Automatic Semantic Modeling of Indoor Scenes
from Low-quality RGB-D Data using Contextual Information
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Figure 1: Automatic semantic modeling of an office scene. Left: input RGB-D images, right: reconstructed 3D scene.

Abstract

We present a novel solution to automatic semantic modeling of in-
door scenes from a sparse set of low-quality RGB-D images. Such
data presents challenges due to noise, low resolution, occlusion and
missing depth information. We exploit the knowledge in a scene
database containing 100s of indoor scenes with over 10,000 man-
ually segmented and labeled mesh models of objects. In seconds,
we output a visually plausible 3D scene, adapting these models and
their parts to fit the input scans. Contextual relationships learned
from the database are used to constrain reconstruction, ensuring se-
mantic compatibility between both object models and parts. Small
objects and objects with incomplete depth information which are
difficult to recover reliably are processed with a two-stage ap-
proach. Major objects are recognized first, providing a known scene
structure. 2D contour-based model retrieval is then used to recover
smaller objects. Evaluations using our own data and two public
datasets show that our approach can model typical real-world in-
door scenes efficiently and robustly.
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1 Introduction

The growing availability of 3D models (e.g. in the Google 3D Ware-
house), along with model retrieval techniques, makes it easy for or-

dinary users to create indoor 3D scenes by combining existing mod-
els [Xu et al. 2013]. The popularity of consumer-level RGB+depth
(RGB-D) cameras (e.g. the Microsoft Kinect) has further led to in-
creased interest in digitizing real-word indoor 3D scenes down to
specific objects [Izadi et al. 2011], e.g. for interior design [Yu et al.
2011; Merrell et al. 2011], virtual environments for user interac-
tion [Izadi et al. 2011], and as a basis for rendering.

Unlike traditional 3D reconstruction, which aims to provide a pre-
cise geometric representation of the data, the main objective of se-
mantic modeling is to deliver semantically correct 3D models with
close geometric resemblance to the input [Shao et al. 2012]. While
many techniques are available for automatic reconstruction of in-
door environments from a set of noisy RGB-D images, e.g. [Izadi
et al. 2011; Whitaker et al. 1999], automatic semantic modeling of
indoor scenes from such noisy data has received little attention.

Automatic semantic modeling of indoor scenes from low-quality
RGB-D images faces two difficulties: (i) depth information is noisy,
may be distorted, and have large gaps [Shen et al. 2012]; (ii) un-
like outdoor building scenes where many surfaces can be fitted us-
ing planar primitives [Nan et al. 2010], interior objects often have
complex 3D geometry, with messy surroundings and variation be-
tween parts (e.g. open or closed desk drawers, and angled laptop
lids) [Nan et al. 2012; Kim et al. 2012]. Existing methods typi-
cally use interaction to segment RGB-D images into semantic ob-
jects [Shao et al. 2012] or object parts [Shen et al. 2012], or high-
precision 3D scanners [Nan et al. 2012].

We use three observations concerning interior scenes to reduce the
dependence on user interaction. Firstly, objects normally have
strong contextual relationships (e.g. monitors are found on desks,
and chairs are arranged around tables). Such contextual informa-
tion has been used in many recognition and retrieval tasks, deliv-
ering significant improvements in precision [Xu et al. 2013; Fisher
and Hanrahan 2010]. Context helps to remove uncertainty due to
noise and occlusion by seeking semantic compatibility of models.
Large collections of digital interior scenes designed by profession-
als and available to the public provide a useful source from which
contextual relationships can be automatically learned.

Secondly, interior objects often have an underlying structure. An
office chair comprises a base, a seat, a back, and (maybe) two arms.
By reassembling such components from different models, the set of
objects which can be described is significantly enlarged [Xu et al.
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Figure 2: Approach.

2012; Shen et al. 2012]. This greatly increases the likelihood that,
for most real-world indoor objects, we can produce suitable digi-
tal models. Such structure also helps to handle variations between
objects: object parts can undergo different transformations, and a
rectangular table top may varying in size even if its legs are fixed.

Thirdly, depth images often have gaps, e.g. due to specular reflec-
tions, and may lack sufficient resolution to describe small objects.
However, RGB images provide additional information. While ob-
jects’ colors may not be constant, contours can be reliably deter-
mined, and used in a refinement stage after recovering the main ob-
jects, whose structure can be used during contour extraction. This
allows us to find good models for the remaining data consistent with
contours and contextual information.

Thus, this paper presents a method for automatic semantic mod-
eling of indoor scenes from low-quality RGB-D data, using con-
textual relationships learned from a 3D indoor scene database.
Like [Shao et al. 2012], we use a series of RGB-D images sparsely
captured by a Kinect camera as input. While that method requires
major user assistance in segmentation and labeling, our method
merely requires coarse image algnment, and can then automati-
cally produce a plausible 3D scene within seconds. It does so by
finding and placing semantically correct models and parts from the
database, adapted to fit the input scans. Objects in typical real-
world indoor scenes, from desks and chairs to mice and cell-phones,
can be efficiently and robustly modeled by our approach. Our paper
makes the contributions below in addition to the overall system:

e We are the first to apply learned context from virtual scenes
to real-world scene modeling. New techniques overcome the
differences between virtual world data and imperfect scanned
data from consumer-grade RGB-D scanners.

e To cope with low quality 3D scans, we use a novel context-
based two-layer top-down classifier to automatically segment
point clouds and match them to appropriate 3D models.

e We demonstrate a novel contour and context based approach
to reliably recover small objects or missing parts from low
quality RGB-D data, which other methods cannot do.

A typical example of semantic modeling using our system is shown
in Figure 1, where an office scene containing various models has
been automatically modeled. Contextual information learned from
the scene database has helped to resolve ambiguities, and both ge-
ometry and contours have been used to recover objects.

