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Abstract

Hand-drawn sketch recognition is a fundamental prob-
lem in computer vision, widely used in sketch-based image
and video retrieval, editing, and reorganization. Previous
methods often assume that a complete sketch is used as in-
put; however, hand-drawn sketches in common application
scenarios are often incomplete, which makes sketch recog-
nition a challenging problem. In this paper, we propose
SketchGAN, a new generative adversarial network (GAN)
based approach that jointly completes and recognizes a
sketch, boosting the performance of both tasks. Specifically,
we use a cascade Encode-Decoder network to complete the
input sketch in an iterative manner, and employ an auxiliary
sketch recognition task to recognize the completed sketch.
Experiments on the Sketchy database benchmark demon-
strate that our joint learning approach achieves competitive
sketch completion and recognition performance compared
with the state-of-the-art methods. Further experiments us-
ing several sketch-based applications also validate the per-
formance of our method.

1. Introduction
Sketch is a natural symbol to express abstract ideas in a

straightforward way, which is widely used in computer vi-
sion [14, 27, 45], multimedia reorganization [7, 31] and hu-
man computer interactions [39]. Hand-drawn sketch recog-
nition is a fundamental problem in many sketch-based ap-
plications. However, they are often incomplete, e.g., quick
interim sketches, and sketches of multiple overlapping ob-
jects where some objects are partially occluded. In this pa-
per, we explore the sketch completion problem, which will
benefit related research such as sketch recognition, sketch
editing and sketch-based image retrieval (SBIR).

Sketch completion aims to infer reasonable lines to fill
in missing strokes in a sketch. An ideal sketch contains per-
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Figure 1. Illustration of our joint sketch completion and recog-
nition pipeline. We use sketch completion as an intermediate
step for recognizing incomplete sketches. Experiments show that
the sketch recognition performance can be improved greatly with
completed sketch.

ceptually closure contour and uses a sparse set of lines to
capture main shape characteristics. Although sketch recog-
nition [17] and classification [47, 54] have achieved much
progress in the last decade, little attention is paid to sketch
completion. Hand-drawn sketches lack texture and contex-
tual information, and are generally known to be more am-
biguous than natural images. Therefore, image completion
methods designed for color images do not work well for
sketches directly. Moreover, the sketches of the same object
may be drawn in diverse styles due to the nature of freehand
sketches, which makes sketch completion very challenging.

Sketch is closely related to contour, both of which are
visually closed outlines of objects using black and white
pixels. The major difference between sketch and contour is
that contour always keeps consistent with the correspond-
ing real image, while sketch has more diversity [13] and ab-
straction levels [36] in appearance. A lot of effort has been
made on contour completion [34, 42, 50], aiming to either
extract perceptually-salient contours from images or to find
the boundaries of objects and surfaces in a scene. The con-
tour completion methods cannot be applied to sketch com-
pletion directly since contour completion enforces accurate
alignment with object boundaries in original images, while
sketches are not associated with specific images.



Another related problem is image completion. How-
ever, even the state-of-the-art convolutional neural network
(CNN) based methods [18, 20] designed for image comple-
tion have poor performance on sketch completion due to the
lack of color and texture context.

In this paper, we propose a generative adversarial net-
work (GAN) for sketch completion, called SketchGAN.
Our method is not category specific, and can complete in-
put sketches of different categories. Our key idea is to
jointly conduct sketch completion and recognition tasks.
The generator of our SketchGAN consists of a multi-stage
cascade network, where each stage consists of a conditional
GAN [21], and the cascade structure can further boost the
performance of a single stage. The first stage uses an in-
complete sketch as input, and transforms it to a roughly
completed output. A later stage concatenates the original
input and all the output sketches of the previous stages, and
feeds them to the generator network in the current stage.
Since we aim to design a general sketch completion frame-
work suitable for multi-category sketch completion, moti-
vated by multi-task learning in which auxiliary tasks can
often improve the performance of the main task, we adopt
sketch recognition as the auxiliary task. Conceptually, the
high level recognition task benefits from the global context
structure of the sketch completion results, and in turn train-
ing them together promotes better sketch completion.

