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Abstract With the rapid development of computing technology, three-dimensional (3D) human body models and their

dynamic motions are widely used in the digital entertainment industry. Human performance mainly involves human body

shapes and motions. Key research problems in human performance animation include how to capture and analyze static

geometric appearance and dynamic movement of human bodies, and how to simulate human body motions with physical

effects. In this survey, according to the main research directions of human body performance capture and animation, we

summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis,

as well as physics-based motion simulation, and further discuss future research problems and directions. We hope this will

be helpful for readers to have a comprehensive understanding of human performance capture and animation.

Keywords human surface reconstruction, body motion capture, motion synthesis, physics-based motion simulation

1 Introduction

Ever since the Renaissance, precise modeling of hu-

man bodies has become an important subject explored

by both scientists and artists alike. Da Vinci’s drawing

Vitruvius Man sketches the ideal proportion of a man

who lived in Italy in the 15th century. Michelangelo’s

sculpture David accurately portrays the Jewish hero

David King. In modern times, with the rapid develo-

pment of computing technology, the reconstruction and

the synthesis of human appearance and motion play an

important role in film production, animation, digital

entertainment and other industries.

A major goal of human performance capture and an-

imation is to reconstruct and simulate realistic human

behaviors, which benefits many downstream applica-

tions. For example, this will help enhance the sense

of immersion for virtual reality. However, it is a chal-

lenging problem, because human performance includes

diverse shapes (due to the variation of individuals and

poses) and complex motions. Moreover, a well-known

psychological observation known as “uncanny valley”

states that high-standard realism is required for human

bodies to be perceived as real. To capture the perfor-

mance accurately, a series of devices have been deve-

loped. For example, laser scanners are used to capture

and reconstruct the geometry of human shape, and op-

tical sensor based motion capture equipment such as

VICON is used to track human motions.
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In the virtual digital world, shape and motion are

the two major aspects essential to characterize a human

body. The shape of a human body is typically repre-

sented as a 3-dimensional (3D) mesh and the motion

is usually represented by a deforming skeleton. One

way of obtaining digital representation of dynamic hu-

man bodies is to capture them in real world. The re-

search topics include human shape reconstruction and

motion capture. This can often be expensive and time-

consuming, thereby an alternative approach consid-

ers reusing captured motion data to synthesize new

motions by analyzing existing motions, to satisfy di-

verse environmental constraints. The motion of humans

obeys physical laws, and thus another direction of mo-

tion synthesis is by simulation. In order to simulate

realistic human motions, significant research effort has

been put on physics-based human body simulation in-

cluding forward dynamics and inverse dynamics.

In the following, we first overview research on hu-

man surface reconstruction, and body motion capture

and synthesis in Section 2 and Section 3, respectively.

In Section 4, we summarize methods in physics-based

shape deformation for human motion modeling. And

finally in Section 5, we draw conclusions of this survey.

2 Human Body Surface Reconstruction

Human body modeling refers to building a mathe-

matical model for a human body, which is suitable for

computer representation and processing. Human body

modeling is the basis of handling, operation and anal-

ysis of the virtual human body in the digital environ-

ment. Obtaining high-quality geometric models is often

the first step towards realistic animation.

Existing methods for human body modeling can be

divided into two categories: modeling without prior

data, which reconstructs human models from acquired

raw 3D data (including Kinect-type depth images, and

depth images obtained from structured light scanning,

laser scanning, LiDAR scanning, etc.), and modeling

based on prior data, which uses human body databases

as prior knowledge in the form of embedded skeletons,

template models, parametric models, etc.

2.1 Human Body Modeling from Raw 3D Data

Different 3D data acquisition techniques can be used

to obtain raw 3D data for human body modeling. In

the following, we will discuss four typical acquisition

techniques, namely laser scanning, photometric stereo,

using standard video input, and using depth cameras.

The data obtained using each technique has its unique

characteristics, leading to the needs of developing diffe-

rent human body modeling techniques.

2.1.1 Human Body Modeling by 3D Laser Scanning

3D laser scanning technology is characterized by its

capability of capturing 3D data with a high precision.

When applied to 3D human body modeling, it can be

used to build 3D models of high accuracy.

The 3D laser scanning technology is relatively ma-

ture and widely applied. It plays an important role in

building 3D human body datasets for those methods

exploiting prior knowledge (see Subsection 2.2). For

example, the CAESER (Civilian American and Euro-

pean Surface Anthropometry Resource) project[1] uti-

lizes the Cyberware WB4 laser scanner produced by the

Cyberware Inc. in America to collect American human

body data. Meanwhile, it utilizes Vitronic laser scanner

manufactured by German company Vitronic to obtain

European human body data.

Wang et al.[2] utilized unorganized point cloud data

collected by a 3D laser scanner to reconstruct human

body models. By exploiting human body structure and

semantic features, their method is able to reconstruct

human body models with high topological fidelity and

fine details.

Although 3D laser scanners have the advantages of

high precision, they also have drawbacks such as being

expensive, large and sensitive to calibration errors.

2.1.2 Human Body Modeling Using Photometric

Stereo

Photometric stereoscopic modeling is a classic prob-

lem in computer vision, which was first proposed by

Woodham[3]. Photometric stereo is a branch of SfS

(Shape from Shading) method. The major difference

from standard SfS is that photometric methods use

multiple images to restore the 3D structure of the ob-

ject’s surface. An important research direction is to

combine photometric stereo with other techniques, such

as optical flow, stereo matching. Vlasic et al.[4] utilized

a multi-view video taken at a light stage to capture the

detailed geometry of a moving human body using the

photometric stereo method. All of the methods above

require specific light sources to work, which is a ma-

jor limitation. To address this, Wu et al.[5] proposed a

general method to estimate high-quality surface details

in uncontrolled lighting conditions by analyzing multi-

view video sequences captured in a common environ-
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ment, along with spatio-temporal maximum a posteri-

ori (MAP) probability inference.

Existing methods which can be approximated us-

ing a Lambertian surface reflection model either require

highly controlled capture environments, or assume the

shape to be reconstructed. Further research with more

general reflection models in less controlled environ-

ments is needed to expand its practical use and improve

the reconstruction quality for general non-Lambertian

surfaces.

2.1.3 Human Body Modeling Using Video

Traditional 3D scanning technology (such as laser

scanning) requires complex equipment and is very

time consuming. Consumer-level 3D sensors (such as

Kinect) provide a low-cost alternative. However, the

quality of generated data is substantially compromised

for outdoor scenes. In essence, this is because such sen-

sors use an active scanning technology, which is easily

disturbed by the outdoor light. On the contrary, video-

based methods are passive: they only need a normal

video camera and are suitable for the outdoor recon-

struction of human bodies. Moreover, such methods

are flexible and have lower requirements for the scan-

ning environments compared with depth cameras; thus

in recent years human body reconstruction based on

video or image sequences has become a popular research

topic.