Our approach is shown in Figure 2. An off-line pre-processing

stage (see Section 3) is used to learn contextual information from
a repository of 3D indoor scenes in which each individual object
has been manually semantically labeled. To allow use of part
assembly techniques, some types of object are divided into la-
belled sub-components. Contextual relationships and classifiers for
use in modeling are learned from this data. To model a scene,
multiple RGB-D scans are acquired and coarsely aligned. Over-
segmentation is used to separate the point cloud into object parts,
and to help improve alignment (see Section 4). A model is then
built from the input data in two stages (see Section 5). Initially,
well-defined regions are determined using top-down matching and
classification. Small objects, and objects with missing depth data
may remain unrecognized after this process due to limitations of
the Kinect (low resolution, limited working ran§e, and inability to
handle highly reflective or absorptive surfaces'). Guided by the
contextual information, an image-contour-based refinement stage
is used to model the remaining objects. Experimental results and
discussions are provided in Section 6.

2 Related Work

Indoor Scene Reconstruction: 3D scene reconstruction has long
been of interest, traditionally starting by registering a set of range
images captured by laser sensors. Iterative closest point registra-
tion (ICP) [Besl and McKay 1992; Chen and Medioni 1992] and
simultaneous localization and mapping (SLAM) [Durrant-Whyte
and Bailey 2006] give good solutions to this problem. 2D images
are much easier to capture, and have been widely used to construct
models: see [Moons et al. 2009]. However, recovering 3D structure
from 2D images is ill-posed due to the lack of depth information,
especially for indoor scenes where texture-poor planar surfaces are
common [Furukawa et al. 2009]. With the increasing popularity
of consumer-grade range cameras like the Kinect, reconstructing
indoor scenes from low-quality RGB-D data has attracted atten-
tion [Izadi et al. 2011; Henry et al. 2010]. Without camera parame-
ters, object level information has also been used to enhance camera
pose estimation [Bao et al. 2012]) and scene reconstruction [Salas-
Moreno et al. 2013].

These 3D methods however do not provide a semantic representa-
tion in terms of predetermined, known objects: the goal is instead
full recovery of geometry. They also require dense, accurate scans
and are expensive. In some applications, such as scene understand-
ing or virtual furniture rearrangement, determining correct semantic
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labels for scene objects is important. While it may be permissible
to sacrifice geometric precision for a reduction in acquisition and
computing time or costs, the often incomplete, low quality sparse
scans provided by low cost solutions are fundamentally unsuited to
traditional 3D reconstruction methods.

Many 3D models are accessible online, which permits the devel-
opment of data-driven methods to semantically reconstruct scenes.
To distinguish these from traditional 3D reconstruction, we refer
to them as semantic modeling methods. Recent approaches in-
clude [Nan et al. 2012], which uses a search and classify method
to find an independent point cloud and a semantic label for each
meaningful object; a deform-to-fit technique provides the recon-
structed scene. Although fully automatic, it requires high precision
3D data. Kim et al. [2012] acquire 3D indoor scenes by repre-
senting frequently occurring interior objects as a set of joint prim-
itives. Their algorithm first learns the structure of each frequently
occurring object in a time-consuming offline stage, and then ac-
quires indoor environments by quickly recognizing these objects.
This works efficiently for large-scale public or office buildings with
many repeated objects, but is not applicable to home environments
where many objects only occur once (e.g. a television or bed): their
algorithm needs to pre-capture and learn most scene objects.

Shao et al. [2012] present an interactive approach for segmenting
RGB-D images into regions with semantic labels, finding the best
matching models for each object and then arranging them to re-
construct the final scene. We consider a similar but much harder
problem: we aim to provide a complete semantic reconstruction
of indoor scenes, while overcoming limitations of consumer-grade
depth cameras and complexity of real-world scenes. While their ap-
proach requires extensive user help for segmentation and labeling,
our system automatically produces plausible results using context.

3D Model Retrieval: Various methods have been devised to
quickly search large collections of models (e.g. [Funkhouser et al.
2003]). Our application needs to find models which best match in-
complete RGB-D images and 2D contours.

Much work has considered recognizing, detecting and finding 3D
models in RGB-D images or single view point clouds, using dis-
criminative shape descriptors with affine invariant properties [John-
son and Hebert 1999; Bo et al. 2011; Lai et al. 2012; Kim et al.
2013; Hinterstoisser et al. 2012], plus machine learning methods
like random forests [Breiman 2001] to determine semantic labels
or appropriate object models. Contextual relations extracted from
well-segmented images or point clouds can also be used to improve
classifier performance [Galleguillos et al. 2008; Divvala et al. 2009;
Torralba et al. 2004; Malisiewicz and Efros 2009; Oshima and Shi-
rai 1983]. However, the spatial relations used are generally very
simple (e.g. on, beside and above), as the training data are either
labeled RGB images or single view RGB-D images, not full 3D
models. Thus, substantial segmentation and labeling effort is re-
quired, limiting the size of the training dataset they can reasonably
use; only view-dependent relationships are available. We exploit a
well-structured 3D scene database to provide full 3D relationships.

Contour line-drawings of different model views can be used for
model matching [Belongie et al. 2002]; sketches are easy to gen-
erate. Many techniques exist for sketch-based shape retrieval
(see [Eitz et al. 2012] and its references). Recently, Xu et al. [2013]
combined a state-of-the-art sketch-based shape retrieval algorithm
with contextual patterns extracted from a virtual 3D scene database
to accurately recover 3D scenes from user-drawn sketches.

Our goal is to semantically recover real-word indoor scenes from
a hand-held consumer-grade depth camera. The challenges come
from low resolution, noise and missing data, which we overcome
as follows. Large objects are clearly more likely to be correctly

classified under these circumstances. Hence, we first use a point-
to-model matching technique to recover the main objects in the
scene. Then, using the scene structure inferred from these objects,
we extract contours from the RGB-D images for any smaller re-
maining objects, or ones lacking depth information. Contour-to-
model matching techniques can recover such objects which cannot
be determined using point data alone.