Experiments on a widely-used dataset show that our
method is superior to state-of-the-art methods, and the
sketch completion and recognition tasks benefit each other.
An example of our joint sketch completion and recognition
is illustrated in Figure 1, which demonstrates the mutual
benefits of addressing both tasks simultaneously. We fur-
ther demonstrate that our method is very helpful to improve
the performance of downstream applications such as incom-
plete sketch recognition and sketch editing.

Our contributions are summarized as follows.

1. To the best of our knowledge, we are the first to solve
the problem of sketch completion, which can inspire
further sketch-based research;

2. We propose a new network architecture for sketch
completion, namely SketchGAN, which handles
sketches of different categories. Our method jointly
conducts sketch completion and an auxiliary sketch
recognition task, and we find that sketch completion
and recognition tasks benefit each other.

3. Experiments demonstrate that the output of Sketch-
GAN can enhance the performance of typical sketch
applications such as incomplete sketch recognition and
sketch editing.

2. Related Work
Contour completion. Contour completion plays an impor-
tant role in visual perception, and it aims to group frag-
mented low-level edge elements into perceptually coherent
and salient contours [34]. Several learning based meth-
ods for edge detection are proposed recently [2, 57]. Xie
et al. [48] use a convolutional network to pool informa-
tion from the whole image. These local [23] or mid-level
contour detection models [34, 42, 50] often ignore the im-
portant problem of contour closure, which has been widely
studied more recently [35]. Instead of using segmentation,
they propose a novel approach for contour completion that
results in closure contour in the contour domain.

Our paper focuses on sketch completion, which aims to
inpaint corrupted sketches or hand-drawn lines with miss-
ing lines instead of extracting edges from natural images in
contour completion. Sketch completion is more challenging
than contour completion, due to the ambiguity nature, large
variations and different abstraction levels among sketches.
Image completion. Another related problem to sketch
completion is image completion, both of which aim to fill
in missing strokes or regions. Previous image completion
methods can be classified into diffusion-based image syn-
thesis and patch-based methods. Diffusion-based methods
apply filters to propagate the local image appearance near
the target regions to fill them [4, 25]. Patch-based ap-
proaches are proposed for larger missing areas and com-
plicated image completion [12, 18, 24]. Unfortunately, de-
pending on the hand-crafted features, these traditional im-
age completion approaches can only repair small corrupted
areas, and cannot generate new objects which do not exist
in the original corrupted images. Recently, convolutional
networks have been applied to image completion [37, 51].
A joint multiplanar autoregressive and low-rank based ap-
proach has been proposed for image completion from ran-
dom sampling [26]. Beak et al. [3] present a multiview im-
age completion method that provides geometric consistency
among different views by propagating spatial structures.

Sketch completion and image completion both belong to
generative models. Compared to image completion, sketch
completion is more challenging due to the fact that hand-
drawn sketches lack color and contextual information for
sketch understanding. Although these image completion
methods work very well on incomplete natural images, they
are not suitable for the sketch completion task due to the
style and content gap between natural images and sketches.
Generative adversarial networks (GANs). GANs [15]
achieved impressive results for image generation [5], im-
age completion [20], and image editing [38]. GAN trains
two networks, a generative model G and a discriminative
modelD. Upon convergence, D can reject images that look
fake, and G can produce high-quality images, which can
fool D. A variety of GANs have been proposed for im-



Figure 2. Overview of our SketchGAN architecture. Our network is built upon conditional GANs with a cascade encode-decoder architec-
ture. The network uses an incomplete sketch as input, and predicts a completed sketch and its sketch classification label. We illustrate a
three-stage network which is the chosen architecture. In the first stage, we use the original incomplete sketch x as input and get a roughly
completed sketch output y1. In the next stage, we feed x and y1 to the generator and get the output of the second cascade stage, y2. Finally,
the outputs of all the previous cascade stages y1 and y2, together with the original x, are fed to the generator. We feed the output of the
final cascade stage y3 to the discriminator and the sketch classifier.