Stoll et al.[6] presented a comprehensive approach to

reconstructing human models in a video, which includes

a physics-based garment model that enables real-time

rendering of high-quality human body models in the

video. Recently, Zhu et al.[7] proposed to use a single

ordinary camera in the outdoor environment to shoot

videos for human reconstruction which is easy to de-

ploy. However, the method cannot cope with large-scale

motions, and relies on the success of SfM (Structure

from Motion) and multi-view segmentation algorithms

to work effectively.

Reconstruction of dynamic 3D humans from 2D

video is an inherently ill-posed problem. Despite the

significant progress, it still remains challenging to cap-

ture detailed geometry and complex motions, and is

thus worth further research.

2.1.4 Human Body Modeling Using Depth Cameras

Since 2009, the research in the reconstruction of hu-

man body has made great progress with the advent

of depth cameras (e.g., Kinect). Compared with tradi-

tional 3D scanners, it is not only much cheaper but also

capable of capturing dynamic color and depth (RGB-

D) data. The emergence of Kinect in the field of com-

puter graphics and computer vision research is a re-

markable achievement, making it possible to develop

cheap and rapid methods to acquire 3D point clouds.

However, Kinect-type depth cameras also have disad-

vantages. First, the data captured is often incomplete

and noisy. Second, the resolution of captured images is

not high enough. Finally, the range that a Kinect can

scan is limited. Thus a lot of research has been carried

out to address them in order to obtain satisfactory 3D

reconstruction.

Reconstruction with a Single Kinect. Single Kinect

based systems are easy to set up. However, depth im-

ages captured by a single Kinect are of low quality. To

address this problem, several methods have been pro-

posed. Newcombe et al.[8] proposed a system named

KinectFusion that can acquire complex models accu-

rately in real time with only a single Kinect. The basic

idea is to merge depth data from multiple views auto-

matically to reconstruct a high quality model. Never-

theless, it is only able to scan static human bodies since

it does not adopt non-rigid registration. To make single

Kinect systems more user friendly, Li et al.[9] proposed

a modeling method that lets ordinary people acquire

their self-portraits with a single Kinect. This method

does not need a turntable or calibration, thereby it is

easier to set up. However, it requires the subject to

be in the same pose after turning. Moreover, since the

rotating motor of Kinect is required in the system, this

method is not applicable to those depth cameras with-

out a rotating motor.

Recent work considers reconstructing dynamic hu-

man bodies using a single Kinect. Newcombe et al.[10]

proposed a real-time system called DynamicFusion to

reconstruct and track non-rigid scenes. This system is

mainly used for non-rigid reconstruction from local per-

spectives. For dynamic motions that are fast moving

or form closed loops, since the method registers point

cloud sequences frame by frame, error accumulation can

lead to the drifting problem. Dou et al.[11] addressed

the drifting problem by error dispersion, and adopted

cluster adjustment to improve the reconstruction re-

sults of error dispersion.

Reconstruction with Multiple Kinects. With a sin-

gle Kinect, it can only capture RGB-D data from a

single viewpoint at a specific time, which unavoidably

has the occlusion problem. When a sequence of scans

are taken, even if the subject is trying to stand still,

some minor movement is often unavoidable. As a re-
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sult, non-rigid alignment is usually needed to capture

high-quality human bodies. To capture the full human

body, the Kinect sensor also needs to be sufficiently far

away from the subject, resulting in a low depth resolu-

tion. To address such limitations, systems with multi-

ple Kinects have been developed.

However, multi-Kinect systems also have problems:

as an active acquisition technique, Kinects interfere

with each other in the overlapping areas when several

Kinects are active simultaneously, and they often in-

volve more complicated setup and calibration. To ac-

quire satisfactory results through multiple Kinects, re-

search studies have been done to address such prob-

lems. Butler et al.[12] developed a simple and effective

method to reduce interference among Kinects by me-

chanical augmentation, i.e., using vibration motors to

blur the infrared patterns. Alternatively, Tong et al.[13]

proposed a scanning system (see Fig.1) to capture static

human body using three Kinects and a turntable. To

avoid interference, they used two Kinects to scan the

upper and the lower parts of frontal human body re-

spectively and the third Kinect to scan the middle part

of human body from behind, which avoids overlaps be-

tween scanning areas. Compared with using a single

Kinect, the quality of depth data acquired by this sys-

tem is higher because the Kinects are placed closer to

the human body. Lin et al.[14] developed a system for

fast capture of 3D human body with desired accuracy

by optimizing the configuration and locations of RGB-

D cameras. Their final system uses 16 Kinect sensors

to capture a human body within one second. To re-

duce the requirement for system setup and calibration,

Ye et al.[15] proposed an algorithm which can be used

for marker-less performance capture of interactive hu-

mans with only three hand-held Kinects. Although

high-quality depth data can be acquired, the method

is not suitable for scenes with uncontrolled lighting.

Up

Middle

Down
1.7 m

0.5 m

1 m 1 m

1.1 m

Fig.1. Tong et al.’s multi-Kinect human body capture system[13].

In summary, the current 3D human capture systems

still need to be improved, e.g., to capture complex hu-

man motions, to improve the accuracy of 3D recon-

struction, to obtain more detailed information such as

material properties, and to reduce the setup effort. One

way to achieve these is to use prior data, as will be dis-

cussed in the following subsection.

2.2 Human Body Modeling Using Prior Data

Previously mentioned 3D human modeling tech-

niques all have their disadvantages such as limited

availability, high cost, and low quality. Since human

bodies generally have similar shapes and dynamics, it

is possible to further improve acquisition quality and

reduce acquisition restrictions by exploiting prior data.

To achieve this, it is essential to have high-quality 3D

human body databases.

2.2.1 CAESAR

The first large-scale 3D human body database is

CAESAR 1○ (the Civilian American and European Sur-

face Anthropometry Resource database)[1]. It consists

of 2 400 American and Canadian and 2 000 European

civilians aged 18∼65. However, it does not take poses

into account.

Robinette et al.[1] proposed a learning approach

based on PCA (principal component analysis) to guide

a morphing model. However, their model does not in-

volve pose changes. With a similar approach purposed

as PCA, Wang et al.[16] proposed a spectral animation

compression method to efficiently compress dynamic

animations under the assumption that the deformation

is continuous.