3D Geometry Inference: Inferring 3D geometric information from
images can also help to identify structures and understand scene
contents. Some research aims to recover 3D information from 2D
color images. Schwing et al. [2013] use geometric cues and ob-
ject detectors to infer room layouts as well as objects present in the
scene. Satkin et al. [2012; 2013] exploit data-driven approaches
which fit warehouse-style model libraries to color images. How-
ever, inferring 3D geometry merely from 2D color images is ill-
posed, and the availability of low-cost depth sensors provides extra
information. Silberman et al. [2012] focus on inferring simple sup-
porting relationships from RGB-D images, and use them as the ba-
sis of an indoor image segmentation algorithm. Zheng et al. [2013]
combine geometric and physical cues to improve segmentation and
understanding of scene point clouds.

Such methods generally work on pixels or points, their main aim
being object recognition. Our approach works with objects, utiliz-
ing higher level semantic information, and its goal is modeling.

Modeling by Part Assembly: While the number of available 3D
models is growing, creating 3D models is still time consuming, and
no model collection is exhaustive—we will inevitably face new ob-
jects when modeling real-world scenes. Fortunately, interior ob-
jects often share common underlying components (such as legs and
arms of chairs). Many previous works have shown that reassem-
bling parts from different models provides a significantly larger
model space [Xu et al. 2012; Shen et al. 2012]. While geomet-
ric accuracy requirements are not as strict in semantic modeling as
in traditional 3D reconstruction, it is still desirable that the output
digital scene should closely resemble the real scene. Thus, we also
use part assembly modeling techniques. The methods of [Xu et al.
2012; Shen et al. 2012] need interactive user assistance to recover
objects from single view photos or RGB-D images, but we use mul-
tiple views to reduce ambiguity, allowing our method to automati-
cally find suitable sub-parts without user assistance.

Context-based Indoor Scene Analysis: Existing digital 3D scene
models provide a large amount of information. Recent work [Fisher
et al. 2012] has used probabilistic models learned from a database
of 3D scenes to synthesize new scenes and models respectively.
Fisher and Hanrahan [2010] perform context-based modeling: a
query box placed in the scene is used to return a relevant set of
models based on the box’s context. Fisher et al. [2011] use con-
text graphs to represent structural relationships in digital scenes,
and use graph matching techniques to compare the local structure
of two scene graphs. Although these techniques work well for their
intended applications, they are not directly applicable to our prob-
lem due to differences in inputs and outputs. The need to resolve
ambiguities and improve accuracy means that our problem is more
similar to the one in [Xu et al. 2013], which also uses contextual
patterns automatically learned from a scene database to achieve
contextual consistency between retrieved results. However, real-
world environments are much more complex than scenes sketched
by a user, and understanding simple relationships is much simpler
than modeling real-world scenes. Previous work has used context
learned from virtual scenes to solve problems in virtual scenes, but
we address the practical problems brought by the complexity of
real-world scenes.
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Figure 3: Segmentation of two models from the database. The chair
base and laptop lid each have one degree-of-freedom.

3 Database Scene Analysis

Our system uses a 3D scene database both as a basis for learning
contextual relationships, and to provide 3D models for assembling
the output scene. We first discuss how our database is built, then
explain the graph representation we use for database scenes, and
finally how we learn contextual relationships.

3.1 Database

We retrieved about 10,000 indoor scenes using keywords such as
office, bedroom, living room, and dining room from the Google 3D
Warehouse. We discarded scenes lacking floors or walls, or with in-
sufficient interior objects for learning contextual relations. This left
640 scenes including about 800 room models (some scenes con-
tain multiple rooms) and 16,000 single object models (including
walls, floors, ceilings and counting repeated objects). We manually
labeled each object with a category, orientation and size (most mod-
els already included physical dimensions). Objects in selected cat-
egories were further manually segmented into meaningful semantic
parts, and for some, a single degree-of-freedom was indicated, as
shown in Figure 3. All models in our database were aligned to be
upright (with 4z up), which we rely on in later processing.

3.2 Scene Graph Representation

Previous work has used contextual information from virtual scenes
to solve problems in virtual scenes. However, the real-world is
more complex, necessitating a more sophisticated approach. For
example, previous work rarely takes floors, walls and ceilings into
consideration, but they are of major importance in our application
as points of reference for locating interior objects. Furthermore, in
virtual scenes, objects are almost always in standardized positions,
but not in the real world. For example, in digital scenes created by
artists, office chairs nearly always face an office desk, but they are
often found in other orientations or places in a real scene.

Like [Fisher and Hanrahan 2010; Fisher et al. 2012], we represent
each scene in our database as a directed graph G5 = (Vs, Ey). Each
node V; € V; represents an object and each edge E;; € E; describes
a pairwise relationship between objects V; and V;. Floors, walls and
ceilings are special nodes. Each G, has exactly one floor node Vy,
zero or one ceiling nodes V., and one node V,, for each side wall.
Using these as references, objects can be divided into: (i) objects on
the floor, e.g. desks, or objects supported by such objects, e.g. desk
lamps, (ii) objects attached to the wall, e.g. paintings, cupboards,
and (iii) ceiling objects, e.g. ceiling lamps, fans. Object type is
determined in the above order, so a bookcase on the floor with its
back to the wall is considered to be a floor object.

The object properties represented by an ordinary node V; include:

e Tag: one of 128 pre-defined object categories of common in-
terior objects, from large, e.g. bed, table and refrigerator to

small, e.g. fork, eraser and computer mouse.
e Type: classification as floor, wall or ceiling object.
o Size: (Sx,Sy,S;): size of the object’s bounding box.
o Position: (Cy,Cy,C;), center of the bounding box.

e Orientation: (Oy, 0y,0), orientation of the object’s bounding
box when projected on the floor (x-y plane).

e Parts: list of sub-parts and corresponding parameter value for
any associated degree of freedom (Py, Fp), (P, F),. ..