age translation problems, such as DA-GAN [32], TP-GAN
[19], and starGAN [10]. Pix2Pix [21] investigates using
conditional adversarial networks as a general-purpose so-
lution to image-to-image translation problems. CycleGAN
[56] introduces a cycle consistency loss to learn a mapping
from a source domain to a target domain without paired
training examples. Conditional GANs have been applied
to text [55, 41], images [1], and sketches [29]. In the sketch
understanding field, conditional GANs are successfully ap-
plied to enhance the performance of sketch recognition [11],
SBIR [16], and sketch-based image generation [8].
Multi-task networks. Multi-task CNN models are widely
used in various image processing [28, 6, 49] and computer
vision [22, 30, 49] applications. Motivated by the idea that
the best task estimator could change depending on the task
itself, Mejjati et al. [33] present a new multi-task learning
approach that can be applied to multiple heterogeneous task
estimators. Kiran et al. [45] propose SketchParse for auto-
matic parsing of freehand object sketches. The architecture
incorporates object pose prediction as a novel auxiliary task
to enhance the overall sketch parsing performance. In this
paper, we explore to learn sketch completion using sketch
category recognition as an auxiliary task.

Our method differs from these previous works in sev-
eral aspects. To the best of our knowledge, we are the first
to conduct systematic studies on sketch completion, which
cannot be well solved by existing image completion meth-

ods. We further propose a cascade strategy for a generative
adversarial networks, which iteratively refines the sketch
completion results. Most importantly, we solve the sketch
completion and sketch recognition problems jointly, and ex-
periments show that these two tasks can benefit each other.

3. Methodology

The architecture of our sketch completion network
SketchGAN is shown in Figure 2. Briefly speaking, given
an incomplete sketch x as input, our architecture iteratively
refines it through multiple stages (3 stages in the illustra-
tion). At each stage, the generator G takes the input x and
outputs from the previous stages (if applicable) and pro-
duces a better completed sketchG(x). The generated sketch
image G(x) of the last stage is judged by the discriminator
networkD to be real or fake. Finally, we set a sketch recog-
nition network as an auxiliary network to improve the main
target of sketch completion.

3.1. GAN and Recognition Losses

Our approach is based on generative adversarial net-
works (GANs) [15]. A GAN is a generative model that
learns a mapping from a random noise vector z to an output
image y : G : z → y . In contrast, a conditional GAN
learns a mapping from observed image x and random noise
vector z to an output image y : G : {x, z} → y . Denote



pz , pdata to be the prior distributions of z and the real data
x. The objective of a conditional GAN can be formulated
as:

LcGAN (G,D) = Ex,y∼pdata(x,y)[logD(x, y)] +

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, y))],

where a generator G is trained to minimize this objective
against an adversarial D that tries to maximize it, i.e.

G∗ = arg min
G

max
D
LcGAN (G,D).

We further utilize the improved loss proposed by Pix2Pix
[21] in which the discriminator does not observe x and an
l1 distance is mixed with the GAN objective to encourage
less blurring:

LcGAN (G,D) = Ey∼pdata(y)[logD(x, y)] +

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, y))]

LL1(G) = Ex,y,z[||y −G(x, z)||1].

The auxiliary sketch recognition loss maximizes the log-
likelihood between predicted and ground-truth labels:

Lac(C) = E[logP (C = c|y)]

and the generator maximizes the same log-likelihood
Lac(G) with the discriminator and classifier fixed.

Our total loss function is defined as follows:

G∗ = arg min
G

max
D
LcGAN (G,D)+λ1LL1(G)+λ2Lac(G),

where λ1 and λ2 are weights to balance different loss terms.
We empirically set λ1 = 100 and λ2 = 0.5, which give
good performance. In addition, we make our final network
learn a mapping from x to y without z, which is consistent
with Pix2Pix [21]. We only apply noise on several layers of
the generator in the form of dropout.

3.2. Cascade Strategy

We propose a cascade module to further refine the con-
tour closure of the completed sketches and boost the base-
line performance, which can be trained in a multi-stage
manner and keeps a good balance between accuracy and
efficiency. Our method uses sequential iterations for refine-
ment, starts from an initial model output, and then refines
the output by iteratively using original input and all the out-
puts of the previous stages.

