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WSCNet: Weakly Supervised Coupled Networks for
Visual Sentiment Classification and Detection
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Abstract—Automatic assessment of sentiment from visual
content has gained considerable attention with the increasing
tendency of expressing opinions online. In this paper, we solve
the problem of visual sentiment analysis, which is challenging
due to the high-level abstraction in the recognition process.
Existing methods based on convolutional neural networks learn
sentiment representations from the holistic image, despite the fact
that different image regions can have different influence on the
evoked sentiment. In this paper, we introduce a weakly super-
vised coupled convolutional network (WSCNet). Our method is
dedicated to automatically selecting relevant soft proposals given
weak annotations (e.g., global image labels), thereby significantly
reducing the annotation burden, and encompasses the following
contributions. First, the proposed WSCNet detects a sentiment-
specific soft map by training a fully convolutional network
with the cross spatial pooling strategy in the detection branch.
Second, both the holistic and localized information are utilized
by coupling the sentiment map with deep features as semantic
vector in the classification branch. The sentiment detection and
classification branches are integrated into a unified deep frame-
work optimized in an end-to-end manner. Extensive experiments
demonstrate that the proposed WSCNet outperforms the state-
of-the-art results on seven benchmark datasets.

Index Terms—Visual sentiment analysis, weakly supervised
detection, convolutional neural networks

I. INTRODUCTION

Visual sentiment analysis from images has attracted great
attention with an increasing tendency of expressing opinions
via posting images on social media platforms, e.g., Flickr
and Twitter. Assigning image sentiment automatically has
various applications, e.g., affective computing [2], opinion
mining [3], [4], emotion-based image retrieval (EBIR) [5],
[6], entertainment [7], [8], etc. Recently, due to the success
of convolutional neural networks (CNNs), numerous deep
approaches have been proposed to predict sentiment [9], [10].
The effectiveness of machine learning based deep features
has been demonstrated over hand-crafted features (e.g., color,
texture, and composition) [11]–[13] on visual sentiment pre-
diction. However, several issues exist when using CNNs to
address such an abstract task, which are explained as follows.
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Fig. 1. Examples from the (a) EmotionROI [14] and (b) EMOd datasets [15]
with the human annotation. The ground-truth sentiments are also given. The
normalized maps indicate the regions that influence the evoked sentiments
and emotional attention. As can be seen, the sentiments can be evoked by
specific regions.

First, compared with conventional recognition tasks, visual
sentiment analysis is more challenging due to a higher level
of subjectivity in the human recognition process [2]. Neu-
roimaging and behavioral studies find that human attention
is attracted by emotional relevance of a stimulus [16]–[18],
which is also proved as the emotion prioritization effect in
computer vision studies [15]. Fig. 1 shows examples from the
EmotionROI [14] and EMOd datasets [15]. As can be seen,
specific regions show strong influence on evoked sentiment.
It is necessary to take such an effect into consideration
for visual sentiment prediction, while most existing methods
employ CNNs to learn representations only from entire images
[19], [20]. Second, precise annotations (e.g., bounding boxes)
can provide more discriminative information than image-level
labeling, which also lead to better performance in recognition
tasks [21]. However, there are two limitations for visual
sentiment classification using region-based annotations. On
the one hand, collecting such precise annotations can be
very labor-intensive and time-consuming, whereas achieving
only image-level annotations is much easier, especially for
such a subjective task. On the other hand, different regions
contribute differently to the viewer’s evoked sentiment, while
crisp proposal boxes only tend to find the foreground objects
in an image.

To address these problems, this paper proposes a weakly
supervised coupled network (WSCNet) framework for joint
sentiment detection and classification with two branches,
namely detection and classification branches. The first branch
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is designed to generate region proposals evoking sentiment.
Instead of extracting multiple crisp proposal boxes, we use a
soft sentiment map to represent the probability of evoking the
sentiment for each receptive field. In detail, we make use of a
fully convolutional network (FCN) followed by the proposed
cross-spatial pooling strategy to summarize the feature maps
into image-level scores. Thus, the network can be trained with
image-level sentiment labels, which significantly reduces the
annotation burden. Then the sentiment map is generated and
utilized to highlight the regions of interest that are informative
for classification. In addition, the second branch captures the
localized representation by coupling the sentiment map with
the deep features, which is then combined with the holistic
representation to provide a more semantic vector.

