample data usually contains features of dif-
ferent sizes, hence filters with receptive fields of the same size are
unlikely to capture characteristics of a graph at different scales. It
is more natural to use filters with different sizes of local receptive
field to learn the characteristics of graph structure data. Therefore,
how to measure the receptive field in graph convolution is the key
problem to determine network performance. We rethink the pro-
cess of graph convolution: different K values represent the range
of nodes involved in the convolution process of graphs, and hence
can control the convolution range of graphs. The larger the range
of graphs is, the larger the scope in the original mesh space is, sim-
ilar to the size of different receptive fields in 2D convolution by
selecting different ranges.

In our MGCN, for each column, we use the filters of different
sizes to extract features of different scales. For instance, filters with
larger receptive fields (i.e., larger K) are more useful for extract-
ing large-scale features, while filters with smaller receptive fields
are more useful for extracting subtle and fine features. We divide
the multi-column structure into three types: large graph convolu-
tion network (L-GCN), medium graph convolution network (M-
GCN), and small graph convolution network (S-GCN), which are
sufficient in practice, although more or fewer columns may also be
used. This approach can also be seen as multi-scale decomposition.
We further propose a selective fusion method to integrate them.

Selective Fusion. After multi-scale convolution, we can obtain
three feature maps for the input, denoted as ZGCNi (i = 1,2,3 for L-

GCN, M-GCN and S-GCN, respectively) containing feature infor-
mation of different scales. How to integrate them effectively is the
key to improve the performance of the whole network. The simplest
way is to directly concatenate them, but the contribution of feature
information to the whole is not equal at each scale. Therefore, we
propose a selective fusion method to automatically learn fusion pa-
rameters. We multiply each feature map by a learnable parameter
wi and constrain their sum to one:

Z =
3

∑
i=1

wiZGCNi , s.t.
3

∑
i=1

wi = 1, (2)

where wi is the learnable parameter corresponding to the weight
of the i-th column, and ZGCNi is the feature map for the column.
wi can be seen as the importance of features at different scales.
These weights are optimized during training, which determine the
importance of different scales to help generate better latent vectors.

Self-Attention. Discriminant feature representations are essential
for feature embedding, which could be obtained by capturing long-
range contextual information. The C-dimensional latent vector Z
can be viewed as a feature map of size C× 1. The attention mod-
ule encodes a wider range of contextual information into local fea-
tures, and thus enhances their representation capability. Following
the self-attention operation in Figure 3, we use a generic module in
deep neural network as:

Oi =
1
N ∑
∀i

h
(
Ai,B j

)
t
(
Z j

)
+Zi, (3)

where N is a normalization term (defined later), Z is the local fea-
ture map from the embedding module and O ∈ RC×1 is the output
with the same size as Z. We generate two new feature maps A and
B from Z by different 1× 1 convolutions, where {A, B} ∈ RC×1.
Ai and B j are local features at different positions. Define h as a
function to compute a score which represents pairwise relationship.
We use a Gaussion function with softmax for the pairwise function
h [WGGH18]:

h
(
Ai, B j

)
= exp

(
Ai ·B j

)
. (4)
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After that we can get the attention map h
(
Ai,B j

)
∈ RC×C. The

funciton t in Eq. (3) is a scale function implemented by a 1× 1
operator, and hence t

(
Z j

)
computes a representation of input Z at

the position j. Then we perform a matrix multiplication between
the attention map and t

(
Z j

)
, and the result belongs to RC×1. It can

be inferred that the resulting feature at each position is a weighted
sum of the features at all positions and original features. The nor-
malization term N in equation 5 is defined as

N = ∑
∀ j

h
(
Ai,B j

)
. (5)

We also add residual connection [HZRS16] for the self-attention
block to make it more efficient. This block learns to efficiently find
global, long-range dependencies within internal representations of
feature maps. Through self-attention, we can better explore latent
vector generative capabilities on the basis of MGCNs.

Table 1: Encoder Architecture.

