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Abstract

This paper presents a deep CNN approach for point-based semantic scene labeling. This is challenging because 3D point clouds
do not have a canonical domain and can have complex geometry and substantial variation of sampling densities. We propose a
novel framework where the convolution operator is defined on depth maps around sampled points, which captures characteristics
of local surface regions. We introduce Depth Mapping (DM) and Reverse Depth Mapping (RDM) operators to transform between
the point domain and the depth map domain. Our depth map based convolution is computationally efficient, robust to scene
scales and sampling densities, and can capture rich surface characteristics. We further propose to augment each point with feature
encoding of the local geometric patches resulted from multi-method through patch pooling network (PPN). The patch features
provide complementary information and are fed into our classification network to achieve semantic segmentation.
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1. Introduction

Representing 3D scenes is the basis of many applications, ranging from 3D geometric modeling to semantic
understanding and navigation. Unlike 2D images which have a natural regular canonical domain, 3D scenes are often
represented using surface-based meshes, point clouds and voxels. The voxel representation has a similar regular
topology as images, but due to its third power nature, it is restricted to low resolutions, not sufficient to represent 3D
scenes with details. On the other hand, surface meshes and point clouds can represent complex 3D scenes with rich
details, but they both have irregular connectivity. Real-world 3D scenes are usually captured through range sensors
such as Kinect [1], Matterport cameras [2, 3] or LiDAR laser scanners [4]. The resulting data of such scanning
technology is usually in the form of unstructured surface point clouds, making it the most popular representation for
3D scenes.

Therefore, point cloud based 3D scene understanding is very important in real-world applications, such as seman-
tic reconstruction [5], autonomous driving [6, 7, 8], housekeeping or autonomous navigation robots [9], as well as
augmented reality (AR) and virtual reality (VR) applications [10, 11]. Compared to 2D image analysis and under-
standing, 3D point clouds contain much more reliable depth information and geometric features which are insensitive
to lighting, and so are essential for mobile robots and autonomous driving applications.
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Figure 1. Our point-based semantic labeling pipeline. Given an input scene represented as an unstructured point cloud (a), our algorithm automat-
ically assigns a semantic label (object category) to each point in the scene. We extract MPF (multi-method patch feature) (c) through training a
patch segmentation pooling network (PPN). Our classification network is a Convolutional Neural Network defined in the depth maps of sampled
points. To achieve this, we introduce Depth Mapping (DM) and Reverse Depth Mapping (RDM) operators to transform between the point cloud
and depth maps. The DM operator transforms the point cloud into depth maps (b) of sampled points, which allows us to apply 2D CNN on (b) and
(c) to learn local semantic labels (d). Finally, we compute the semantic label for each point in the scene through the RDM operator (e). Unlike
existing methods, our method copes with the entire scene without unnecessary block partitioning, and thus better captures global context.

The huge success of convolutional neural networks in image detection and analysis motivates the deep learning
attempts on 3D scene data. However, point cloud data of indoor scenes often contain millions of points, more than
pixels in typical images for deep learning. Moreover, it also has unstructured point distribution due to non-uniform
sampling of 3D space, which makes it difficult for many deep learning methods, especially CNN (convolutional
neural networks) based methods. To handle these problems, many existing works [12, 13, 14, 15] use the voxel
representation which allows the 2D convolution to be extended to the 3D space. Although the voxel domain has
similar regular topology as images, the amount of data becomes prohibitively large when the resolution increases
even mildly. Therefore, it is only suitable for small-scale 3D models, but clearly insufficient to represent scene level
3D data with acceptable accuracy.

The pioneering work PointNet [16] made the first attempt to directly apply a deep neural network to raw point
cloud data. PointNet learns high-level spatial features from grid cells of a certain size. However, its capability of
capturing the local context and geometric features is limited. The point-based pooling network is affected by non-
uniform distribution of points in the 3D space and does not capture the local neighborhood information fully. More
recent point-based neural network architectures [17, 18] made various improvements of context learning or large-scale
optimization. However, all of these methods require non-convolution operators.