2.2.2 SCAPE

To model pose deformation, Stanford University

proposed SCAPE (Shape Completion and Animation

of People)[17], a data-driven human body modeling

database in 2005. It records 72 standard postures for

each individual. In this model, Anguelov et al.[17] built

a parameter function with uniform standard data of hu-

man body. The method considers the body subspace as

characterized by the pose dimension and the shape di-

mension during the process of generating a specific hu-

man shape. 3D human body shapes produced based on

the SCAPE model not only have complete, realistic 3D

human body meshes, but can also effectively present de-

tails in different poses. The parameterized human body

1○http://store.sae.org/caesar/, Apr. 2017.
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model of SCAPE includes shape deformation and pose

deformation. By adjusting corresponding parameters

in the two dimensions of the pose and shape, it builds

reasonable instances of human body models.

Since the SCAPE was proposed, many research find-

ings have been reported and they can be roughly di-

vided into two categories, using SCAPE for modeling,

and improvement/extension to SCAPE.

Using SCAPE for Modeling. Anguelov et al.[17]

proposed a data-driven mathematical model which can

build uniform parameters of standard human body data

based on SCAPE. The model can simulate the pose and

shape in the human body space, and generate 3D mesh

models of individual instances by altering parameters.

Weiss et al.[18] reconstructed a model of human body

by fitting a parameterized human model to the depth

data captured by a Kinect. However this method can

only capture static human models wearing tights. Bogo

et al.[19] used a parameterized human body model to a

monocular depth sequence of moving human body to

estimate the 3D surface. These models learn from a 3D

model library of human dressing tight clothes, thus they

cannot be applied to modeling subjects dressing loose

clothes. They also cannot generate geometric details of

personalized human body, such as face, hairstyle and

apparel. The methods[17,19-21] first learn a parameter-

ized model from the training library, and produce the

output by fitting the model in the input data. However,

these methods cannot reconstruct 3D models of human

body out of the database.

Recent work considers improving reconstruction ef-

ficiency and quality using SCAPE and a single Kinect.

Cheng et al.[22] proposed a method for parametric re-

construction of human body. To improve efficiency,

their method uses a sparse set of key points for model-

ing. The success of the method, however, depends on

correctly identifying such keypoints. Zeng et al.[23] uti-

lized a depth data sequence to reconstruct approximate

rigid objects, but again it cannot address dynamic ob-

jects. Chen et al.[24] used a single depth camera and

an SCAPE model to capture dynamic human bodies

by decoupling shape and pose. Their method first ob-

tains shape parameters of the subject with the help of a

model database and then uses linear blending skinning

(LBS) to reconstruct the animation of the human body.

SCAPE Improvement. To address the limitations

of the SCAPE model, further research augments it

with additional models for physics-based simulation

of clothing[25] and for breathing[26]. Further research

considers generating 3D human shape and pose from

point cloud data[21], multiple depth images[18] and

video streams[20,27-28]. However, all these studies have

a common disadvantage that their calculation time

is too long to meet the need of generating a model

in real time, which is fundamentally caused by non-

linearity in the SCAPE model for non-rigid deforma-

tion. Chen et al.[20] proposed a tensor-based 3D model

(TenBo model). Compared with the popular SCAPE

model which separates the shape and pose deforma-

tions, their approach simultaneously models shape and

pose deformations in a systematic manner. Pons-Moll

et al.[29] proposed a Dyna model, which is extended

from SCAPE and can model dynamic humans. Inspired

by SCAPE, Zuffi et al.[30] proposed the stitched pup-

pet (SP) model, a new part-based human body model

which is more efficient and flexible.

2.2.3 Datasets from MPI (Max Planck Institute)

Hasler et al. and Bogo et al. introduced a dataset[21]

and FAUST (fine alignment using scan texture)[31] re-

spectively. The dataset[21] was captured by a laser scan-

ner, consisting of 114 subjects with every subject having

35 different poses. However, the scanning quality is not

high. Data of human bodies in the FAUST dataset is

lifelike, because it utilizes a 3D multi-stereo system to

acquire data. FAUST consists of 10 subjects and each

subject has 30 poses. Recently, Bogo et al.[32] released

a dynamic FAUST dataset for modeling and registering

human bodies in motion.

In summary, the availability of 3D human body

databases provides opportunities to develop more effec-

tive 3D human acquisition techniques. Among the cur-

rently available databases, CAESAR[1] consists of the

largest number of subjects, SCAPE[17] contains most

poses, and FAUST[31] has geometric models of the high-

est precision.

Recent research on human reconstruction has ben-

efited significantly from the development of 3D human

body databases. In the future, it would further con-

tribute to technology advances by building and exploit-

ing high-quality dynamic human databases with de-

tailed geometry and material properties.

3 Human Body Motion Capture & Synthesis

To produce realistic animation, human body mo-

tion is essentially important. This section overviews

the techniques for the capture and synthesis of human

body motions. The ultimate aim of human body mo-

tion capture technology is to capture the motion of
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human body at low cost and with high efficiency and

precision. Equipment for human body motion capture

based on optical sensors is widely used in the industry,

such as Vicon and OpticalTrack. From the research

perspective, how to reconstruct human body motion

by monocular or multiple depth or color cameras is a

hotspot. In addition to capturing human body motion,

human body motion synthesis techniques are also pro-

posed to generate new motion data from the existing

data of realistic human body motions. Methods can be

categorized into data-driven, physics-based and stylized

human body motion synthesis.

3.1 Human Body Motion Capture

Human body motion capture uses physical or im-

age information obtained by sensors to reconstruct the

joints of the human body. According to the equipment

used in the motion capture, it is categorized into sensor-

based human body motion capture and image-based

human body motion capture.

3.1.1 Sensor-Based Human Body Motion Capture

For human body motion capture, commonly used

physical sensors include pressure sensors, magnetome-

ter sensors, inertial sensors, acoustic sensors, and op-

tical sensors. The movement information of human is

obtained by the sensors worn on the human body[33-34].

Among all the sensors, motion capture systems based

on optical sensors are most widely used. Such systems

use a few infrared cameras to capture the human body

motion in different viewpoints simultaneously, and use

the locations of the markers in different infrared images

to recover the positions of human body joints. Such

equipment is precise but expensive, so it is often used

in film and animation production. CMU 2○ (Carnegie

Mellon University)’s human body motion database is

captured by an optical sensor-based motion capture

device. To facilitate the storage and transmission of

motion capture data which has different characteris-

tics from images and videos, Hou et al.[35] proposed a

method that splits a motion sequence into clips and

uses a dedicated transform to encode motion in the fre-

quency domain with substantially reduced dependency.

3.1.2 Image-Based Human Body Motion Capture

Among human body posture capture techniques,

capturing human body motion based on images is one

of the most popular methods. Based on the type of

images, the capture methods can be divided into color

image based and depth image based methods. Based on

the number of cameras, the capture methods can also

be divided into single-camera and multi-camera meth-

ods.