Each cascade stage is built upon a conditional GAN net-
work, but does not share network parameters for different
cascade stages. More specifically, the output of the first cas-
cade stage y1 is fed to the next cascade stage, together with
the original corrupted sketch image x. The output of the
second cascade stage y2 is fed to the third cascade stage,

together with the original corrupted sketch image x and the
output of the first cascade stage y1. Experiments of the pro-
posed network on the Sketchy database [44] over the num-
ber of cascade stages have been conducted, and the perfor-
mance of the network is almost reaching a steady state af-
ter three cascade iterations. This cascade network can be
regarded as a recurrent completion process since both the
original input x and the intermediate outputs are repeatedly
fed to the generator. The outputs are not fed to the dis-
criminator or the classification network until the last cas-
cade stage.

3.3. Sketch Recognition

We adopt a sketch recognition network C as an auxiliary
network for sketch completion. The architecture for C is
shown within the top-right box in Figure 2. The motivation
to use sketch recognition as an auxiliary task is as follows.
On the one hand, completed sketches help improve sketch
recognition performance. Although sketch recognition has
been widely studied, the problem of corrupted sketch recog-
nition is hardly researched. As we will show later in Section
4, the output of our sketch completion method improves the
performance of existing sketch recognition algorithms. On
the other hand, since correctly completed sketches are easier
to classify, this in turn promotes better sketch completion.
Experiments show that the completion results with the aux-
iliary sketch recognition task are better than those without
the sketch recognition task.

3.4. Network Architecture

Generator. Following the generator architecture from those
in [21], skip connections between mirrored layers in the en-
coder and decoder stacks have been added to the generator,
following the general shape of a “U-Net” [43]. Our inputs
are the fused information of the original input and the out-
puts of the previous stages. The inputs are fed to a pre-
processing network consisting of two convolutional layers.
We use eight up-convolutional layers with kernel size 4 and
stride 2. A batch normalization layer and a rectified linear
unit (ReLU) activation is used in all layers. Instead of a sig-
moid activation used in the output layer in Pix2Pix, we use
a tanh activation and then map it to [0, 1] in the output.
Discriminator. Inspired by the work [20], we use two com-
ponents in the discriminator network. The local discrimina-
tor tells the fake sketch image from the real one only con-
centrating on the completed local regions, while the global
discriminator focuses on the coherence of the entire image
and the contour closure effect. Outputs of the networks are
fused together by a concatenation layer, followed by a fully
connected layer and activated by a ReLU function. Finally,
we use a tanh activation and then map the result to [0, 1] in
the output, in which 0 means fake and 1 means real.
Classifier. We have adopted Sketch-a-Net [53] as our



sketch recognition auxiliary network C. Sketch-a-Net is a
state-of-the-art CNN model for freehand sketch recognition.
The network architecture of C is shown in the top-right box
in Figure 2. The sketch recognition auxiliary network is
trained using a cross-entropy loss in an end-to-end manner
along with the rest of SketchGAN.

4. Experiments and Results
4.1. Dataset and Evaluation Metrics

Dataset. The Sketchy database (Sketchy) [44] is the first
large-scale collection of sketch-photo pairs. Particular pho-
tographic objects sampled from 125 categories have been
sketched by crowd workers and totally 75,471 sketches of
12,500 objects have been acquired. This database is widely
used in fine-grained sketch-related applications.
Data Preprocessing. We conduct data augmentation on the
Sketchy database by making randomly corrupted sketches
for each category. The dataset is randomly split into train-
ing and testing sets, containing 80% and 20% sketches, re-
spectively. For each sketch, we generate a blank rectangle
mask of random size and random position to erase the origi-
nal sketch and get a corrupted sketch. This corrupted sketch
is saved in the database if the difference between the origi-
nal sketch and the corrupted sketch is within 10% ∼ 40%,
to simulate typical missing content on sketches. We gener-
ate one corrupted sketch for each sketch and finally obtain
about 500 corrupted sketches for each category.