Layer Input size Output size

Convolution 5023×3 5023×16
Down-Sampling 5023×16 1256×16
Convolution 1256×16 1256×16
Down-Sampling 1256×16 314×16
Convolution 314×16 314×16
Down-Sampling 314×16 79×16
Convolution 79×16 79×32
Down-Sampling 79×32 20×32
Fully Connected 20×32 64

Table 2: Decoder Architecture.

Layer Input size Output size

Fully Connected 64 20×32
Up-Sampling 20×32 79×32
Convolution 79×32 79×32
Up-Sampling 79×32 314×32
Convolution 314×32 314×16
Up-Sampling 314×16 1256×16
Convolution 1256×16 1256×16
Up-Sampling 1256×16 5023×16
Convolution 5023×16 5023×3

Loss Function. In our multi-column graph convolutional network,
we use the per-vertex Euclidean distance between the predicted
mesh and the ground-truth mesh to represent the reconstruction er-
ror because we find that better convergence can be obtained with
this loss in our problem. It is defined as

l = ‖M−D(Z)‖2. (6)

whereM is the original mesh, D(·) is the decoder, and Z is the la-
tent representation of face meshM. The goal of our loss function
is to make the reconstructed shape as close as possible to the in-
put. The loss function is optimized via batch-based stochastic gra-
dient descent and back-propagation, typically for training neural
networks.

M
atM

ul

Softm
ax M
atM

ul

Input

Add

Figure 3: Self-attention mechanism

3.3. Variational Mesh Autoencoder

Generative models have made great progress in recent years. The
variational auto-encoder (VAE) is a recently introduced latent vari-
able generative model, which combines variational inference with
deep learning. However VAEs are mostly applied directly to 2D im-
ages. Traditional methods [HKM15] use probabilistic inference for
3D model generation (synthesis), but they are only suitable for spe-
cific 3D shapes. Our model not only has excellent reconstruction
results but also has the ability to generate new shapes. Different
from previous generative models, our model uses a MGCN with
self-attention mechanism to better model high resolution details.

We draw on the ideas of VAE. VAE modifies the conventional
auto-encoder framework in two key ways. First, a deterministic in-
ternal representation Z (provided by the encoder) of an input X is
replaced with a posterior distribution q(Z|X). Inputs are then re-
constructed by sampling Z from this posterior and passing them
through a decoder. To make sampling easy, the posterior distribu-
tion is usually parametrized by a Gaussian with its mean and vari-
ance predicted by the encoder. Second, to ensure that the model
can sample from any point of the latent space and still generate
valid and diverse outputs, the posterior q(Z|X) is regularized with
its KL divergence from a prior distribution p(Z).

Although 3D faces can be sampled from our convolutional mesh
autoencoder, the distribution of the latent space is not known.
Therefore, sampling requires a mesh to be encoded in that space. In
order to constrain the distribution to normal distribution of the la-
tent space, we add a variational loss to our model. So we minimize
the loss:

l = ‖M−D(Z)‖2 +wkldKL(N (0,1)‖q(Z|M)), (7)

where Z is the latent representation of faceM, and wkld = 0.001 is
the weight of the KL divergence loss. The first term minimizes the
`2 reconstruction error, and the second term enforces a unit Gaus-
sian priorN (0,1) with zero mean on the distribution of latent vec-
tors q(Z). This enforces the latent space to be a multivariate Gaus-
sian.

4. Experimental Results

In this section, we first evaluate the performance of our MGCNs in
Section 4.1 which is compared with state-of-the-art methods, and
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Table 3: Interpolation comparison. Errors are in millimeters.

Ours CoMA [RBSB18] PCA

Mean Error 0.390 ± 0.358 0.845±0.994 1.639±1.638
Median Error 0.383 0.496 1.101

Table 4: Extrapolation comparison. Errors are in millimeters.