Motion Capture Using Multi-Camera Color Image

Data. In the process of human body motion capture

from images, occlusion is a serious problem, resulting

in the ambiguity of posture reconstruction. To alleviate

this problem, multiple cameras are often used to cap-

ture image data of human body motion from different

viewpoints. Human body motion is reconstructed us-

ing features extracted form images, such as silhouette,

texture, and edges.

The SfS method, namely visual hull construction

method for human body motion tracking, treats the hu-

man body as an articulated model and uses a rigid ob-

ject to approximate each human limb. In the first step

it segments the silhouette into a few parts correspond-

ing to the parts of the articulated model and assigns

six degrees of freedom to each part. In the second step

the motion of each part of the articulated model is esti-

mated separately. The positions of articulation points

are the location of human joints. Vlasic et al.[36] used

a similar method to reconstruct the skeleton and shape

of a human body, and further strengthen the details of

the shape by silhouettes. However, the method requires

manually correcting the pose of human body and does

not make the most of the human body’s texture.

The above methods can only reconstruct motion of

a single human subject in the scene at a time. Liu

et al.[37] proposed a method that simultaneously re-

constructs shapes and poses of multiple people. The

method segments individual subjects from the image,

and classifies the foreground pixels by a maximum a

posteriori (MAP) probability method to get human

body regions of different people.

Traditional multi-camera systems require hardware

synchronization with fixed cameras. Hesler et al.[38]

proposed a method to reconstruct the human pose and

shape from videos captured by unsynchronized hand-

held video cameras. They used SfM to recover a static

background and camera positions, and audio streams

to assist synchronization. The method described above

requires multiple cameras recording from different view-

points, thereby it is not suitable for large scenes or out-

door use. To address this, Shiratori et al.[39] used 16

GoPro cameras bound onto the human body to esti-

mate human poses using SfM.

2○http://mocap.cs.cmu.edu/, Apr. 2017.
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In order to reduce the number of cameras for hu-

man body motion capture, Elhayek et al.[40] proposed

a method that combines image-based joint detection

and model-based generative motion tracking to recover

human body motion with fewer cameras.

To develop and evaluate methods of human

capture, multiple databases have been proposed.

Human3.6M[41] database provides color, depth and pos-

ture data of human in different genders and actions.

HumanEva[42] provides a database for evaluating multi-

view human tracking algorithms.

Motion Capture Using Monocular Color Image

Data. It is a very challenging problem to recover a hu-

man body’s 3D posture from a single 2D image. This is

not only because of the occlusion and deformation exist-

ing in a single image, but also because of the ambiguity

of the posture. Methods using monocular color image

data can be divided into interactive methods involv-

ing manual assistance and automatic statistical learn-

ing based methods.

Early methods mostly require manual interactions

to label the initial position of the body’s joints on the

image. This is acceptable for some applications, but

not others. Automatic methods to obtain human pos-

ture are demanded. Dantone et al.[43] used a regression

method involving two layers of random forests to re-

cover human posture from a single picture. First, they

used a classifier to obtain separated parts of the human

body, and in the second stage, they obtained the human

body’s joint positions.

With the widespread application of convolutional

neural networks (CNNs), a lot of methods applying

CNNs to estimate human pose were proposed. They

reconstruct 3D poses of the human body from video se-

quences, taking into account both spatial and temporal

information. Wei et al.[44] used CPMs (convolutional

pose machines) which are implicit spatial models to es-

timate poses by a single image.

In addition, Wei and Chai[45] used mechanical prin-

ciples to constrain the solution space of human poses,

which is able to simultaneously obtain the pose and

joint torque information. Meanwhile, Insafutdinov et

al.[46] developed a method to estimate motions of mul-

tiple individuals in an image. In order to compare diffe-

rent algorithms, Andriluka et al.[47] proposed MPII Hu-

man Poses dataset, which contains 40 000 images with

human joint locations marked.

3.1.3 Depth Image Based Human Body Motion

Capture

Compared with color images, depth images provide

useful spatial information. We divide the depth image

based methods into methods based on monocular depth

images and multiple depth images.

Motion Capture Using Monocular Depth Data. A

single depth image can provide more spatial informa-

tion than a color image. Methods to capture human

body motion from a single depth image can be catego-

rized into discriminative methods, generative methods,

and hybrid methods.

Discriminative methods are also called model-free

methods. Such methods do not consider the prior infor-

mation and employ classifiers to identify feature points

or pixels for human pose recovery. Baak et al.[48] used

boosted classifiers with local features to extract human

body from depth images. Baak et al.’s method obtains

interest points and local information from a depth im-

age and classifies the local information using classifiers.

Doing so allows detecting human joints from a single

depth image. Due to the use of classifiers, Baak et al.’s

method is efficient and achieves real-time performance.

Ye et al.[49] utilized a data-driven method to restore

the posture information of a human body from a depth

map. For a given depth image, Ye et al. searched for

related gestures from a human body model database

and further optimized the pose according to the cur-

rent gesture. Liu et al.[50] used the Gaussian Process

model as a prior to recover more precise postures.

Generative methods are also called model-based

methods. They need to build an a priori human model.

The a priori human model can be based on a skeleton-

driven 3D human body scan model or an approximate

chained 3D cylinder model. Pose estimation involves

two stages, namely modeling and estimation. The pro-

cess of modeling is to construct the likelihood equation

between the pose and captured data by considering in-

formation such as camera matrices, image features, 3D

human body models, matching equations, and/or phys-

ical constraints.

Hybrid methods combine the advantages of

discriminative methods and generative methods. Wei

et al.[51] formulated the registration problem as a maxi-

mum a posteriori probability (MAP) problem. The al-

gorithm uses both registration and feature point detec-

tion. Registration can effectively reduce the impact of

occlusion and improve accuracy and robustness. They

further used GPU (graphic processing unit) accelera-

tion to achieve real-time performance.
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Motion Capture Using Multiple Depth Cameras.

The occlusion is also a problem for techniques with a

monocular depth camera. Methods have been deve-

loped to use multiple depth cameras to address this.

Such methods require calculating spatial position rela-

tionships between depth cameras. Ye et al.[15] proposed

an approach that uses three hand-held Kinects to col-

lect depth data from different viewpoints. The method

is able to capture the pose and shape of multiple people

in the scene, and at the same time obtain the camera

parameters.

3.1.4 Human Body Motion Capture with Hybrid

Sensors

Image-based human body motion capture is often

influenced by environment and lighting. Self-occlusion

and pose ambiguity can also lead to pose reconstruc-

tion errors. In order to improve the robustness of the

system, methods combining a variety of sensors were

proposed.