In this paper, we propose a novel convolutional neural network architecture for point cloud data. We focus on
geometric feature extraction and scene level context learning for point cloud data, and learn a network for point-
based semantic labeling, i.e. assigning an object class to each point in the input point cloud. Individual points carry
rather limited geometric information, so we propose to augment each point with additional information of the local
geometric patches it belongs to. However, consistently segmenting point cloud data into patches is not trivial. To
address this, we first perform multi-method segmentation to obtain patches through different methods, and design a
pooling network to learn reliable patch-based geometric features. Given points with augmented patch features, we
further develop a novel CNN architecture for point cloud data. We start by obtaining a set of sampled points using
farthest point sampling to provide a good coverage of the point cloud. For each sampled point, we build a 2D depth
map to represent its neighborhood, on which 2D convolutions are performed. To achieve this, we introduce DM
(Depth Mapping) and Reverse Depth Mapping (RDM) operators which map neighboring points to the depth map and
vice versa. This is computationally efficient and captures rich geometric details.

The key contributions of our work are summarized as follows:

• We propose the first deep CNN architecture that can be directly applied to point clouds with a flexible number
of points, which is also insensitive to the sampling density, thanks to the fully convolutional architecture.
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• We design a multi-method patch segmentation pooling network to learn to extract reliable geometric patch
information which complements point information.

• We design two operators: DM and RDM in order to bridge between the point cloud and 2D depth maps around
sampled points. Then, we perform 2D convolutions on depth maps to analyze point cloud data, which is both
efficient and informative.

An example demonstrating the pipeline of our method for point-based semantic labeling of scenes is shown in
Fig. 1. We apply our method to two main large-scale 3D point cloud scene datasets, and show that our method
outperforms state-of-the-art methods. We first review the most related work to ours in Sec. 2. We present our network
architecture and algorithm details in Sec. 3. Experimental results are presented in Sec. 4 and finally conclusions are
drawn in Sec. 5.

2. Related Work

Obtaining unstructured surface point cloud data. Unstructured point cloud data can be captured using a variety
of methods, including: (1) Dense RGB-D SLAM (simultaneous localization and mapping) methods on RGB-D images
captured by Kinect-like sensors, such as KinectFusion [19], ElasticFusion [20], BundleFusion [21] etc. For such
methods, point cloud data is fused from RGB-D scans. Typical datasets captured in this way include ScanNet [22],
SceneNN [23] and Washington RGBD dataset [24]. This approach is of low cost, but the obtained point cloud data
is noisier and is more likely to have missing points than other scanning technology, due to the sensor limitations. (2)
Using a Matterport sensor capable of capturing panoramic RGB-D images, which are then fused to form the complete
point cloud. Typical datasets captured using Matterport includes Full 2D-3D-S Dataset [2] and Stanford 3D Indoor
Spaces (S3DIS) [3]. (3) Using a 3D laser scanner, e.g. the dataset in [4]. This approach is more time-consuming,
but the obtained point cloud is more accurate than alternative methods. Regardless of the scanning technology, the
obtained point clouds can be treated as a set of unstructured 3D points usually along with color information.

Traditional methods for point cloud semantic labeling. This work addresses semantic labeling of unstructured
point cloud data. From the geometric analysis perspective, few methods have been proposed to address this problem.
Koppula et al. [25] present a method that performs SVM (support vector machine) classification on pre-segmented
patches based on a set of manually specified patch features. Lai et al. [26] learn a hierarchical sparse coding feature
called HMP3D for scene labeling trained with CAD model datasets. Vosselman [27] proposes an approach that
combines multiple segmentation and post-processing methods for semantic segmentation of urban point cloud scenes
with high density. Compared with deep learning methods, such traditional methods have limited learning capabilities,
and often need to make some assumptions for the input point cloud data (e.g. quality, density, etc.) to work effectively.