Our contributions are summarized as follows: First, we
introduce a weakly supervised coupled network integrating
visual sentiment classification and weakly supervised senti-
ment detection into a unified CNN framework, which learns
the discriminative representation for visual sentiment analysis
in an end-to-end manner. Second, we exploit sentiment maps
to provide image-specific localized information with only
image-level labels, with which both holistic and localized
representations are fused as semantic vector for robust sen-
timent classification. Extensive experiments demonstrate that
the proposed framework performs favorably against the state-
of-the-art methods on seven benchmark datasets.

This paper is an extended version of our conference pa-
per [1], to which we enrich the contributions in the following
four aspects: (1) We provide useful details of our weakly
supervised framework, and distinguish it from comparative
methods, e.g., salience detection and weakly supervised de-
tection frameworks. (2) We add a comprehensive review of
related work making the manuscript more self-contained. (3)
We conduct an exhaustive analysis on the weakly supervised
detection framework for visual sentiment prediction and add
evaluation on the eye-tracking dataset [15]. For comparison,
recent learning based salience detection methods are also
trained and evaluated on such datasets. (4) We carefully study
the capability and failure mode of our approach, and highlight
the difference between the sentiment map and other attention
and salience work.

II. RELATED WORK

Our work is closely related to two recent trends in computer
vision community, i.e., understanding and recognition of visual
sentiment, and weakly-supervised detection algorithms.

A. Visual Sentiment Prediction

The literature on visual emotion prediction can be roughly
divided into categorical and dimensional approaches. The
categorical approaches [2], [22], [23] identify sentiments with
a limited set of categories according to psychological studies,
e.g., sadness, fear. Likewise, with a dimensional view of sen-
timents, the dimensional approaches place sentiment in a two-
or three-dimensional space, e.g., valance-arousal (VA) [24],
[25], which allow for a greater range of expressions. This
paper mainly focuses on categorical approaches aiming at

TABLE I
STATISTICS OF THE AVAILABLE AFFECTIVE DATASETS. MOST DATASETS

DEVELOPED IN THIS FIELD CONTAIN A FEW THOUSAND SAMPLES, MAINLY
DUE TO THE SUBJECTIVE AND LABOR INTENSIVE LABELING PROCESS. AS

THE LAST COLUMN SHOWS, NONE OF THESE DATASETS EXCEPT
EMOTIONROI AND EMOD PROVIDE GROUND TRUTH REGIONS THAT

EVOKE SENTIMENTS.

Dataset #Images #Classes Regions

IAPSa [12] 395 8 N
Abstract [12] 228 8 N
ArtPhoto [12] 806 8 N
Twitter I [19] 1,269 2 N
Twitter II [31] 603 2 N
EmotionROI [14] 1,980 6 Y
EMOd [15] 1,019 10 Y
Flickr&Instagram [10] 23,308 8 N
Flickr [43] 60,745 2 N
Instagram [43] 42,856 2 N

mapping sentiments into intuitive categories [26]–[28]. In the
early years, there are numerous methods using hand-crafted
features for image sentiment classification [11], [29], [30].
For example, Machajdik et al. [12] define a combination
of rich hand-crafted features based on art and psychology
theory, e.g., composition, color variance and image semantics,
while Zhao et al. [13] introduce more robust and invariant
visual features designed according to art principles. Moreover,
Borth et al. [31] propose the visual sentiment ontology (VSO)
and detectors to detect adjective noun pairs (ANP) from
images as a mid-level representation, while a similar method in
[29] leverages the mid-level attributes. To predict personalized
emotion perceptions, Zhao et al. [32], [33] further propose the
multi-task hypergraph learning, considering different factors
that may influence emotion perceptions, i.e., visual content,
social context, temporal evolution and location influence.
However, such hand-crafted visual features are shown to be
effective only on several small datasets [34], while having
limitations in classifying large-scale images from social media.