Zhang et al.[52] developed a system that combines

three depth cameras and a pair of foot pressure sen-

sors to obtain human body motion data, and at the

same time reconstructs both the pose and kinetic infor-

mation (see Fig.2 for an overview of the system). von

Marcard et al.[53] used a color camera and five inertial

sensors. The camera data is used to eliminate inertia

sensor offsets.

3.2 Human Body Motion Synthesis

Capturing human motion directly is expensive and

often infeasible. Motion synthesis aims to generate new

motion sequences from existing ones. Realistic, vivid

human body motions are more likely to provide the

users with immersive feeling, and make them resonate.

However, human visual perception is very sensitive to

even minor distortion of human motions, and thus how

to generate high-quality human body motion sequences

is an active research direction. Current human motion

synthesis methods are mainly composed of the following

three types: 1) data-driven human body motion synthe-

sis, 2) physics-based human body motion synthesis, and

3) human body motion style synthesis. We will discuss

physics-based human body motion synthesis in detail

in Section 4. Data-driven human body motion synthe-

sis can be further divided into the following four major

types: 1) motion graph, 2) motion editing, 3) motion

interpolation, and 4) statistical motion synthesis.

3.2.1 Motion Graphs

The motion graph based methods divide motion

data in the database into several different fragments

and reassemble them to generate new motion sequences

that do not exist in the original database. Unlike other

methods, the motion graph based methods can be ap-

plied not only to the whole motion sequences[54-55] but

also partial body such as a limb[56]. When applying

such methods to the whole motion sequence, the mo-

tion sequence is split into several sections corresponding

to poses. Then these poses are reassembled to produce

new motion sequences. When applying the methods

to a limb, the limb movement is split and reassembled

to get new motion sequences. However, the motion

graph based methods are also restricted by the mo-

tion sequences in the database. Since these methods do

not actually change the motion data in the database,
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Fig.2. Hybrid human body motion capture by combining depth data and foot pressure sensors[52].
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they cannot generate novel motions beyond those in the

database.

3.2.2 Motion Editing

Another type of techniques to synthesize new mo-

tions is motion editing. Through editing key frames of

a given motion sequence, motion editing based meth-

ods modify the original motion data to satisfy the key

frame constraints[57]. As in [57], the author proposed a

trajectory control method based on displacement map-

ping. The main advantages of motion editing based

methods are that they are easy to use and it is intuitive

to edit an action. The main limitation is the amount of

work involved. If the motion sequence to be edited is

long, this method can be very time-consuming. Simi-

lar techniques are used for planning of whole-body mo-

tion of virtual humans in virtual scenes[58]. Kim et

al.[59] retargeted human motion to virtual avatars in

real time based on a precomputed spatial map, taking

object interaction into account.

3.2.3 Motion Interpolation

Motion interpolation based methods interpolate ex-

isting human posture or motion sequences to generate

a new motion sequence. To use this method, it is nec-

essary to register the existing motion data in time, and

then map the motion sequences to an abstract space

suitable for interpolation. Various methods can then

be used to control the process of motion blending, such

as geostatistical interpolation[60]. In addition, inter-

polation functions may also be weighted[60-61] to con-

trol their contributions. Motion interpolation is often

used as a tool for manipulating motion sequences. For

example, in [61], a continuous motion sequence space

is constructed by interpolating similar motions. Wang

et al.[62] formulated motion planning between two sub-

stantially different poses as a boundary value problem

on an energy graph taking into account desired motion

characteristics.

3.2.4 Statistical Motion Synthesis

Statistical model based motion synthesis methods

apply statistical models and machine learning models to

generate human body motion sequences. Earlier statis-

tical motion synthesis methods include clustering-based

hidden Markov models[63] which generate motion be-

tween two key frames. The approach benefits from both

the flexibility of the key frame based motion synthesis

and the accuracy and realism of original database mo-

tions. At the same period, Pullen and Bregler[64] pro-

posed a motion synthesis method by decomposing the

motion data in the frequency domain, and then generat-

ing the joint angle and global translation of the motion.

Hsu et al.[65] proposed a method of generating stylized

motions based on a linear time invariant (LTI) method.

Chai and Hodgins[66] regarded user-constrained motion

generation as a maximum a posteriori probability prob-

lem, and proposes a motion synthesis method using lin-

ear dynamic system modeling. Lau et al.[67] used the

Bayesian dynamic model to generate motion sequences

which have similar spatio-temporal relationship as the

input motion sequences. Min and Chai[68] used the

Gaussian process model based method to generate mo-

tion sequences. In more recent work, Holden et al. used

convolutional autoencoders to learn the manifold of mo-

tion data[69], and then used a deep feedforward neural

network to generate motion sequence[70].

3.2.5 Stylized Motion Synthesis

Even for the same action (e.g., walking), motion

sequences can vary significantly. The style of human

body motion is a high-level attribute to characterize

such differences. By varying styles, richer and more

vivid human body motion can be generated, avoiding

unnatural synthesis with little variability. However, col-

lecting different styles of human body motion is time-

consuming and laborious, thereby synthesizing stylized

human body motion is of significant research value. The

study can be divided into implicit style modeling and

explicit style modeling according to the different views

on the source of motion styles.

Implicit Style Modeling. Implicit style model-

ing[65,71] mainly focuses on characterizing the differ-

ences between human body motion of different styles,

while retaining the content of the motion; therefore it

is more widely used for style transfer of human body

motion, i.e., given an input motion sequence, the aim

is to generate a new motion sequence with a specified

style but the same content. Hsu et al.[65] used a linear

time-invariant (LTI) system to model the differences be-

tween motion sequences of the same content and diffe-

rent styles. Once the parameters of the LTI system are

trained, the system can efficiently convert an input mo-

tion to other styles. Ikemoto et al.[71] used a Gaussian

mixture model (GMM) to model the kinematics and

dynamic differences after manual motion editing. The

models trained with the GMM can convert a new input

motion to the desired style. Xia et al.[72] proposed a

new approach that first retrieves candidate sequences

from a motion database that are close to the input mo-
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tion by k-nearest neighbor search, and then models the

transformation involved for style transfer by building

online local mixtures of autoregressive (MAR) models,

which are then used to generate the stylized motion

for the input. This method is related to [65], but with

fundamental differences: [72] uses local MAR models

whereas [65] uses a global LTI model, and local models

can represent complex and highly nonlinear relation-

ships between motion sequences better. As a result,

[72] can handle unlabeled heterogeneous input motion

and is more robust. Fig.3 shows some results of MAR-

based stylized motion synthesis. As can be seen from

Fig.3, the MAR-based method can handle motion se-

quence with different contents, such as running, walking

and jumping.

Fig.3. MAR-based stylized motion synthesis[72].