Deep learning on 3D voxels. To generalize image-based deep learning frameworks to 3D data, a direct approach is
to represent 3D shapes as structured volumetric grids on which 3D convolutions can be applied [13, 12, 14]. However,
the voxel representation has high memory and computational costs, and can only represent coarse geometric shapes.
[15, 28] use Octree or KD-Tree structures to help reduce voxel storage and accelerate convolution computation. To
deal with point cloud data using the voxel representation, [29] presents a PCNN (point CNN) framework with two
operators: extension and restriction, which achieve transformations between point clouds and the voxel representation
and perform convolutions on the voxel data for analyzing point cloud data. The work [30] voxelizes a point cloud
into 3D voxels and applies 3D FCNN (fully connected neural networks). Even with spatial partitioning techniques,
the resolution of voxel data that can be effectively handled is still insufficient to cope with 3D scenes with details, so
none of these methods have been applied to scene level point labeling.

Deep learning on point clouds. Recently, PointNet [16] made a great attempt to use neural networks to learn
directly on raw point cloud data. They design a mini-network (T-Net) to work out and apply an appropriate transfor-
mation to point coordinates for transformation normalization, and further use max pooling and fully connected layers
for feature extraction within certain blocks (typically 1.5m × 1.5m in the x-y plane and over the entire range in the z
direction). Tatarchenko et al. [31] present a tangent convolution that learning surface geometry feature from projected
virtual tangent image. PointNet++ [17] upgrades PointNet by adding sampling layers and grouping layers for geo-
metric feature computing. Engelmann et al. [18] strengthen point feature learning with sampled neighbors in the 2D
Euclidean space and make an attempt to learn larger-scale spatial context above the grid block level. PointCNN [32]
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introduced an X-transformation for 1-D convolution kernels to make the point set ordered, which makes it possible
for multi-level convolutions to learn high-level features. The X-transformation is a trained operator to determine the
order of convolution input. However, mapping from a 3D point cloud to an ordered 1D point array can be unreliable
for data occlusion and sensitive to local point cloud density. SPG [33] partitions the scanned scene into homogeneous
elements and sets up a superpoint graph structure to learn the contextual relationships between object parts. Pan et
al. [34] extend CNNs in the regular domains to curved 2D manifolds using parallel frames. This method requires 3D
dense mesh data as input which is not usually available for 3D scenes. We propose a new point-based deep learning
architecture that augments points with local geometric patch information and a CNN with convolutions defined in 2D
depth maps of the neighborhoods of sampled points. These two sources provide complementary information and help
improve performance. While the local depth maps provide detailed information of the local geometry, 3D scenes often
contain a large number of planar surfaces where local depth maps are not informative. Geometric patch features are
particularly useful in such cases. Our method is able to handle the point cloud without the need of partitioning points
into blocks of specific sizes and extracts useful geometric information to improve semantic labeling performance.

3. Depth Mapping Point-based CNN

In this section, we introduce our framework in detail. We propose a CNN approach that takes an unstructured
scene point cloud as input, and directly outputs its semantic labeling result (i.e. the object category for each point).
Denote by N and M the number of points in the input point cloud and the number of object categories (e.g. tables,
chairs, etc.), respectively.

A point cloud is represented as a set of 3D points {Pi|i = 1, 2, ..,N}. Each point Pi is represented using a 10-
dimensional vector, i.e. the point descriptor

P̃i = (x, y, z, nx, ny, nz, r, g, b, c),

where (x, y, z) is the 3D coordinates of the point, (nx, ny, nz) is the point normal estimated using PCA (principal
component analysis) of the local neighborhood, (r, g, b) is the color information and c is the curvature calculated
using PCL library as the minimum eigenvalue of the local PCA.

Our model is constructed with two main networks. The first one is a patch pooling network (PPN) that learns to
extract useful geometric features. For this network, we first perform multi-method patch segmentation and extract
patch-based features using different segmentation methods at different scales (Sec. 3.1). These multi-method patch
features are fed into the pooling network along with point features to produce an aggregated feature associated with
each point (Sec. 3.2). The second network is a classification network that takes the 3D point cloud as input and outputs
labeling results for points with an embedded CNN for hierarchical feature learning (Sec. 3.3).

3.1. Patch Segmentation and Multi-method Feature Extraction

Since each point contains limited information, we extract local geometric patches to provide richer information,
similar to superpixels in image analysis. Patch segmentation is a good way to extract geometric shape features for
surface point clouds. There are many methods for point cloud segmentation. Koppula et al. [25] use a traditional
region growing method from the PCL library for patch segmentation. Silberman et al. [1] treat RGBD images as point
clouds and design a semantic segmentation method to categorize points into 4 limited classes (ground, furniture, prop,
structure). Mattausch et al. [4] propose a lightweight region growing method for fused point cloud data that is more
sensitive to depth. In general, none of these geometry patch segmentation methods are perfect, due to the existence of
noise, occlusion and discontinuity in typical point cloud data.