Our sketch completion network design is flexible to cope
with arbitrary number of sketch categories. We perform
ablation experiments and comparisons with the state-of-
the-art methods on 11 sketch sub-categories (car (sedan),
cow, horse, cat, dog, sheep, airplane, motorcycle, bicy-
cle, songbird, pickup truck) of Sketchy [44]. These sub-
categories are consistent with those in the SKETCHPARSE
network [45] designed for general sketch parsing work.1

Moreover, we also conduct sketch completion on larger
numbers of sketch categories, and experiments show that
our model has stable performance even with all the 125 cat-
egories from the Sketchy database.
Evaluation Metrics. To begin with, we adopt a straight-
forward pixel-to-pixel comparison method. We only com-
pute the metrics within the corrupt mask. Four widely
used metrics, i.e., the precision of completed black pixels
Precision, the recall of completed black pixelsRecall, the
F-measure F −Measure, and the accuracy Accuracy, are
computed. This pixel-to-pixel comparison method is not
perfect for measuring the performance of sketch completion
due to the inevitable variation of appropriate sketches. Ul-
timately, the goal of sketch completion is to make the gen-

1In fact, the SKETCHPARSE used the data from TU-Berlin, and the
two categories bus and bird cannot be found in Sketchy. Here we use the
car (sedan) and songbird instead.

erated sketches plausible to humans. Generated sketches
that do not match the original sketches used to make them,
have relatively low Precision or Recall, but they may still
be good (see Figure 3). Thus, we also visually inspect the
results and conduct two user studies (refer to Section 4.5).

Figure 3. Examples of corrupted sketches and their corresponding
completed sketches and the original ground truth sketches. We
show the completed sketches look good but they are different from
the ground truth, thus leading to low precision and recall.

4.2. Sketch Completion Results

Comparative Results. In this section, we show sketch
completion results of the mentioned 11 object categories.
Table 1 shows the quantitative performance of different cat-
egories in the Sketchy database. Each category contains
about 550 sketches, and we make one corrupted sketch for
each original sketch. Thus, the total numbers of training
and testing corrupted sketches for all the 11 categories are
6,196 and 1,184, respectively.

Table 1. Results on the Sketchy database. We conduct the ex-
periment using the 11 categories simultaneously, and report the
performance on individual categories. Experiments show that our
method is effective in sketch completion tasks of various sketch
categories, leading to stable performance.

Sketch Category Precision(%) Recall(%) F-Measure(%) Accuracy (%)
cow 76.74 49.77 60.38 92.30

horse 72.77 47.22 57.27 90.61
cat 75.56 48.23 58.87 91.25
dog 73.24 44.93 55.69 91.26

sheep 77.75 50.23 61.28 92.35
pickup truck 74.86 51.64 61.12 89.82

car 75.33 51.90 61.46 91.45
bicycle 76.47 60.47 67.53 88.32

motorcycle 79.56 61.68 69.49 89.87
airplane 77.41 55.85 64.88 92.85
songbird 70.75 48.32 57.42 93.00

Ablation study. Compared to conventional photo-oriented
DNNs such as Pix2Pix and DCGANs, our SketchGAN has
two distinct features (see Section 3): (i) the cascade network
architecture, (ii) the strategy of utilizing the auxiliary sketch



Figure 4. Results of an ablation study showing the contributions of individual components of our method.

Table 2. Comparison of different combinations of components in
our method. The results show both of the proposed strategies con-
tribute to the final strong performance of SketchGAN.

Method Precision(%) Recall(%) F-Measure(%) Accuracy (%)
SketchGAN 75.62 52.07 61.67 91.09
No Cascade 79.79 48.81 60.57 91.05
No Classifier 56.12 36.22 44.02 89.48

recognition network. In this section we evaluate the con-
tributions of each feature. Specifically, we examine three
ablative versions of our full model: SketchGAN with all
features but no cascade (No Cascade), SketchGAN with
all features but no auxiliary sketch recognition network (No
Classifier), i.e. there are no class labels and the data of
11 categories are trained and tested together, and Sketch-
GAN with all features. We show the sketch completion re-
sults in Figure 4 for visual analysis. And the results in Ta-
ble 2 show that both strategies contribute to the final strong
performance of SketchGAN. In particular, (i) from the vi-
sual results, more broken lines and intermediate completed
sketches are likely to be produced without the proposed cas-
cade strategy, and the cascade strategy leads to better com-
pletion results on large corrupted regions. (ii) The auxiliary
sketch recognition network improves the sketch completion
greatly when multi-class objects exist by offering strong
category priors. Experiments demonstrate that our sketch
completion method can achieve reliable sketch completion
results. The cascade strategy helps to make the completed
sketches maintain contour closure, and the completion re-
sults tend to be distorted without the sketch recognition aux-
iliary network.