Ours CoMA [RBSB18] PCA FLAME [LBB∗17a]
Sequence Mean Error Median Error Mean Error Median Error Mean Error Median Error Mean Error Median Error

bareteeth 1.080 ± 1.241 0.638 1.376 ± 1.536 0.856 1.954 ± 1.888 1.335 2.002 ± 1.456 1.606
cheeks in 0.866 ± 1.031 0.514 1.288 ± 1.501 0.794 1.854 ± 1.906 1.179 2.011 ± 1.468 1.609
eyebrow 0.802 ± 0.837 0.506 1.053 ± 1.088 0.706 1.609 ± 1.535 1.090 1.862 ± 1.342 1.561
high smile 1.055 ± 1.235 0.634 1.205 ± 1.252 0.772 1.841 ± 1.831 1.246 1.960 ± 1.370 1.625
lips back 0.841 ± 1.004 0.484 1.193 ± 1.476 0.708 1.842 ± 1.947 1.198 2.047 ± 1.485 1.639
lips up 0.829 ± 0.962 0.479 1.081 ± 1.192 0.656 1.788 ± 1.764 1.216 1.983 ± 1.427 1.616
mouth down 0.870 ± 0.977 0.539 1.050 ± 1.183 0.654 1.618 ± 1.594 1.105 2.029 ± 1.454 1.651
mouth extreme 1.165 ± 1.461 0.686 1.336 ± 1.820 0.738 2.011 ± 2.405 1.224 2.028 ± 1.464 1.613
mouth middle 0.847 ± 0.984 0.497 1.017 ± 1.192 0.610 1.697 ± 1.715 1.133 1.043 ± 1.496 1.620
mouth open 0.778 ± 0.967 0.453 0.961 ± 1.127 0.583 1.612 ± 1.728 1.060 1.894 ± 1.422 1.544
mouth side 1.008 ± 1.342 0.567 1.264 ± 1.611 0.730 1.894 ± 2.274 1.132 2.090 ± 1.510 1.695
mouth up 0.836 ± 0.931 0.500 1.097 ± 1.212 0.683 1.710 ± 1.680 1.159 2.067 ± 1.485 1.680

(a) (b)
Figure 4: Cumulative Euclidean error histograms using CoMA and our MGCNs for Interpolation (a) and Extrapolation (b) experiments.

then perform an ablation study to analyze the effect of different
components of our approach and the sensitivity of parameters in
Section 4.2. Finally, we show a diverse range of face meshes sam-
pled from the latent space to verify the generation ability of our
network in Section 4.3.

Dataset. We use the CoMA dataset [RBSB18] to perform var-
ious ablation and comparison experiments. This dataset contains
20,466 3D meshes, each of which has about 120,000 vertices, and
captures 3D sequences of 12 subjects of different age groups, each
of whom performs 12 different expressions. These expressions are
chosen such that they are extreme, causing a lot of facial tissue de-
formation. These expressions are not only complex, but also asym-
metric, so the task of reconstruction is a challenge. Moreover, none
of these expressions are correlated with each other. The expres-
sion sequences in our dataset are bareteeth, cheeks in, eyebrow,
high smile, lips back, lips up, mouth down, mouth extreme, mouth
middle, mouth open, mouth side and mouth up. The data is pre-
processed using a sequential mesh registration method [LBB∗17b]
to reduce the dimensionality to 5023 vertices.

Implementation Details. We utilize the deep learning frame-

work Keras with Tensorflow [ABC∗16] backend to implement
MGCNs and use NVIDIA GeForce GTX 1080 Ti GPU to complete
all experiments. We train our method for 400 epochs with a learn-
ing rate of 1e-4 and a learning rate decay of 0.99 every epoch. We
use stochastic gradient descent (SGD) with a momentum of 0.9,
which optimizes the loss function between the output mesh and
the ground-truth mesh. We use `2 regularization on the weights of
the network with weight decay of 5e-4. For network architecture,
we set latent dimension as 64, and S-GCN, M-GCN and L-GCN
use Chebyshev filtering with K = 2,6,10, respectively. We have
four graph convolution layers for each column, and the number of
channels corresponding to them are 16, 32, 64, 64, respectively.
Each convolution is followed by a batch normalization [IS15] and
ReLU [NH10] activation function.