Our semantic labeling is performed at the point level and patch segmentation is only used to provide additional ge-
ometric information. Our method is thus not sensitive to the patch segmentation method used. Moreover, each method
works better in certain situations than other methods, and most methods have adjustable parameters corresponding the
scale (coarser or finer) of segmentation. We therefore take an approach that utilizes multiple segmentation methods
at different scales. We consider the following methods: 1) Normal-based Region Growing (NRG) [4], 2) Color-based
Region Growing (CRG) from PCL [35], and 3) Euclidean Cluster Extraction (ECE) [36]. Brief introduction of these
methods is given below.
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(a) input point cloud (b) NRG result 1 (c) NRG result 2

(d) CRG result 1 (e) CRG result 2 (f) ECE result

Figure 2. Given a point cloud (a), we obtain different segmentation results using different methods with different parameter settings. NRG result 1
(b): t1 = 0.5, t2 = 0.04, NRG result 2 (c): t1 = 0.7, t2 = 0.02, CRG result 1 (d): t3 = 6, t4 = 5, CRG result 2 (e): t3 = 4, t4 = 3 and ECE result (f):
t5 = 0.02.

Normal-based Region Growing (NRG) [4] grows a patch starting from a seed point s. Given a new point p
belonging to the k-nearest neighbors of an existing point in the current patch, we add p to the patch if the following
conditions are satisfied:

‖np · ns‖ > t1, ‖(p − s) · ns‖ < t2, (1)

which states that p should have a consistent normal as s and within a small distance to the tangential plane of s.
The segmentation results are highly dependent on the parameters t1, t2 that control the planarity of segmentation. In
practice, different settings may work better for different objects, such as a board and a sofa with substantial variation
of planarity. Inappropriate settings of these parameters may result in over-segmentation or under-segmentation. By
altering these parameters, we are able to obtain segmentation results at different scales. An example is shown in
Fig. 2(b-c), where two settings are used. Since it is hard or impossible to determine segmentation parameters that
work well for different data sources or different object classes in one scene, we perform multi-scale segmentation
by using a set of parameters of different scales. In our experiments, the multi-scale segmentation parameters are:
{t1 = 0.5, t2 = 0.04}, {t1 = 0.5, t2 = 0.04}, {t1 = 0.6, t2 = 0.03}, {t1 = 0.7, t2 = 0.02}, {t1 = 0.8, t2 = 0.01}, {t1 =
0.95, t2 = 0.002}. These parameters do not need tuning because the aim is to provide a good coverage of patches at
different scales.

Color-based Region Growing (CRG) from PCL [35] uses color instead of normals as the constraint. Moreover,
it uses a merging algorithm for over-segmentation and under-segmentation control by making attempts to merge
patches with close colors and further merge tiny clusters with closest neighboring patches. In our experiments, we
consider three scales and set the point color threshold t3 (for region growing use) and region color threshold t4 (for
region merging use) as {t3 = 3, t4 = 3}, {t3 = 6, t4 = 5}, {t3 = 9, t4 = 7}. An example of segmentation results with CRG
at two different scales is shown in Fig. 2(d-e).

Euclidean Cluster Extraction (ECE) [36] segments a point cloud into clusters based on the Euclidean distance.
Firstly it designs a plane filter to remove large planes in the scene to allow segmentation of point clusters corresponding
to individual objects lying on the large plane (desk, ground, wall etc.). In our experiments, the cluster tolerance
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Figure 3. Patch feature pooling network (PPN). L is the number of patch segmentation results. The network processes one point at a time, where the
input includes patch features F j ( j = 1, 2, . . . , L) and point descriptor P̃i. The output is classification scores for M classes, and the point is assigned
to the class with the highest score. MLP stands for multi-layer perceptrons, and numbers in brackets are layer sizes. FC is a fully connected layer.