Since the network directly output the inpainted sketches
instead of filling holes, the output sketches may be different
from the input on non-missing regions. We conduct evalua-
tions on non-missing region. Experiments of our Sketch-
GAN show that non-missing regions are well preserved,
with 93.46% precision and 85.72% recall.
Network performance analysis. We conduct experiments
to evaluate the performance with respect to different incom-
plete ratios of corrupted sketches. In this experiment, we

conduct a series of comparisons under the same conditions
but with different incomplete ratios. Table 3 shows that our
algorithm has good sketch completion performance under
different incomplete levels. If the incomplete ratio of our
training data is up to 40%, our sketch completion method
performs well. When the incomplete ratio is above 40%,
which is quite extreme in practical applications, the perfor-
mance of our model drops.

Table 3. Completion accuracy varies with different incomplete ra-
tios. Our sketch completion method performs well when the in-
complete ratio is below 40% and the completion ability drops
when the missing region is larger.

Incomplete Ratio of Corrupted Sketch
0%− 10% 10%− 20% 20%− 30% 30%− 40% 40%− 50%

Precision(%) 93.19 91.00 87.57 85.34 67.43
Recall(%) 78.49 83.57 74.86 65.47 31.84

F-Measure(%) 82.22 87.13 80.72 74.10 43.26

Moreover, we also conduct experiments to evaluate the
performance with respect to different numbers of sketch cat-
egories. In this experiment, we conduct a series of com-
parisons under the same conditions but with gradually in-
creased sketch categories. Table 4 shows our algorithm has
good sketch completion performance under different num-
bers of sketch categories, and our method behaves well even
for all the 125 sketch categories in the Sketchy Database.
Therefore, our method also has good generalization power.

Table 4. Completion accuracy varies with different numbers of
sketch categories. Our method performs well even with all the
125 categories from the Sketchy database, demonstrating the gen-
eralizability of the method.

Number of Sketch Categories
1 4 8 11 50 125

Precision(%) 67.23 71.65 72.21 75.62 82.91 79.66
Recall(%) 41.90 48.94 50.48 52.07 59.42 54.32

F-Measure(%) 51.63 58.16 59.42 61.67 69.23 64.60

4.3. Comparison with state-of-the-art methods

We compare our method with state-of-the-art methods:
Pix2Pix [21], DCGAN [40], GlobalLocalImageComple-



Figure 5. Comparison with state-of-the-art methods.

Table 5. Comparison with state-of-the-art methods. Our
method achieves better results than state-of-the-art methods:
Pix2Pix [21], DCGAN [40], Globally and Locally Consistent Im-
age Completion [20], and Generative Image Inpainting [52].

Method Precision(%) Recall(%) F-Measure(%) Accuracy (%)
Our method 75.62 52.07 61.67 91.09
Pix2Pix [21] 33.17 11.99 17.61 85.52
DCCAN [40] 14.96 24.27 18.51 74.34

GlobalLocalImageCompletion [20] 22.49 18.25 78.48 20.15
GenerativeImageInpainting [52] 64.25 11.41 19.38 89.17

tion [20], Generative Image Inpainting [52]. Pix2Pix and
DCGAN are GAN-based methods, and GlobalLocalImage-
Completion and Generative Image Inpainting are image in-
painting methods.

Table 5 shows the quantitative evaluation of our method
and the state-of-the-art methods. Figure 5 shows examples
for visual comparison. Our network is superior to the base-
lines in sketch completion in terms of completion perfor-
mance and visual results. Compared with Pix2Pix [21], our
method produces better results in terms of contour connect-
edness. DCGAN [40] usually produces blurry sketches. For
the two state-of-the-art inpainting methods designed for im-
ages, they often produce wrong strokes.

4.4. Applications

Incomplete Sketch Recognition. We set our sketch com-
pletion as an effective intermediate step to solve the prob-
lem of incomplete or corrupted sketch recognition. Sketch
completion is conducted before sketch recognition. As
mentioned in Sec. 1, Figure 1 shows the incomplete sketch
recognition process with and without our sketch completion
as an intermediate step.