Pairwise relationships between each pair of objects are described
by edges E;j recording the following information:

e Contact: supporting, supported or vertical contact.

e Relative Location: elevation and distance between object
centroids are stored in a discrete polar coordinate system
(p,0). Polar angle 6 is discretized in 30° steps; polar radius p

is discretized in steps of L = , /8% +53/2, i.e. for distances in

the range [p’ x L, (p" +1) x L),p' =0,1,2..., we set p = p’.

e Identity: whether two objects have the same geometric shape.
Following [Fisher et al. 2011], we use 3D Zernike descriptors
to detect identical objects.

3.3 Learning Relationships

Our aim in analyzing the scene database is to learn a co-occurrence
model representing relationships between objects and parts. Our
model should predict how likely it is that two objects have a certain
relationship, e.g. a desk supports a monitor. We now explain how
we generate our training data and learn the relationships.

Training Data Generation: The natural way of using modeling
software like SketchUp is to create objects with main faces paral-
lel to coordinate planes, so objects and their parts are often parallel
or perpendicular to each other. Thus, someone modeling an open
laptop is likely to make the screen perpendicular to the keyboard,
but in the real world this is unlikely to occur. This limits the direct
use of contexts learned from virtual scenes to real scanned data.
To make them useful in real world scenes, we perturb these digital
scenes to generate further scenes. Some categories of objects are
more arbitrary in their placement than others. Thus, we define a
subset of floor supported objects as moveable objects and generate
additional training scenes by randomly making small changes to
their position (£5%) and orientation (£5°). Such perturbed scenes
are accepted only if they do not violate the semantic relationships in
the original scene (e.g. a cup should not be moved off a supporting
desk surface). (We do not actually instantiate these new scenes, but
simply generate new scene graphs). These are added back to the
database and further perturbations can be applied. In total, we gen-
erate 10,000 training scenes in our experiment. The supplementary
document gives pseudocode for this procedure.

Learning Relationships between Parts: A correct segmentation,
or over-segmentation, is essential for recovering models from point
clouds. However, this is difficult even for high quality point
clouds [Nan et al. 2012], and harder for low quality RGB-D data.
Due to noise and missing data, segmentation algorithms cannot
guarantee that e.g. points belonging to a chair base and its back
can be cleanly separated, or that some points will be classified as
belonging to neither. To reduce the need for accurate segmentation,
for models that are segmented into parts, we build classifiers for all
combinations of connected parts of the model. This approach can
also help to recognize objects or parts at a higher level and thus



reduce the number of iterations needed during the top-down match-
ing process. Only a few kinds of models (like chairs) need to be
segmented into parts, and the number of parts is small (base, back,
seat, arms), so this does not cause a combinatorial explosion.

Segmenting objects into parts, potentially with a degree-of-
freedom, allows us to handle variation. For each part, we uniformly
sample transforms within its associated degree of freedom. Again
to save space, we just save all allowable transforms and dynami-
cally apply them to vary models when training classifiers.

Model Learning: Our goal here is to determine the probability of
occurrence of any given 3-tuple (V,,V;, E,p), where V, and Vj, are
two objects and E, is the relationship between them. During model
building, the presence of objects and their adjacency, represented
by (Va,Vp, Eap), is inferred from incomplete noisy point clouds, so
there is considerable uncertainty. To overcome this problem, we
follow [Fisher et al. 2012] in using Bayesian networks [Friedman
et al. 1997] to infer the probability of co-occurrence for each tuple
(Va4 Vi, Egp) from the training database. This representation of con-
textual information allows us to deal with uncertainty. Note that as
described in Section 3.2, the contact and identity relationships are
discrete by nature. The relative location relationship is discretized
into a few states, allowing probability to be effectively learned.

4 Input Data Analysis and Representation

We now turn to modeling a new scene. Our system takes as
input a sparse set of RGB-D images of an indoor scene cap-
tured by a Kinect. We first consolidate the input RGB-D im-
ages into a global coordinate system using an RGB-D SLAM al-
gorithm [Durrant-Whyte and Bailey 2006] utilizing SIFT [Lowe
1999]) and SURF [Bay et al. 2008] features. Repetitive objects and
large textureless areas may lead to false correspondences, which
can be corrected by simple user interaction (a few intuitive mouse
clicks to remove falsely detected correspondences are sufficient).
As single points carry little discriminative information, for effi-
ciency and robustness, we first divide each RGB-D image into re-
gions using over-segmentation; the regions are later clustered to
form objects. A graph-based representation is used to compactly
represent the relationships between segmented regions.

4.1 Over-segmentation

Indoor scenes typically contain many planar primitives. We use
RANSAC [Fischler and Bolles 1981] to robustly detect them. The
floor and ceiling are taken to be the lowest and highest approxi-
mately horizontal planes, while walls are outermost large planes
perpendicular to the floor. These are used to reorient the scene with
the z direction upright, and x and y directions as closely aligned
with the walls as possible. Any misalignment between RGB-D im-
ages may lead to gaps in small objects, and cause the stitched point
cloud to be noisier than the individual scans. Therefore, we process
each RGB-D image before merging them.