F Descriptors
f1 Mean height
f2 PCA normal of the points in the patch
f3 Area of the concave hull: a
f4 width of fitting rectangle: w
f5 length of fitting rectangle: l
f6 Ratio between length and width: w/l
f7 Ratio between fitting rectangle area and area f3: w × l/a
f8 Point density: n/a

Table 1. Feature descriptors of a patch. The PCA normal is treated as 3 channels. n in f8 is the number of points in the patch.

distance t5 is set as 0.01m and 0.02m for two scales. An example of ECE segmentation result is given in Fig. 2(f).
Each point belongs to patches with different shapes in different segmentation methods and scales. For each patch,

we extract a 10-dimensional feature descriptor F = { f1, f2, . . . , f8} (Note that f2 is three-dimensional). The detailed
definition for patch descriptors is listed in Table 1.

3.2. PPN: Patch Pooling Network

In the previous step, for each point Pi, we extract L patch segmentation results by using different segmentation
methods at different scales, leading to patch features F1,F2, . . . ,FL, along with point descriptor P̃i. Not all the seg-
mentation results are meaningful for patches around a given point. Feeding all the information is not only redundant,
but can also be misleading by poor segmentation results with specific methods at certain levels.

In order to obtain a concise and informative feature representation, we propose a novel pooling neural network.
The detailed network architecture is shown in Fig. 3. We first take all the patch features F j ( j = 1, 2, . . . , L) as input
to the network. We then perform two stages of MLPs (multi-layer perceptrons) to independently transform patch
features at the same level, leading to an L × 252 dimensional feature representation. To extract the most informative
features, we propose to use max pooling to reduce the dimension to 252 as aggregated patch feature F̃. These are
further combined with the point descriptor P̃i, and fed into another MLP stage to obtain 64-dimensional point/patch
feature, denoted as P̂i. To train this network, we use P̂i to classify the point into M categories, with the last layer
containing M neurons. In the training process, for each point in the training set, the input to the network includes the
point descriptor and patch features, and the network is optimized to predict the label (object category) of the point as
an M-dimensional one-hot vector.

For our semantic labeling method, the pooling network is used to obtain point/patch feature P̂i for each point Pi.
The trained pooling network is also able to predict the label of each point, although only using its local information,
without higher-level context. We take the result of PPN as our baseline.
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Figure 4. Our Depth Mapping CNN architecture for point-based semantic labeling. The network takes N points as input. For the ith vertex, the
point feature P̂i is extracted using PPN in Fig. 3. The output of the network is classification scores of M classes for each of N points. MLP(...)
stands for multi-layer perceptrons, where numbers in bracket are layer sizes. FPS (x, y) denotes the farthest point sampling operator, similar to [17],
where x and y mean the sizes of point cloud before and after sampling. DM(x, y) refers to the Depth Mapping operator that generates a depth image
around each sampled point by projecting neighboring points in the Euclidean space from the upper-layer point cloud to the tangent plane of the
sampled point. x and y are the numbers of points and sampled points, respectively. The result is a K × K (K = 16 in our experiments) depth image
for each sampled point. The depth information is added to the point features as an additional input channel. Conv2d(x, y) and DeConv2d(x, y) refer
to 2D convolution/Deconvolution operators on depth images, where x and y denote the channel sizes of input and output. RDM(x, y) is the reverse
mapping that maps the depth images onto upper-layer point cloud. Skip Link layers are added after DeConv2d.

Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [16] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
SEGCloud [30] - 57.35 48.9 90.1 96.1 69.9 00.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
Engelmann [18] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 06.9 39.0 30.0 41.9
SPG [33] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 69.2 73.5 45.9 63.2 8.7 52.9
Ours method 88.1 75.2 63.7 98.7 98.3 76.6 77.7 42.6 63.9 65.2 66.2 72.3 28.3 45.8 47.3 39.2

Table 2. Comparison of accuracy and IoU (intersection of union) performance on the S3DIS dataset (per semantic class and overall). OA means
overall accuracy, mAcc means mean accuracy across classes and mIoU means mean IoU across classes. Our method outperforms state-of-the-art
methods.