More recently, CNN-based approaches [10], [35]–[37] have
also been applied to recognize visual sentiments and achieve
significant advances. For example, Chen et al. [38] construct
DeepSentiBank as a visual concept of ANP classification
model. Campos et al. [20], [39] fine-tune state-of-the-art CNNs
pre-trained on the large-scale general dataset [40] for visual
sentiment prediction. You et al. [41] and Wu et al. [41] propose
to make use of web images for training deep models due
to lack of well-labeled data. In addition, there are several
methods utilizing the rich information from the multiple layers
of CNN models. Zhu et al. [35] propose a unified CNN-
RNN framework to integrate different levels of features by
exploring their dependencies, while Rao et al. [42] propose
a multi-level deep network to unify both low-level and high-
level information in images.

Psychology study findings indicate that human attention
usually prioritizes emotional content (e.g., smiling babies)
over emotionally neutral stimuli [16], [46], [47]. While most
CNN-based methods for sentiment classification extract deep
features from the entire image, significantly less attention has
been paid to utilize the localized information for sentiment
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Fig. 2. Illustration of different architectures. (a) plain CNN, (b) MIL [44] (c) CAM [45], (d) our proposed architecture. In (a), a fixed-size image is fed into
the CNN. In (b), a set of patches only requires image-level annotations for training, while the candidate bounding boxes are generated in multiple stages. In
(c), the object localization information comes from viewing the convolutional filters as detectors in a unified network, which is ignored for learning sentiment
representation. The proposed WSCNet in (d) introduces cross-spatial pooling for summarizing the information from the deep feature maps and combines the
advantages of utilizing both holistic representation and localized information.

prediction [48]. Recently, Sun et al. [49] and Yang et al. [50]
discover affective regions based on an off-the-shelf object pro-
posal algorithm and combine deep features for classification.
However, such methods are sub-optimal since the objectness
algorithm is separate from the prediction method, and regions
that are not object-like may be excluded at the very beginning.
In [51], a method based on an attention model is developed in
which local visual regions induced by sentiment related visual
attributes are considered. In addition, Peng et al. [14] train a
supervised network FCNEL to predict the emotion stimuli map
(ESM) with manually labeled pixel-level ground truth. Fan et
al. [52] investigate how attention influences visual sentiment
and further propose a novel DNN model with a subnetwork
that is able to encode the relative importance of regions
within an image [15]. However, such fully supervised methods
would be extremely labor intensive if they were extended
to large-scale datasets. The existing datasets in this field are
summarized in Tab. I, most of which only contain limited
samples with image-level annotation. Different from existing
methods in the literature, we propose a weakly supervised
model to learn a discriminative sentiment representation for
both classification and detection. Experimental results show
the superiority of the proposed framework over the state-of-
the-art methods.

B. Weakly Supervised Detection

With the recent success of deep learning on large-scale
object recognition [53], several weakly supervised CNNs have
been proposed for the object localization task [54], [55]. The
objective of these methods is to localize object parts that are
visually consistent with the semantic image-level labels across
the training data. One of the most common approaches for
tackling this task is to formulate it as a multiple instance learn-
ing (MIL) problem [44], [56]–[59]. MIL defines images as a
bag of regions, and assumes that images labeled as positive
contain at least one object instance of a certain category and
images labeled as negative do not contain an object from the
category of interest, as shown in Fig. 2 (b). Cinbis et al. [60]
consist of generating object proposals and extracting features

from the proposals in multiple stages, and employ MIL on
the features to determine the box labels from the weak bag
labels. In [61], a weakly-supervised deep learning pipeline is
proposed to localize objects from complex cluttered scenes by
explicitly searching over possible object locations and scales in
the image. Since the training process of the MIL alternates the
stages of object extraction and classifier training, the solutions
are non-convex and as a result are sensitive to the initialization.