To oversegment, we first remove all points belonging to the floor,
ceiling and walls, then use an approach similar to multi-plane
and connected component segmentation [Trevor 2012]: we detect
planes using a RANSAC variant, remove points on these planes,
and cluster the remaining points based on normal smoothness, Eu-
clidean distance and color distance between neighboring points.
Noise and distortion prevent a standard RANSAC plane detector
from producing satisfactory results, so we first smooth each input
frame using a fast bilateral filter, following [Izadi et al. 2011]. Then,
hysteresis thresholding is used with a tighter threshold of 0.5 cm
and a looser threshold of 1.5 cm for points definitely or possibly be-
longing to the plane. A region growing approach starts from points

satisfying the tighter threshold and iteratively adds adjacent points
that are within the looser threshold and have consistent color. An
optional color-based segmentation step can be used to extract thin
objects (e.g. a piece of paper on a desk) which cannot be distin-
guished from the plane by geometry alone. This can be requested
by the user, but in our experiments, this step is performed automat-
ically on horizontal planes whose width and height are both longer
than 0.5 m (excluding floor and ceiling planes). In practice, most
planes satisfying this criterion are the tops of desks and tables.

The previous step identifies segments as planar or non-planar.
Transforming all segmentation results to the stitched global space
leads to an over-segmented point cloud with many overlapping seg-
ments. We detect segments that refer to the same part of an object
by clustering segments based on their distance, size, histogram of
HSV values, and plane parameters (if planar). Segment clusters
belonging to large objects (any bounding box dimension greater
than 60 cm) have relatively limited misalignment, and as multiple
views provide useful information and reduce occlusion, we use lo-
cal ICP [Besl and McKay 1992] to refine the stitched result and
merge them into a single segment. For segment clusters belonging
to smaller objects, we simply keep the segment with most points,
as one image suffices to give a reasonably complete single view of
small objects. Stitching different segments would increase noise
but not provide much additional information.

4.2 Graph Representation of the Input Point Cloud

We now form a complete graph G, = (V,E), where each node v; €
V represents a point cloud segment and the value on each edge ¢;; €
E quantifies the possibility that v; and v; belong to one object. For
example, the back and base of a chair may be two separate segments
because of over-segmentation, but it is likely that they belong to
one object, so the edge value should be high. This is determined
from the Euclidean distance and color distance between the two
segments. In detail, the edge value is computed as follows:

eij =8 (s(vi,v;)) (Aae Pelid) - (1 — D) PolE)/DeB)y (1)

where A, is a weight balancing color similarity and geometric
closeness. In our experiments, 4, € [0.4,0.65], with larger A, used
for scenes where colors are of greater help in discriminating objects.
D, measures weighted closeness of segment centroids:

Deli, ) =\ (eh—el2+ (el — e+ ((ci—c))? @
where ¢ and ¢/ are the centroids of segments v; and v j- Lower im-
portance is given to distances in the z direction by introducing A,
(typically set to 0.6), as lower parts of objects are more likely to be
obscured—the scanner is typically held well above the floor by the
operator. D, is the Euclidean distance between the color histograms
of segments v; and v;. D) is the distance between the two closest
points, one from each segment. The second term indicates that two
segments are unlikely to belong to the same object if they have a
large separation compared to their sizes. If some plane v; is seg-
mented, and this leaves a detached set of points, above v;, forming
vj, then these are unlikely to belong to the same object, but another
object supported by v;: e.g. v; may belong to a monitor resting on a
desk surface represented by v;. We set the possibility to zero in this
case as follows:

1 v;is aplane and v; is isolated by removing
v; and v; is supported by v;, or vice versa , (3)
0 otherwise

s(vi,vj) =

where 8 (x) is the Kronecker delta function.



5 Semantic Reconstruction

We next explain scene reconstruction from the input over-
segmented point cloud data, using the contextual relationships
learned from the database. There are two stages: the first uses
top-down hierarchical matching and classification to recognize well
defined objects or parts. To model remaining unrecognized re-
gions, the second stage exploits contour information derived from
the RGB data. The output scene is then built by arranging appro-
priately transformed models.

5.1 Context-based Matching and Classification

Context-based classification is formulated as a Markov random
field problem solved by graph-cut optimization, integrated into our
top-down matching process. We first explain our context-based
two-layer classifier, which finds a semantic label for each region,
and then determines a suitable model. We then explain how the
classifier is used in our top-down matching strategy; the classifica-
tion is used to decide if further levels of hierarchy are needed.

Two-layer Classifier: The recognition process uses two layers.
The first determines a semantic label for each point cloud region;
the second finds the best matching model with this semantic label.
The first-layer classifier is invoked many times in our top-down
matching strategy, so must extract the features used very quickly.
Thus, we adopt the statistical features in [Nan et al. 2012], but also
add the dimensions of the bounding box to improve discrimina-
tion. Such features do not give a very precise result. Later, the
classification is improved by making use of context. In the second
layer, we find the best model having the determined semantic label.
This is done only once for each object, so we put more emphasis
on matching accuracy. This is a multi-instance object recognition
problem (e.g. finding a suitable chair model based on a point cloud
with noise and perhaps missing legs). We use the model matching
technique from [Shao et al. 2012].

Optimization Using Context: We now explain how the learned
contextual relationships are used to improve accuracy of the clas-
sifiers. The input at this stage is a set of segmented point clouds
each with a candidate tag list assigned by the classifier. This stage
selects one of the tags for each segment using context. This is done
by optimization of the following energy function, using graph cuts
for efficiency [Boykov et al. 2001]:

E(c) =Y. fa(virci) +Ac Y fe(circj), @)
i i,j

where f; is the data term, measuring the probability that v; belongs
to semantic tag c;, and f. is the compatibility term, measuring the
contextual consistency of two regions. The weight A. controls how
much emphasis is put on context, and is typically set to 2. Its impact
is evaluated in Section 6. The data term is given by

faiyci) =1 =T (vitag = c;), (5)

where T is the probability computed by the first-layer classifier that
v; has semantic tag ¢;. The compatibility term is given by

fL‘(Ci7Cj):1_Bb(vi7vj7Eij)7 (6)
where B, is the probability inferred from the Bayesian network.