3.3. Classification Network using Depth Mapping CNN

CNN is an outstanding approach for machine learning on structured data. However, scanned scene point cloud data
is usually unstructured on which traditional CNN methods are difficult to apply. Therefore, we design new DM and
RDM operators to bridge between CNN and point cloud data. The DM operator maps the point cloud into depth maps
on which 2D CNN can be easily applied, and the RDM operator reverses the procedure of DM and remaps the sampled
depth image back onto upper layer point cloud with deconvoluted features. Our full classification network architecture
is summarized in Fig. 4, where we build a multi-layer convolutional network with point cloud down-sampling and
up-sampling.

DM/RDM operators. The DM operator DM(p, q) takes the input point cloud with p points P1, P2, ..., Pp and a
subset of q sampled points Ps1 , Ps2 , ..., Psq as input and generates a depth image for each sampled point. For each
sampled point Ps j , we search the neighboring points with k-nearest neighbor (kNN) and project them onto the tangent
plane (orthogonal to the normal of the sampled point) of Ps j . To improve learning, we orient the depth map consis-
tently such that it is orthogonal to the gravity direction of Ps j . We then sample in the tangent plane a depth image of
resolution K × K and add the depth (absolute distance between neighboring points and the tangent plane) as an extra
feature channel. Similarly, point features of projected neighboring points are also used to generate 2D feature images.
This operator aims at learning rich local structure features for points. K = 16 is used in our experiments. Since points
are discrete, we interpolate between projected neighboring points to obtain complete depth/feature images. Examples
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Raw Point Cloud Depth Sampled

Figure 5. Examples of depth images generated by the DM operator.

𝑎 𝐼𝑛𝑝𝑢𝑡 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 𝑏 𝑃𝑜𝑖𝑛𝑡𝑁𝑒𝑡 𝑐 𝑂𝑢𝑟 𝑀𝑒𝑡ℎ𝑜𝑑 𝑑 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

Figure 6. Comparison of results of PointNet and our method on the S3DIS dataset. For most case PointNet failed to classify the board, window
and column due to its limited geometry shape feature. And our method produce less label noise as the consistent points of a single object usually
share some segmentation patches in suitable segmentation level.
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of depth images are shown in Fig. 1 and Fig. 5. As can be seen, such depth images are insensitive to sampling densi-
ties and provide compact and rich geometric information for learning. After passing through convolutional layers, we
introduce the RDM operator RDM(q, p) which takes semantic features from the CNN in depth images as input and
outputs the point cloud with semantic label information P1, P2, ..., Pp. The feature channel of Pi is extracted from the
depth image associated with Psk that is nearest to Pi. DM and RDM and inverse operators, both required to set up an
end-to-end network structure.

Classification network architecture. The overall classification network that assigns a semantic label to each
point in the input point cloud is summarized in Fig. 4. We perform two stages of farthest point sampling, with N1 and
N2 sampled points respectively. In our experiments, we set N1 = N/32, and N2 = N1/32. The DM operator is used
to generate depth images around sampled points, which are then combined with point features. The regular structure
of depth images means 2D convolution and deconvolution operators can be applied to extract useful information. We
then apply the RDM operator to map filtered information in the depth domain back to the point cloud. We introduce
skip links between dots with the same color to pass detailed information to the later stages of the network, avoiding
information loss. The final output is N × M scores, i.e. for each point, we obtain M scores corresponding to the M
object categories, and we simply assign each point to the class with the highest score.

4. Experiments

We use two main large-scale benchmarks S3DIS and ScanNet for evaluating semantic labeling performance. We
train our network on a computer with an Intel i7-8700K CPU, 64GB memory and a GTX 1080Ti GPU with 11GB
on-board memory. Cross-entropy loss is optimized during training. When training the PPN, we set the batch size to
256 and set the learning rate to 10−4. For the classification network training, we set the batch size to 1 and the learning
rate to 10−2. The training process terminates when the loss converges (i.e. the overall loss does not reduce in three
epochs).