Evaluation Metrics. To evaluate the performance of the pro-
posed method, we adopt two mainstream evaluation metrics: Eu-
clidean distance mean error with standard deviation, and median
error. The mean error in term of Euclidean distance e between re-
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Figure 5: Qualitative results for the interpolation experiment.

constructed meshM′ and original meshM is defined as:

e
(
M,M′

)
=

1
n

n

∑
i=1

∥∥vi−v′i
∥∥

2 . (8)

The median error is defined as the median value of Euclidean errors
of all vertices.

4.1. Comparison

Interpolation Experiment. In order to evaluate the face re-
construction capability of the proposed method, we compare our
method with CoMA [RBSB18] that introduces a convolutional
mesh autoencoder consisting of mesh downsampling and mesh up-
sampling layers with fast localized convolutional filters defined on
the mesh surface, as well as baseline PCA method. We evaluate the
compared methods using the corresponding released code and pa-
rameters to ensure their performance. Moreover, we divide the full
dataset into a training set and a test set with a ratio of 9:1. The mean
error and standard deviation for per-vertex Euclidean distance on
the test set are given in Table 3. We observe that the error value
of our reconstruction result is 53.8% lower than CoMA. Figure 4a
is the cumulative Euclidean error histogram, showing the propor-
tion of vertices (y-axis) within given error bounds (x-axis). For a
1 mm accuracy bound, our MGCN captures 81.1% of the vertices
while the CoMA model [RBSB18] only captures 72.3%. Visual in-
spection of the qualitative results in Figure 5 shows that our recon-
structed meshes are more realistic and reasonable.

Extrapolation Experiment. In order to measure the generaliza-
tion ability of the model, in addition to CoMA, we further compare
the proposed method with two competitive models: PCA [BV99]
and FLAME [LBB∗17a] in Table 4. For comparison, we train the
expression model of FLAME on the CoMA dataset [RBSB18]. The
FLAME reconstructions are obtained with latent vector size of 64.
The latent vectors encoded using the PCA model and our mesh
autoencoder are also of size 64, for fair comparison. We compare
the performance using the mean, standard deviation, and median
of Euclidean distance errors. We perform 12 fold cross validation,
one for each expression. For each experiment, we split the CoMA
dataset [RBSB18] according to a certain expression. The dataset
is then divided into unseen data (faces of the selected expression)
and seen data (faces of remaining expressions). As shown in Ta-
ble 4, our model performs better than the state-of-the-art methods
on all expression sequences. Figure 6 shows visual inspection of
the qualitative results. The cumulative Euclidean error histogram
is shown in Figure 4b. For a 1 mm accuracy bound, our MGCN
captures 75.8% of the vertices, which is better than 61.2% of the
CoMA method.

4.2. Ablation Study

We study the effect of each component which may affect exper-
imental results in our approach on the CoMA dataset [RBSB18].
All the results are obtained over the input size of 5023×3.
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Table 5: The performances of different variants of our method. w/
means with.

Method Mean Error Std

Single-Column 0.875 0.613
Single-Column w/ attention 0.673 0.669
Multi-Column 0.571 0.632
Multi-Column w/ attention 0.523 0.523
Multi-Column w/ fusion 0.372 0.477
Multi-Column w/ attention + fusion 0.297 0.348

Component Module Analysis. In this section, we perform an
ablation study to analyze the effect of different components of
our approach. In our method, we have three novel designs in-
cluding multi-column graph convolution, selective fusion and self-
attention, which greatly improve the representation ability of our
method. To investigate the effectiveness of these three designs, Ta-
ble 5 presents the performances of different variants of our learning
method. From Table 5, it can be observed that multi-column graph
convolution structure is consistently better than single-column
graph convolution structure. Self-attention plays a role in both
structures to improve the network’s performance, which attributes
to its ability to extract non-local relations in the latent vector. This
kind of non-local relation is essential in generating tasks to ob-
tain more detailed results. It should be emphasized that the selec-
tive fusion component improves the network greatly in the multi-
column structure, reducing error by nearly 0.2, which proves that
our proposed fusion method is very effective. Overall, the combina-
tion of multi-column graph convolution structure, selective fusion
and self-attention achieves satisfactory results in 3D face generat-
ing tasks.