In order to use the learned Bayesian network, we must also pro-
vide E;j, the relationship between a pair of objects V; and V;. Three
types of relationships are used: contact, relative location and iden-
tity. Unlike contact and relative location which can be computed
quickly, identity cannot be directly detected due to occlusion. On
the other hand, identity is a very powerful relationship, especially

for determining semantic labels of partially obscured repeated ob-
jects. E.g., a scene may have several identical chairs around a table,
and often only the top of a chair is captured as other parts are oc-
cluded by the table’s surface. Without knowledge of identity, it is
nearly impossible to recognize a chair from the point cloud itself.
However, false detection of identity will also cause significant clas-
sification errors. Thus, we use a conservative approach that limits
identity detection to two special cases which are common in real-
world scenes. Objects are considered as potentially identical if (i)
they are both touching the same wall, or (ii) they are both floor
objects (on or indirectly supported by the floor) with the same max-
imum z for their bounding boxes. If a pair of objects passes either
test, we first find the transform 7', using a RANSAC scheme, which
gives the largest overlap between 7'(V;) and V;. In the first case T is
restricted to translations in the plane of the wall; in the second case
T is restricted to translation in the x—y plane and rotation along the
z axis. The test for identity is then carried out by measuring shape
similarity and color similarity.

Vi and V; are deemed identical if the following are satisfied:
Dy(T(V;),Vj) <d; and O(T(V;),V;) > dy, @)

where D, is the Euclidean distance between HSV histograms, and
O is the overlap fraction. These threshold values are set to d; = 0.25
and d, = 0.8 in our experiments.

Top-down Matching: Nan et al. [2012] give a search-and-classify
approach to bottom-up understanding of indoor scenes. Although it
works well on high-quality point clouds, it cannot be applied to our
problem for two reasons. Firstly, our contextual information cannot
be directly integrated into their greedy framework, which recovers
objects one by one. Secondly, over-segmentation algorithms pro-
duce many small segments when presented with low-quality point
clouds, which can result in the classifier not always giving a mono-
tonically improving result. For instance, adding a wheel to an of-
fice chair does not necessarily make it more like an office chair.
Therefore, we instead use a top-down matching strategy, which
starts from the whole point-cloud graph, and at each stage, splits
the graph into subgraphs.

Top-down matching works by finding within the current graph the
pair of nodes with lowest edge value between them, indicating they
are the most likely to belong to different objects. These nodes are
taken as seeds. A graph-based random walk segmentation algo-
rithm [Grady 2006] is then used to partition the graph. This seg-
mentation method is efficient and has experimentally been shown
to give reliable results; alternative methods may also be used. This
process terminates when a subgraph is either well classified us-
ing an efficient context-based first-layer classifier (with a matching
score of at least 0.6), or is a good fit to a planar primitive. We fit
planar primitives (i) because many man-made interior objects can
be well approximated by planes, and (ii) to provide a fallback solu-
tion for objects having no suitable model in the database. Figure 4
shows an example where the scanned bookshelves are either rec-
ognized using the closest models in the database, or approximated
using planar primitives. Note that the bookshelves on the wall are
not evenly spaced (see the point cloud in Figure 2), but in the top-
down matching process they are directly matched to a bookshelf
model in the database causing an evenly spaced bookshelf (left).
On the other hand, if fitted with plane primitives at low level, the
result (right) preserves this uneven spacing. While using models
from the database allows better use of semantics and hence greater
reliability, primitive fitting works more generally. Pseudocode and
details of this algorithm are given in the supplementary document.

During top-down matching, identity relationships are updated af-
ter each step of segmentation. Points belonging to each subgraph
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Figure 4: Bookshelves found by matching models from the
database, and bookshelves approximated using planar primitives.

Figure 5: Top-down matching and classification. Above: scene and
over-segmented regions. Below: three rounds of top-down match-
ing and the classification results. Colored dashed lines represent
successive rounds for different parts of the scene.

are considered as temporary objects when determining identity re-
lationships. Once an identity relationship has been detected, the
object containing the most points is selected. Its potential classi-
fication as provided by the first-layer classifier is then propagated
to all instances having an identity relationship, as the most com-
plete object gives the most reliable classification results. Figure 5
shows an example using three rounds of recursive partitioning and
classification for a given scene.

5.2 Contour-based Refinement

After recovering the main objects in the scene, a refinement stage
revisits any unrecognized small objects and missing parts. Small
objects contain few points. Furthermore, as a loose distance thresh-
old must be used when detecting planes because of the high level of
noise, it is easy to incorrectly assign points belonging to small ob-
jects to the underlying plane. This makes it hard to recognize small
objects during the main classification and model building process.
Also, depth information can be missing for shiny surfaces such as
chair legs, causing them to be missed during model building. While
low-cost scanners continue to evolve (e.g. like the Kinect v2), im-
provements in depth image resolution are only moderate and other
fundamental limitations of the technology remain. To overcome
these problems, we use grab-cut [Rother et al. 2004] on the RGB
image to obtain reliable 2D contours in such areas. These contours
are used to determine appropriate models.

The grab-cut algorithm uses an indication of both definite and prob-
able background and foreground pixels, defined as follows:

Missing Parts

Small Objects

R

Figure 6: Extracted contours for missing parts (chair legs) and
small objects (mouse).

Background: pixels strictly belonging to the underlying plane (e.g.
a desk surface or floor), having a distance less than &y from it.
Foreground: pixels belonging to any segmented small objects or
pixels whose depth information is missing.

Probable foreground: other pixels with a distance greater than €
from the plane and whose color distance to the average foreground
color is smaller than to the background color.

Probable Background: all others pixels.

Among all points belonging to the underlying plane, let the maxi-
mum distance to the plane be D. We set gy = 0.3D and €, = 0.7D.
Figure 6 gives two examples of extracted contours for missing parts
and small objects.