Explicit Style Modeling. Explicit style model-

ing[73-75] attributes differences in motion styles to in-

volving both the content and the style, and thus it

treats them as two hidden factors, and finally uses a sta-

tistical model to solve this problem. Since this method

models styles explicitly, it is more often used for syn-

thesizing large-scale stylized motions. However, the ef-

fectiveness of such methods is also largely restricted by

the size and quality of motion databases. The work

[73] regards motion content as hidden states of a hid-

den Markovmodel (HMM), while treating motion styles

as parameters in the HMM such as state transition

probabilities. Wang et al.[74] proposed a method that

uses a multi-factor latent Gaussian process to model

style differences of human body motion. Min et al.[75]

further extended this idea of simultaneously modeling

motion content and styles. They used a large number

of pre-registered motion data to construct a multidi-

mensional motion model, useful to characterize motion

content and style from a motion sequence. This facili-

tates various applications such as motion style transfer,

style-aware editing. Motivated by these studies, Ma et

al.[76] proposed a method to model motion data’s con-

tent and style at the same time. They used several joint

groups to represent the skeleton and introduce latent

parameters to represent the variation of each group.

The Bayesian network was then used to parameterize

the relationships between the style and the latent vari-

ation parameters.

3.3 Research Problems and Future Directions

Current technology for human body motion capture

cannot satisfy the needs for capturing large-scale and

outdoor scenes. Moreover, high-precision capture de-

vices still require markers and sensors, making them

expensive and difficult to use. A future direction is

to reduce restrictions while increasing the accuracy of

low-cost solutions, e.g., using hand-held non-calibrated

multi-color cameras to reconstruct poses of multiple hu-

man subjects.

The current limitation of human body motion syn-

thesis lies in the difficulty of building motion databases

and generating vivid motion sequences. Methods using

machine learning have shown great potential. There are

still scopes to exploit recent development in deep learn-

ing, with various CNN-based architectures, including

generative adversarial networks (GANs).

4 Physical Simulation of Human Body Motion

Although kinematics-based human body motion

simulation methods are generally mature, having made

great progress in the use of motion data and the gene-

ration of responsive movement, the shortcoming is in-

evitable — relying extensively on existing movement

data. The realism of human body motion is based on

a variety of physical laws, full of complex situations

and possibilities. Simulation methods based only on

kinematics cannot generate completely realistic human

body motions which are able to respond to the environ-

ment in real time and are not mechanically repetitive.

In contrast, physical simulation provides this possibil-

ity. Instead of directly manipulating existing human

body motion data sequences for editing and synthesis

as the methods mentioned in Section 3, physical simula-

tion computes the driving torques of joints through the

force and torque given by environmental constraints,

which are then used to drive the subject to produce

a physically realistic motion like a real human subject.

The development of physical simulation has greatly im-

proved the authenticity and richness of the simulated

human body motions. We divide the physical simu-

lations of human body motion into physical simula-

tion based on forward dynamics and physical simula-
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tion based on inverse dynamics. We now describe these

methods in detail.

4.1 Physical Simulation Based on Forward

Dynamics

The goal of forward dynamics is to calculate the lin-

ear and angular accelerations of the simulated objects

with external forces and constraints. When applied to

human bodies, such methods can achieve physical sim-

ulation of human body motion. In physical simulation,

collision detection is used to determine whether the hu-

man and the environment are in contact, and calculate

the contact force, environmental constraints and other

information. Then the linear acceleration and the angu-

lar acceleration of characters are computed by forward

dynamics. Such information will be used to synthesize

human body motions. We now overview key techniques

in the following subsections.

4.1.1 Collision Detection

Physical simulation based on forward dynamics typ-

ically requires the use of physical engines to obtain

ground contact information. Ground contact informa-

tion is generally obtained by the collision detection

between the foot and the ground, and then the con-

tact force can be calculated using a suitable model.

There are two main types of models. The first type

is the penalty strategy model[77], which is similar to

the spring-damping model, and calculates the contact

force according to the penetration depth of the foot.

The other is the friction cone model[78], which models

the ground contact force as being generated by discrete

friction contact points. The friction cone defines the

parameters of such friction points.

Many mature and stable physical simulation engines

are available. These physical engines integrate colli-

sion detection and other useful features, and provide a

good environment for physics-based human body mo-

tion simulation. Commonly used physical engines in-

clude open dynamics engine (ODE), PhysX, etc.

4.1.2 Controller-Based Physical Simulation

One approach for the physical simulation of human

body motion is to use a finite state machine where at

each state, joint torques are controlled by PD (propor-

tional derivative) controllers, which are then used to

update the subject status from the current to the next.

The PD controller typically takes the target joint pose

as input, and after computation, outputs the controlled

joint torque. The advantage of this method is its high

efficiency and robustness. However, there is a major

problem for human body motion simulation: the force

and the torque are not intuitive, making controller de-

sign difficult.

Controllers with Manual Parameter Settings. In the

study of controllers, early work manages to generate

complex kangaroo jumping motions by manually set-

ting the state machine, or to generate motions for ac-

tions such as running, cycling and vaulting using con-

trollers with manual parameter settings. An important

advance was made by Yin et al.[79] who proposed a mo-

tion controller named SIMBICON (Simple Biped Loco-

motion Control), which features a very robust Feedback

Error Learning strategy and is one of the most represen-

tative controllers. Fig.4 shows the state machine and

motion synthesis result of SIMBICON.
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0.3 s

Left Foot
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Right Foot
Strike
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0 1

23

Fig.4. Finite state machine in [79].

Optimization of Controller Parameters. The para-

meters used in the controllers mentioned above are

manually specified by the researchers through under-

standing and analysis of human motion. While be-

ing effective, such controllers are designed for specific

motion and subject rather than for general motions.

Thus to apply such controllers to generate other types

of motions or subjects, the controller parameters need

to be re-adjusted, which is very laborious. To address

this, Coros et al.[80] presented a general control strategy

for physics-based simulation of walking that effectively

combines multiple techniques to address different as-

pects of simulation. The method works well across a

wide range of scenarios, such as changing gait para-
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meters and varying motion styles. The control is also

robust to disturbances due to its universality.

Applications of Biomechanics to Controller Design.

It is worth noting that the controller method uses state

transition to describe human body motions, thereby

the resulting motions can be rigid. In order to solve

this problem, Wang et al.[81] optimized controller para-

meters with the help of biomechanical rules, resulting

in more realistic and natural motions. Wang et al.[82]

used a set of Hill-type musculotendon units (MTUs)

to augment the joint actuated humanoid model. To

drive this new model, a new controller parameter opti-

mization strategy was proposed to minimize metabolic

energy consumption. The method helps increase the

authenticity of the synthetic motion.