S3DIS dataset. The S3DIS dataset [3] includes 6 areas and 271 rooms captured by Matterport cameras, with
ground truth point-level labeling of 13 classes, including chairs, tables, etc. We perform 6-fold cross validation and
take the micro-averaged metrics over all 6 folds as our evaluation result. We compare our method with state-of-the-art
deep methods [16, 30, 18, 33] where the performance is either reported or code available from the authors. We use the
accuracy and Intersection over Union (IoU) measures to evaluate the performance. As shown in Table 2, our method
achieves significantly better result than [16, 30, 18, 33] overall and perform best for most classes. Figure 6 shows
some results of PointNet and our method. It can be seen clearly that our method works significantly better for the
classes of windows, boards and columns.

ScanNet dataset. The ScanNet dataset [22] contains 1,513 scanned and reconstructed indoor scenes with 21
object classes. We follow the experiment setting in [22] and use 1,201 scenes for training, and the remaining 312
scenes for testing.We compare our work with state-of-the-art methods either based on their reported performance or
using code provided by authors. The detailed point-level accuracy results are reported in Table 3, which shows that
our method performs better than state-of-the-art methods. Our baseline is the result of only using the PPN, which
gives decent performance already (comparable to PointNet), showing the effectiveness of the pooling network. Our
Deep Mapping network is a light network for local feature training, which aims at directly applying on point cloud
data without pre-processing of block segmentation and provides good point structure for convolutional networks. The
performance of using it alone is reasonable but still limited. However, when combined this with the PPN, our method
achieves better performance.

Evaluation of multi-method patch segmentation. We evaluate how the number of patch segmentation methods
and segmentation levels affects the trained features. Since different segmentation results directly affect the pooling
network PPN, we evaluate the PPN performance of each patch segmentation method with different levels of seg-
mentation, and it clearly shows that more segmentation levels lead to better accuracy (Fig. 7(a)). We evaluate the
effectiveness of the trained features by the overall accuracy (computed based on the class scores of Fig. 3). We further
evaluate a combination of different segmentation methods (with all the segmentation levels of each method used, as
this gives the best performance). The accuracy is improved with an increasing number of segmentation levels and a
combination of more segmentation methods. This demonstrates the effectiveness of PPN, which effectively selects
the most suitable patch segmentation and therefore benefits from more possible patch segmentation results to choose
from.
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Method Accuracy

PointNet [16] 73.9

PointNet++ [17] 84.5

Tangent CNN [31] 80.9

PointCNN [32] 85.1

PPN Only 73.4

Depth Mapping CNN Only 75.2

Our Method 85.3

Table 3. Comparison of per-point classification accuracy between our method and state-of-the-art deep learning methods on the ScanNet dataset.
PPN only is the performance of only using the PPN, which is related to the segmentation result while insensitive to sampling density. Depth
Mapping CNN Only is the performance of classification network that only uses the position and color as the input channel without the PPN feature.

(a) Multi-level segmentation results (b) Multi-method segmentation results

Figure 7. The overall accuracy results of our PPN with different segmentation levels (a) and combinations of different methods (b). In (b) for each
method, all the levels are used as this gives the best performance, as shown in (a). It is clear from (a) and (b) that the more segmentation levels and
methods are used, the more reliable geometric features are extracted, leading to better classification accuracy.

Running times. The average time needed for semantic labeling of a scene in the S3DID dataset with about 0.8
million points is 2 minutes. This is largely due to the different patch segmentation methods used. Specifically, the
multi-method segmentation takes 33 seconds, the feature descriptor computation takes 83 seconds and the deep neural
network inferencing takes 6 seconds.

5. Conclusion and Future Work

In this paper, we propose a novel approach to semantic labeling of point clouds at the scene level. For each
point, we extract patch features with different segmentation methods at different scales by changing the segmentation
parameters and design a patch feature pooling network (PPN) for patch feature learning. We further propose a novel
classification network that combines these features with two key operators, namely DM and RDM which produce
depth images around sampled points for 2D CNN to be applied to. Our network can directly work on point cloud data
without sampling into certain size as most other methods [16, 17, 18, 32] do. However, the input channels of PPN
are hand-crafted feature descriptors. We would like to develop fully automatic learning method to extract the most
suitable patch feature. Moreover, our depth mapping CNN architecture is general and can be applied to other point
cloud processing tasks using deep learning.
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