Recently, some studies show a similar intuition that CNNs
trained using weak supervisions can provide object location
information, which try to localize objects by first generat-
ing object score heatmaps and then placing bounding boxes
around the high response regions [45], [55], [62], [63]. For
example, Zhou et al. [45] address weakly-supervised object
localization using global average pooling and extend their
analysis to abstract concepts, which provides a typical solution
in this domain. As shown in Fig. 2 (c), they aggregate class-
specific activation maps (CAM) by adding a global average
pooling (GAP) layer. Porzi et al. [64] introduce the top-
N average pooling to find the best compromise between
average and max pooling for urban scenes, while Alameda-
Pineda et al. [65] further propose LENA pooling layer for
virality recognition. Similarly, Durand et al. [66] propose
Wildcat pooling to summarize all information contained in
the feature maps for each class, which takes maximum and
minimum scoring regions into consideration, while Zhu et
al. [62] also propose soft proposal networks (SPN) to generate
soft proposals for weakly supervised object localization. In
addition, Wei et al. [67], [68] propose to mine dense object
regions for supervision by incorporating the adversarial erasing
into finding the corresponding semantic regions. Zhang et
al. [55] further propose to generate Self-produced Guidance
(SPG) masks for improving the localization performance.
However, such weakly supervised methods are mainly tested
on the object localization dataset, which contains a large
portion of natural iconic-object images, i.e., a single large
object located in the center of an image or several different
objects located separately. Considering that affective images
contain ambiguous sentiment, where different emotions may
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Fig. 3. Illustration of the proposed WSCNet for visual sentiment analysis. The input image is first fed into the convolutional layers of FCN, and the response
feature maps are then delivered into two branches. The detection branch employs the cross-spatial pooling strategy to summarize all the information contained
in the feature maps for each class. The generated sentiment map is then coupled with the original deep feature maps in the classification branch, resulting in the
localized representation of the input image. Then, both holistic and localized representations are concatenated as a semantic vector for sentiment classification.
These two branches only require image-level supervisions for training.

coexist in the same stimuli, the performance of these methods
can be limited for such subjective tasks.

In this paper, we follow this research direction and analyze
whether such intuition that views the convolutional filters as
detectors to activate locations is still effective when used
for classifying and localizing patterns associated with visual
sentiment. Different from the existing methods, as shown in
Fig. 2 (d), we integrate sentiment-related proposals into CNNs
for utilizing local information under weak supervision. Instead
of using class-specific activation [45], [66], this work detects
a unified sentiment map considering all the activation maps
by a weighted sum pooling strategy, due to the ambiguous
information between the sentiments. Moreover, the detected
sentiment map is coupled on the feature maps, which are then
combined with the global representation as a more semantic
vector. Thus, the detection and classification branches can
boost each other during the end-to-end training process.

III. WEAKLY SUPERVISED COUPLED NETWORK

Fig. 3 illustrates the proposed weakly supervised coupled
network, which aims to detect soft proposals that evoke
sentiment, only requiring image-level labels as the manual
supervision. Specifically, WSCNet jointly optimizes both de-
tection and classification tasks with two network branches,
i.e., detection branch and classification branch. The detection
branch is employed to generate a sentiment map providing the
localized information, which is then fed into the classification
branch, fusing the holistic as well as the localized representa-
tions to form the semantic vector for classification.

A. Sentiment Map Detection Branch
A sentiment image is defined as a person’s disposition to

respond to visual inputs according to the psychological the-
ory [69]. While attention and salience works aim to find salient

objects in images, this paper focuses on the regions evoking
sentiment, which may contain not only salient objects but
other related areas [14]. As mentioned above, there are only a
few end-to-end CNN frameworks for weakly supervised object
detection that do not use additional localization information.
In order to infer the sentiment map directly in the CNN, the
convolutional filters are viewed as the detector that produces
the feature maps as the response. Different from the object
detection methods that employ the RoI pooling [70] operation
on the bounding box [71]–[73], a form of soft proposal is
used to represent the probability of evoking the sentiment for
each receptive field. We first propose a cross-spatial pooling
strategy to summarize the feature maps to the categorization-
level information.
Cross-spatial pooling strategy. For a collection of N training
examples {(xi, yi)}Ni=1, let xi denote an affective image, yi ∈
{1, · · · , C} denotes the corresponding sentiment label, and C
is the number of affective categories. For each instance, let
F ∈ Rw×h×n be the feature maps of the last convolutional
layer in the CNN, where w and h are the spatial size (width
and height) of the feature maps, respectively, and n is the
number of channels. We first add a 1× 1 convolutional layer
to capture multiple information for each sentiment category,
which has a high response to certain discriminative regions.
Suppose k detectors are applied to each sentiment class, we
obtain feature maps F ′ with the dimension of w×h×kC. We
propose to summarize all the information as a single image-
level score for each of the sentiment classes independently,
regardless of the input size, which is achieved by the cross-
spatial pooling strategy:

vc =
1

k

k∑
i=1

Gmax(fc,i), c ∈ {1, · · · , C}, (1)
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mapping [45]. The sentiment map can be generated by mapping the predicted
class scores of the input image to the deep feature maps during the training
phrase, while the CAM needs an unnatural way for visualization only in the
test phase by using the weights from the trained network.