Methods Based on Sampling. In recent years, the

simulation of simple motions such as walking, running

and jumping has become more and more mature. On

this basis, researchers begin to design controllers that

can simulate more complex and varied motions with the

help of sampling. Liu et al.[83] designed a more robust

controller parameter optimization method to generate a

varying motion with parkour style using sampling. Liu

et al.[84] further presented a method using given mo-

tion capture clips and transition paths between clips,

as well as exploiting motion control graphs to learn a

robust feedback strategy. Their method supports real-

time physics-based simulation of multiple characters.

4.1.3 Date-Driven Simulation Methods

Another approach to obtaining realistic kinematic

trajectories is through motion capture. The obtained

trajectories include velocity information. Since the tra-

jectories are from real-world human motions, they are

obviously physically feasible. Unlike the kinematic-

based editing synthesis method, the data-driven phys-

ical simulation approach simulates the motion of the

human body through calculating joint torques using

physical motion equations, driving the model to track

motion-captured data, and giving real-time feedback

to environmental constraints. The difficulty of this

method lies in the following. 1) Discrepancies between

the physical character model and the motion captured

subject are inevitable. 2) Some of the actor’s feed-

back mechanisms are so subtle that they cannot be

recorded by captured data, and some only work in spe-

cific situations. 3) Motion capture data does not con-

tain joint torques and ground contact force information,

thereby they cannot be used to drive the model to track

the trajectories directly. 4) Physics-based characters

are under-actuated, and errors accumulate in applying

global translations and rotations.

Human Body Motion Simulation Without Locomo-

tion. Early work on data-driven simulation combines

motion capture data with procedural balance strategies

to simulate and control human motion. At this stage,

researchers aim to simulate human motions without lo-

comotion. Zordan and Hodgins[85] tracked full-body

actions such as boxing and table tennis playing with an

in-place procedural balance strategy, trying to control

the center of mass using a virtual force. They used the

inverse dynamics to adjust the upper body trajectory,

and finally create controllers for interactive boxing and

table tennis playing. Zordan et al.[86] also generated

character falling motions under external forces with mo-

tion capture data.

State-Action Mapping. Another approach for data-

driven physical simulation is state-action mapping. It

is based on the assumption that the target pose can be

derived directly from the current pose at any time. At

any time during the control, the next pose can be se-

lected from a set of possible poses according to the cur-

rent state. Motion capture data is used to establish the

mapping between the current pose and the target pose.

Sharon and van de Panne[87] developed a typical state-

action mapping control system. It uses a kinematic

target trajectory not necessarily physically realizable

to specify the desired style. It then uses a nearest-

neighbor controller representation with its parameters

optimized by local search, where the cost function to be

optimized is formulated as total mass-weighted squared

differences between simulated and target motions, inte-

grated over fixed simulation periods.

Given a biped motion which can be either captured

or synthesized, Sok et al.[88] developed an optimization

approach that adjusts it using physical simulation to

produce a physically-feasible motion with balance pre-

served. This makes it feasible to capture diverse stylis-

tic human motions for training. Building on this, they

further develop an algorithm that learns dynamic con-

trollers from the training data and combines them to

produce desired new motions.

Physical Simulation Coupled with Inverse Dynam-

ics. In data-driven approaches, the PD controller is

often used to predict and calculate the acceleration of

joints, and the motion capture data is then tracked by

computing the torques using inverse dynamics. Silva

et al.[89] derived the corresponding control system ac-

cording to a given reference motion, and used quadratic

programming to combine style feedback and balanced
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feedback, which can generate motions similar to refe-

rence motions. Geijtenbeek et al.[90] used a PD con-

troller to simulate character motions, using a special

form of the Jacobian conversion controller to control

the balance. They then used the CMA (covariance ma-

trix adaption) offline parameter optimization controller

to track the motion capture data.

Simulation of Complex Motions. Since the simula-

tion of simple motions has become mature, researchers

begin to focus on the control and simulation of com-

plex motions. Hamalainen et al.[91] proposed a model-

predictive control scheme, called Control Particle Be-

lief Propagation (C-PBP). The method finds paths and

smooths them at the same time, and then evaluates cost

functions to decide whether to perform a resampling to

cut the unsatisfactory trajectories. In each iteration,

the motions are guided by the trajectories generated in

the last iteration. Furthermore, the method does not

require any offline precomputation, and can generate

complex motions such as balancing on a ball, juggling

a ball. Although the generated motions are fairly com-

plex, the effect is not so satisfactory as the simulation

of simple motions. In addition, to obtain more realistic

simulation results, an important observation is that hu-

man body motion is usually task-oriented. Even for the

same action, subtle differences in motion exist for diffe-

rent purposes. In previous work, the general method

of simulating human body motion is usually the sim-

ple movement between two positions without taking

these rich motion types into account. Agrawal and de

Panne[92] used a task-based foot-step template, com-

bined with online optimization, to generate task-based

human body motions. The method is demonstrated

to generate a variety of motions such as whiteboard

writing, moving boxes, sitting down, standing up, and

turning.

4.1.4 Problems and Future Directions

For physics-based simulation, both controller meth-

ods and data-driven methods have their limitations.

For controller methods, the parameterization of envi-

ronmental constraints, the automatic optimization of

parameters, and the realistic simulation of motions are

still challenging problems. This is where data-driven

methods may help. For data-driven methods, capturing

complex motions in real-world environment is still dif-

ficult. Moreover, the effectiveness of data-driven meth-

ods relies heavily on sufficient amount of motion cap-

ture data. From this perspective, these two types of

approaches are complementary. To address such chal-

lenges, it is worth exploiting hybrid methods that com-

bine data-driven approaches with controller based ap-

proaches, e.g., by training physics-based controllers us-

ing motion capture data, and choosing suitable con-

trollers in a data-driven manner.

4.2 Physical Simulation Based on Inverse

Dynamics

Unlike methods based on forward dynamics, meth-

ods based on inverse dynamics establish relevant objec-

tive functions, and obtain the driving torques of joints

by optimization, so as to generate simulated human

body motions. In this subsection, we will introduce

methods for solving the body segment parameters es-

sential in inverse dynamics, and methods for simulation

of human body motions based on the inverse dynamics.

4.2.1 Solving Human Body Inertia Parameters

Human body motion is very complex, thereby in

simulation it is necessary to simplify a human body as

a system of multiple rigid components with fixed joints

and degrees of freedom. The inertial parameters of each

rigid component are the key to solving human dynam-

ics.

Human inertia parameters refer to the mass, center

of mass, and momentum of inertia of each part of the

human body. Several major methods exist for acquiring

the inertia parameters of a human body.

1) Scanning and imaging: using medical imaging

technology to scan the body and then calculate the

parameters. The scanning techniques include magnetic

resonance imaging (MRI), gamma scanning, etc.