To explore how different scales of convolution affect network
performance, we decode each column separately. As shown in Ta-
ble 6, we decode feature maps of different convolution kernel sizes,
including 2, 4, 6, 8, 10, 12, respectively. It can be seen that convo-
lution kernels which are either too large or too small do not work
well. Although moderate sized convolution kernels show good per-
formance, there is still a big gap with the result of multi-column
convolution (shown in Table 5).

We further compare multi-column GCNs with different numbers
of layers in Table 7 to study how the network complexity affects
the performance. We can see that, the 4-layer architecture we used
achieves the best performance. The network may not have enough
learning capability if the number of layers is too small, and over-
fitting becomes an issue when the number of layers is too large,
leading to worse performance on the test set.

Sensitivity Analysis. In particular, for multi-column structure,
we further verify whether different K choices have an impact on
the robustness of the network through sensitivity analysis of pa-
rameters. Then, we select the best K for all our experiments. From
Table 8, we can find that various filter parameters for the multi-
column structure are consistently better than the single-column ver-
sion (shown in Table 5). And the optimal parameters are 2,6,10. It
is observed that if the difference between K values of each column
is too large or too small, it will not produce the best performance.

We believe that the appropriate K values should be in line with the
relative stability and increment (from S-GCN to L-GCN), so that
the network can capture information of different scales to achieve
the best performance. For the case of same values for K1, K2, and
K3, the improvement of the network is not significant, because each
column captures information of the same scale.

Table 6: The performances of single column with different filter
size K.

K 2 4 6 8 10 12

Mean Error 1.070 0.988 0.900 0.947 0.875 0.993
Std 0.528 0.669 0.441 0.794 0.613 0.284

Table 7: The performances of proposed multi-column GCN with
different network depths.

Depth 2 3 4 5 6

Mean Error 0.544 0.319 0.297 0.439 0.542
Std 0.297 0.512 0.348 0.231 0.406

Table 8: Sensitivity analysis for different filter size K.

(K1, K2, K3) Mean Error Std

(1, 2, 3) 0.309 0.371
(2, 4, 6) 0.302 0.366
(2, 8, 14) 0.300 0.361
(6, 6, 6) 0.632 0.685
(2, 6, 10) 0.297 0.348

4.3. Sampling the Latent Space

To verify the generating ability of MGCNs when combined with
variational loss, we can control the size of the elements in the hid-
den vector, so that the decoder has the ability of generation and
generates more discriminant samples. Figure 7 demonstrates the di-
versity of face meshes sampled from the latent space. Let E be the
encoder and D be the decoder. We first encode a face mesh from
our test set in the latent space to obtain a feature vector Z = E(F).
Then, we vary each component of the latent vector as Z̃i = Zi + ε.
Finally, we use the decoder to transform the latent vector into a
reconstructed mesh F̃ = D(Z̃). Here, we extend or contract the
latent vector along different dimensions by a factor of 0.3, i.e.,
Z̃i = (1+0.3 j)Zi, where j ∈ [−4,4] is the step, and the mean face
F0 is shown in the middle of each row.

5. Conclusions

In this paper, we propose multi-column graph convolution networks
(MGCNs) for 3D face representation, reconstruction and genera-
tion. A MGCN contains three different kinds of convolutions, i.e.,
large graph convolution network (L-GCN), middle graph convolu-
tion network (M-GCN), and small graph convolution network (S-
GCN) to capture different scales of features. Moreover, we propose
a selective fusion module and utilize self-attention mechanism to
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better integrate features of different scales. The interpolation and
extrapolation experiments demonstrate that the proposed method is
more robust and provides significant improvement over the state-
of-the-art methods on a standard dataset. Our current approach re-
stricts fusion at the feature vector level. We will investigate more
detailed selective fusion where each feature dimension has its own
weights in the future. Since our method does not explicitly use
face-specific domain knowledge, our method is not restricted to 3D
faces. In the future, we will extend the proposed method to the 3D
human body generation task.
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Figure 6: Qualitative results for the extrapolation experiment.
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Figure 7: Sampling from the latent space of the mesh autoencoder around the mean face j = 0 along 3 different components.
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