Moreover, we have found that the improvement of sketch
recognition rate is largely influenced by the incomplete ra-
tio of the corrupted data. When the incomplete ratio is
relatively low, the current sketch recognition methods can
cope with such input data quite robustly, but these meth-
ods cannot maintain the same level of performance as the
incomplete ratio increases. In such cases, our sketch com-
pletion helps improve the recognition performance signifi-
cantly. Here we conduct an incomplete sketch recognition
experiment using two well-known sketch recognition meth-
ods: Sketch-a-net [53] and Sketch-object-recognition
[46]. Figure 6 shows the sketch recognition performance
w.r.t. varying incomplete ratio of sketches, indicating that
our incomplete sketch recognition approach is universal for



improving general sketch recognition methods. Using our
sketch completion method as an intermediate step of the in-
complete sketch recognition task can enhance the recog-
nition accuracy significantly, especially for sketches cor-
rupted seriously.

Figure 6. Improvement of sketch recognition rates with respect to
the incomplete ratio of sketches. The sketch recognition meth-
ods used here are Sketch-a-net [53] and Sketch-object-recognition
[46], respectively.

Sketch Editing. Hand-drawn sketches are usually in-
complete in scenarios such as overlapping sketches for
a scene with multiple objects, interim sketches, or cor-
rupted sketches due to image segmentation. Neither the
well-known sketch2photo problem [7] or the current sketch
recognition studies have considered or handled the situa-
tions where corrupted sketches are provided, which brings
huge obstacles and limitations to post sketching applica-
tions. Here we use our sketch completion method as an
intermediate step which offers a new mode of sketch appli-
cations (See Figure 7).

Figure 7. Sketch editing. Corrupted sketches appear when pars-
ing or segmenting sketch scenes. With sketch completion as a
key step, we can handle post sketching applications more easily,
including sketch reorganization, colorization, SBIR, sketch based
image generation, etc.

4.5. User Study

Since pixel level comparisons do not always give mean-
ingful measure of sketch completion quality, we further de-
sign user studies to evaluate our sketch completion method.
User Study I. We ask 15 users (8 males and 7 females)
to evaluate the naturalness of our sketch completion, since

there do not exist standardized criteria to evaluate sketch
quality [9]. The mean age of the participants is 24.5 years.
Before the experiment, we explained the purpose and pro-
cedures to the participants. Each experiment lasted about
15 minutes. In our test, users are shown with randomly
selected sketches, either original sketches from the dataset
or corrupted sketches completed by our method, and they
are asked to evaluate whether the sketch is an actual hand-
drawn sketch or a completed one. The results show that
38% of our sketch completion results fool the people on
average, and 56% of hand-drawn sketches are regarded as
hand drawn. This demonstrates that our completed sketches
are perceptually close to real hand-drawn sketches from a
user perspective.

User Study II. Next, we analyze subjective quality judg-
ment of the completed sketches processed by our method
and by other image completion methods. We adopt a two
alternative force choice (2AFC) scheme which is widely
used in psychological studies as it is simple and reliable.
20 participants are asked to pick a better one between the
results of our method and those of Pix2Pix or GlobalLo-
calImageCompletion. Images are shown in random order
to avoid bias. The results show that more than 76% and
84% users believe the completion results of our method are
better than those completed by Pix2Pix and GlobalLocal-
ImageCompletion, respectively, proving that our method is
superior to state-of-the-art methods from a user perspective.

5. Conclusions

In this paper, a novel solution to joint sketch completion
and recognition is proposed, and a completion model fusing
cascade network and conditional GANs is used to capture
the characteristics of sketches. The experiments demon-
strate that the proposed model performs very well in various
sketch completion tasks, and also demonstrate that sketch
completion is useful in various sketch-based applications.
Although promising performance has been achieved, there
are still many issues open to be addressed in future work,
such as coping with different styles of sketches and multiple
objects at the same time, etc. In addition, the missing areas
of sketches are limited to 50% in our current experiment set-
tings. However, users may draw very rough sketches with
fewer and inaccurate strokes on touch screen devices. We
will extend the framework to complete sketches with large
missing ratio in future.
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