2) Regression forecasting methods: building a re-

gression model to forecast inertia parameters based on

human density data or relation between inertia para-

meters and human body parameters such as height and

weight.

3) Dynamics methods: Yeadon[93] calculated iner-

tia parameters using the characteristics of human body

motion in the air.

4) Mesh-based methods: based on the methods that

can generate adaptive human body meshes, Sheets et

al.[94] generated subject specific inertia parameters with

the hypothesis that the density of human body is iden-

tical.

5) Inverse dynamics methods: Lv et al.[95] proposed

a method based on the Lagrangian equation. They

transferred the inertia problems into the optimization

problem of the Lagrangian equation and used captured

dynamic data to calculate human inertia parameters.
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4.2.2 Trajectory Optimization

Trajectory optimization is a computational method

to solve simulation problems. Given a piece of motion

data as input, the trajectory optimization framework

generates the desired motion using a set of constraints

and objectives. In order to make the generated motion

more natural, the minimal principle is often applied in

the trajectory optimization process.

The idea of trajectory optimization was first

brought out by Witkin and Kass[96]. Their objec-

tive is to minimize the use of energy, where the con-

straints are physical constraints computed under the fi-

nite difference framework and the boundary constraints

on the ground. This method finally generates motion

sequences such as the jumping motion of lamp “Luxo”.

As a global optimization method involving space-time

constraints, the method needs to calculate the whole

motion offline, and it is relatively difficult to compute

and would easily get stuck in local minima. Follow-up

work considers improving the method in these aspects.

Early methods try to optimize efficiency by simplify-

ing models or reducing lengths of motion sequences.

They subdivide a motion sequence into sections and

solve these subproblems or reduce the complexity of the

motion by only preserving basic physical parameters of

the model.

Although methods such as model simplification can

reduce the complexity of computation, the generated

motions are not sufficiently natural. Researchers have

investigated alternative solutions. Liu et al.[97] took the

desired character interactions as constraints and iden-

tified the variables needed for optimization in each it-

eration. By reducing the number of variables in op-

timization, the method effectively reduces the amount

of computation. Borno et al.[98] synthesized full-body

motions such as breakdancing and getting up from the

ground based on the covariance matrix adaptive (CMA)

evolution strategy, which aims to avoid getting stuck in

local minima. This method successfully solves large-

scale non-linear optimization problems.

Another way to solve trajectory optimization prob-

lems for models of high degrees of freedom (DOFs) is

to use a three-phase optimization method[99]. Park et

al.[99] first computed the initial trajectory from a dis-

crete contact configuration. Then they computed the

collision-free trajectory using a simplified model. Fi-

nally they performed a full-body optimization consi-

dering balancing and other constraints. Eventually the

method is able to synthesize realistic motions for hu-

manoid models with high DOFs.

4.2.3 Optimization with Dynamical Constraints

Another widely used approach to physical simula-

tion is optimization control with dynamical constraints.

By adding multiple objectives based on dynamical fea-

tures, the method obtains forces and torques needed

for the target motion through optimization. Since this

method has multiple objectives with different weights,

the design of weights is also a problem that needs con-

sideration. Different from traditional trajectory opti-

mization which uses off-line global optimization, dy-

namically constrained optimization uses online opti-

mization and can generate interactive motions. In

general, there are three ways to achieve necessary

efficiency[100]. 1) Local optimization, i.e., only consi-

dering whether the current state meets the required

constraints: this method is only applicable to motions

that do not need long term planning, such as maintain-

ing balance. 2) Off-line precomputed trajectory based

optimization: this method uses the trajectories precom-

puted for optimization and is applied to tracking spe-

cific motions. 3) Low-dimensional models: this method

employs low-dimensional models to reduce the amount

of calculation and uses predictive trajectories to guide

the motion in a short period.

Local Optimization. By designing the weights of

objectives manually, Abe et al.[101] controlled the hu-

man body’s center of mass to maintain balance. They

achieved robust balance control that can interact with

external perturbation and change motion accordingly.

Alternative methods control momentum by adding the

center of mass and trajectory of swing legs[102] to the

objective function. They achieved balanced control by

adjusting the center of mass. de Lasa et al.[103] divided

objectives according to their physical priority and ob-

tained target trajectories by empirical formulas. The

method successfully synthesizes walking and jumping

motions of a human body.

Off-Line Precomputation of Trajectories. Muico et

al.[104] used off-line trajectory optimization to obtain

trajectories similar to captured motion data, and then

employed a nonlinear quadratic regulator to optimize

the joint momentum and ground contact forces. They

then adjusted the ground contact forces and finally

generated walking motions of a human body. Based

on this work, they increased the robustness of synthe-

sized motions by tracking multiple trajectories simul-

taneously and using a graph to describe the blending

and transformation between trajectories[105]. Wu and

Popović[106] used the covariance matrix adaptive strat-

egy to generate target trajectories off-line. They then
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tracked the trajectory and adjusted the weights of the

balance controller and tracking controller. They finally

generated walking motions that can adapt to different

terrains.

Low-Dimensional Models. Kwon and Hodgins[107]

used the first-order inverted pendulum model optimized

by motion data to control the position of the foothold in

running (see Fig.5). Mordatch et al.[108] generated tar-

get trajectories using an inverted pendulum and tracked

the trajectory with the whole body model. They fi-

nally synthesized robust motions that can transfer be-

tween different gaits. Using a low-dimensional dy-

namic model, Han et al.[109] obtained short-term con-

trol strategies through model predictive control. They

controlled the trajectory of the center of mass, the an-

gular momentum and the position of foothold to gene-

rate real-time interactive balanced motions.

4.2.4 Problems and Future Directions

The main problem of trajectory optimization meth-

ods is efficiency. It is difficult to achieve real-time per-

formance. More efficient optimization techniques may

be exploited in the future. Regarding optimization

with dynamical constraints, the main problem is that

the design of objective functions requires researchers

to have complete knowledge of dynamics and optimiza-

tion. In the future, it is worth exploiting more general-

ized frameworks that can help researchers design objec-

tives more easily. In addition, optimization strategies

may be applied to improve other aspects, e.g., the de-

sign of high-level controller parameters.

5 Conclusions

In this survey, a number of key issues related to hu-

man performance capture and animation, including hu-

man geometric model reconstruction, human body mo-

tion capture and synthesis, physics-based simulation,

were described and discussed. Most research directions

of human motion capture and animation are covered in

this survey. We hope that this survey can help readers

have a more comprehensive understanding of existing

work on human performance capture and animation,

and inspire future research in this area.
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Fig.5. First-order inverted pendulum[109]. (a) IPC. (b) Fullbody charater. (c) Stepping.
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