After extracting contours, we use contour-matching [Eitz et al.
2012] to retrieve models. To resolve ambiguity in 2D contours, we
further use contextual relationships to refine the matching results,
again formulated as a graph-cut problem. We simply replace the
probability in the data term in Eqn. 5 by a contour-matching score
Tj. The new data term is given by:

fd(vi,ci) =1- Tk(v,-,tag = Ci). (8)

5.3 Model Placement

The final step is to combine all recognized models to form the out-
put scene. Due to noise and missing data, positions and scales of
models computed directly from point clouds are not accurate. Us-
ing them to place retrieved object models and part models in the
scene leads to a visually-implausible output scene which is a poor
match to the input. Instead, we find the transform for each model
which makes it optimally fit the data points. We first stitch part
models into full models, then process these and other full models.
For part models, we follow [Shen et al. 2012]. We identify pairs of
parts that are likely to contact each other and record their contact
point in the off-line learning stage. Here, least-squares minimiza-
tion is used to find the optimal transform (3D translation and three
scalings) for each part to bring the pair of corresponding contact
points together. A major difference from [Shen et al. 2012] is that
the stitched object models must still conform to our scene context.
Thus, we forbid z translation for certain basal parts (e.g. legs of
a chair) so that they remain supported by the underlying surface.
Once part models have been stitched, they are then treated as full
models. For full models, the best transform is defined as the one
that leads to the largest overlap between models and the point cloud.
Following [Shao et al. 2012], an energy function is optimized using



Figure 7: Semantic modeling result: office

Figure 9: Semantic modeling result: living room

Figure 8: Semantic modeling result: seminar room

Figure 10: Semantic modeling result: dining room

gradient descent to solve this problem.

6 Results and Evaluation

We now demonstrate the capabilities of our system on various real-
world indoor scenes captured at home or where we work. We
have also tested our algorithm on two public datasets: the NYU
Depth Dataset ([Silberman et al. 2012]) and the Washington RGB-
D Scenes Dataset ([Lai et al. 2014]). We evaluate the performance
and accuracy of our algorithm, and show how incorporating context
improves results. We also discuss limitations of our system.

In all cases, the input to our system is several low-resolution, low-
quality RGB-D images with significant noise and incompleteness.
Once the data have been registered with minimal user assistance
into a point cloud, semantic modeling is performed fully automat-
ically. In showing our results we use flat shading with an arbitrary
color for each object to clearly show the geometry of the recon-
structed scenes; in real applications, texture mapping could be used
for more realistic rendering.

Results using our own data. Figure 1 shows a typical office scene
with various types of objects. Most objects are correctly recog-
nized and recovered. As our part-based approach allows parts to
have a degree of freedom, the half-opened drawer and the office
chair are corrected reconstructed. Small items are generally more
challenging as little data is available causing many to look simi-
lar. However, by using contextual information, small items such
as cups are correctly identified and modeled. Some items are not
recovered, including an apple (which appears in a different context
to the one learned from the database) and some books on the shelf
(not recognized due to the limited amount of point data, as well as
clutter and their unexpected, bent, shape). Figure 7 shows a well re-
constructed office scene with multiple desks and partially occluded
chairs. Figure 8 is a seminar room with substantial occlusion of
the chairs at the back, and whose shiny legs are missing from the
depth image. The scene is successfully recovered, partly by the use
of contexts to understand what is present, and partly by use of the
contour based approach to determine the legs. Figure 9 shows a
living room scene; again most objects are identified and recovered,
apart from boxes on top of the chest which have no suitable matches
in the database. The floor lamp is recognized as a wall lamp due to
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Figure 12: Our segmentation results compared to Silberman’s.

occlusion of its stand, but the result is still reasonable. Some cush-
ions are not well segmented from the sofa and hence missing from
the reconstruction. Figure 10 demonstrates that our method is ca-
pable of recovering scenes with many small items.

Results using public RGB-D datasets. We are not aware of exist-
ing public RGB-D datasets for 3D modeling. We used two datasets
which provide Kinect-captured RGB-D images, although for a dif-
ferent purpose.

The NYU Depth Dataset V2 ([Silberman et al. 2012]) provides
1449 densely labeled pairs of aligned RGB-D images of indoor
scenes. Although all pairs come from video sequences with about
1-4 frames depicting a scene, this dataset is not intended for 3D re-
construction, and the majority of the RGB-D images lack sufficient
overlap for stitching. As well as rejecting such scenes, we also
discarded (i) ones showing different kinds of scenes, e.g. shops or
markets, to our training set which has homes and offices, and (ii)
ones showing just part of a large object rather than a whole scene.
The selected subset had 59 RGB-D images comprising 23 scenes.
Figure 11 shows two bedroom scenes constructed using this dataset.
All 23 are shown in the supplementary document.

While our aim is 3D modeling, the output of our method can be
used to segment RGB-D images. We compare the results of do-
ing so with Silberman’s method [Silberman et al. 2012]. Figure 12
shows segmentation results for Figure 11(left). The third column
contains segmentation results generated using their released MAT-
LAB code with default settings, while the fourth column corre-
sponds to our top-down matching results (regions lacking depth in-
formation and regions labeled as unknown are colored black and
dark blue respectively). While their vision based method can iden-
tify paintings on the wall, our technique leads to more satisfactory
results by making use of 3D object knowledge learned from the
database.

The Washington RGB-D Scenes Dataset ([Lai et al. 2014]) com-
prises 14 RGB-D videos recorded by a Kinect, and is designed for
point cloud based scene labeling. It provides ground truth labels for
the stitched scene point clouds. A limited number of different ob-
jects are present in this dataset. It contains four essentially different
scenes with 14 variations obtained by using different combinations
of small objects. Our reconstructed results for these four scenes are
given in the supplementary document.

Classifiers with and without context. We next demonstrate how

WS Radio
(@) (b) (©

Figure 13: Classification results (above) with and (below) without
context.

integrating contextual relationships improves object classification.
In Figures 13(a) and (b), without adding contextual information, a
printer and a mouse are mis-recognized as an oven and a bar of
soap respectively, because of shape similarities. Adding contextual
information corrects the mistakes—an oven and soap are unlikely
to appear in an office. In Figure 13(c), incomplete chair backs are
recognized as radios because of occlusion by the table surface, but
using context leads to correct determination as there is a high prob-
ability that chairs around a table are identical.

Figure 14 compares reconstruction results with those of Shao et
al. Figure 14(left) shows input RGB-D images from [Shao et al.
2012]. Figure 14(middle) shows Shao’s result; the chair in the red
rectangle is modeled with the wrong kind of legs due to missing
depth data. Figure 14(right) shows our result. By using image-
contour-based matching, our system overcomes the lack of depth
data and successfully recovers the correct style for the chair’s legs.
Note also that their method requires user assistance for semantic
modeling while our approach is fully automatic.

Precision. To quantify the effectiveness of using contextual infor-
mation, the proportion of correctly labeled objects in each scene
(chair, desk, etc.) was determined, and is summarized in Figure 15.
The blue and red bars show the correct classification rates with and
without use of context, for the scenes in Figures 1, 2, 7-10 and 14.
It is clear that classification is significantly improved by using con-
textual information. This in turn helps to guide the top-down seg-
mentation. A typical example without using context is shown in
Figure 15(right); misclassified objects are highlighted in red. Out
of 11 objects in the scene, only seven were correctly recognized:
the wall lamp was recognized as a bowl, incomplete chair backs
were recognized as radios, and shiny legs were missing. Although
chairs were correctly classified without use of context, they were
matched to inappropriate models in this case. By using the context
information, a correct scene is reconstructed (see Figure 8).

We also evaluate precision and recall on the Washington Dataset
from [Lai et al. 2014] in Table 1. As our system only needs sparse
input, we select 1% frames (frames 0, 100, 200, ...) from each
video sequence. Because a cap is not one of our pre-defined object
categories, points belonging to caps are excluded from the compar-
ison. Table 1 shows that our algorithm achieves better performance
than the method in [Lai et al. 2014].



Figure 14: Comparison with the modelling approach in [Shao et al. 2012]. Left: input scans; middle: Shao’s result; right: our result. Image
based contour matching supplements data missing in the depth map to successfully recover the correct style of legs for the chair.

Object Category | HMP2D + 3D | Our Method
bowl 97.0/89.1 100.0/95.3
box 96.2/99.3 100.0/98.5
cup 81.0/92.6 100.0/97.4
can 97.7/98.0 100.0/98.7
tea table 98.7/98.0 99.1/98.7
chair 89.7/94.5 97.9/97.1
sofa 92.5/92.0 95.7/96.2
table 97.6/96.0 98.4/97.4
background 95.8/95.0 97.8/99.4

Table 1: Precision / recall percentages for each object category
compared with the best performing hierarchical matching pursuit
(HMP2D + 3D) method from [Lai et al. 2014].
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Figure 15: Left: correct rate statistics with (blue) and without con-
text (red). Right: a sample classification result without using con-
text; misclassified objects are highlighted in red.

Parameters. We have already suggested appropriate parameter set-
tings. As noted, contextual relationships are very important, so we
further investigated the impact of varying the parameter A, which
controls the relative weighting of this factor. Figure 17(a) shows
the reconstruction precision for different values of A using our cap-
tured data, while Figure 17(c) shows the precision for each object
category using the NYU dataset. Good precision is achieved for a
wide range of A, so its choice is not critical: A, = 2 as suggested
earlier works well. Figure 17(c) also shows that small objects can
be less reliably recovered, and benefit more from context. Figure 16
shows the effects of setting A, too high. While large A, can help to
recover objects with lower classification confidence (like the TV
set), it can also lead to misidentification of point clouds that should
be rejected by the classifier (like the plants).

Database Size. Figure 17(b) shows the precision of our method on
our captured dataset when using smaller amounts of training data.
Performance benefits increase little once more than about 50% of
our training examples are used.

Running times. We implemented our system on a laptop with
a Core 17 2.10GHz CPU and 8GB RAM. The preparation stage,
manually segmenting and labeling the scene database took 7 man-

weeks, while creating scene variations and training the Bayesian
network took 7 minutes of CPU time. At run-time, it takes about 1-
2 seconds to over-segment each RGB-D image, and a few seconds
to generate the final scene model.

Limitations: Our system has two main limitations. Firstly, our
system fails if too much depth information is missing. For example,
in Figure 18 (a), depth data for the table is missing due to its glass
surface and shiny legs, causing our system to fail to recover the
table and recognize objects on it. Secondly, the classifiers in our
system rely on contextual relations learned from the database. Any
novel scenes or scene items without representation in the database
are likely to lead to poor performance. For instance, in Figure 18
(b), a stack of chairs is recognized as a single sofa and in Figure 18
(c), a fallen-over chair is recognized as a special chair without legs.

Figure 16: Higher A. helps recover objects with lower classifi-
cation confidence (e.g. the TV set), but causes misidentification
of point clouds that should be rejected by the classifiers (e.g. the
plants).

7 Conclusions

Given a sparse set of registered low-quality RGB-D images of in-
door scenes, our novel approach automatically builds semantically
labeled models that plausibly describe the input data and are a good
geometric match to it. Our method exploits relationships between
objects and their parts learned from a scene model database; it can
allow for variants by composing objects from subparts, and by un-
derstanding limited degrees of freedom relating parts. A two-stage
process is used which first recovers major objects using top-down
hierarchical segmentation and matching of 3D point data, followed
by a refinement stage to recover small or missing items using con-
tours from 2D image data. Our experimental results show that our
method can robustly recover indoor scenes in which a large variety
of typical objects is present. By incorporating semantic informa-
tion, our scene modeling approach provides a basis for novel ap-
plications such as furniture recommendation based on current room
contents and layout, which we hope to investigate in future.
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