where fc,i represents the i-th feature map for the c-th label
from F ′, and Gmax(·) denotes the Global Max Pooling
(GMP). Here, GMP is employed to identify just one discrim-
inative part for each feature map in the same sentiment class
inspired by [45], which results in a 1×1×kC vector. Then k
responses for each label are unified with the average pooling
operation, where the value can be maximized by finding all
discriminative regions of the specific sentiment, as all low
activations reduce the output of the particular map. The pooled
vector v ∈ RC is then fed into a C-class softmax layer as the
sentiment detection loss:

Ldec = −
1

N

N∑
i=1

C∑
c=1

1(yi = c) log vc, (2)

where 1(s) = 1 if the condition s is true, and 0 otherwise.
Thus, the filter weights can be updated during the training
process, which yields the discriminative location in the feature
maps for each class. We use the cross-spatial pooling strategy
to represent the GMP layer followed by a class-specific
average pooling as a convenient term.
Generating the sentiment map. Different from object lo-
cations [61] or class activation maps [45], the activation
feature maps for different sentiments are dependent due to
the ambiguity existing in the sentiment labels [36]. Thus, this
paper proposes to capture the regions evoking sentiment by
considering all the class activation maps with corresponding
weights.

(a) Input (c) Sentiment map(b) Ground truth

(d) Average class activation map

  disgust
  0.29

  anger
  0.18

  fear
  0.16

  joy
  0.09

  sadness
  0.18

  surprise
  0.07

Disgust

Fig. 5. The sentiment map generated from the top 6 classes for the given
“disgust” image. The predicted class label and its score from the detection
branch are shown in each activation map. We observe that the highlighted
regions vary across predicted classes.

We first obtain a single map from the k feature maps
for each sentiment, here the average pooling operation is
employed to take multiple information into consideration. All
the C class-wise feature maps with corresponding weights
are then considered to capture the comprehensive localized
information, instead of using the feature maps with the largest
response from a specific class (see also Fig. 4 (a)). Thus, our
sentiment map M ∈ Rw×h is generated using vc as the weight
of the response map of class c:

M =

C∑
c=1

vc

(
1

k

k∑
i=1

fc,i

)
. (3)

Intuitively, based on prior methods [74], we expect that each
unit vc is activated by some visual patterns within its receptive
field. The sentiment map is a weighted linear sum of the
presence of these visual patterns at different spatial locations.
By simply up-sampling the activation map to the size of the
input image, we can identify the regions most relevant to the
evoked sentiment.

B. Coupled Sentiment Classification Branch

The original convolutional feature can be viewed as the
holistic representation from the perspective of image rep-
resentation. While the sentiment map highlights the image-
specific discriminative regions, such a map can be utilized to
produce a local representation that is informative for image
classification. Inspired by [62], the Hadamard product is
employed to couple each feature map from the original feature
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maps F with M . Thus, we obtain the coupled feature maps
U = [U1, U2, · · · , Un], where the element Ui = M ◦Fi, and ◦
denotes the element-wise multiplication. For fusing the multi-
view information, we use vector fusion in the classification
branch, which can benefit from end-to-end learning. Then the
coupled feature maps and the original feature maps can be
encoded to form a more informative semantic feature d ∈ R2n

by:
d = Gavg(F ] U), (4)

where ] denotes the concatenation of different convolutional
features. In the above equation, Gavg(·) is the global average
pooling (GAP) operation, which outputs the average value of
each feature map.

We then add a fully-connected layer to compute the pre-
dicted scores of the input image for different classes. And the
sentiment scores s(yi = c|d,wc) are defined as:

s(yi = c|d,wc) =
exp(w>c d)∑C

c′=1 exp(w
>
c′d)

, (5)

where W = {wc}Cc=1 is the set of model parameters. Thus,
the classification is carried out by minimizing the following
log likelihood function:

Lcls = −
1

N

N∑
i=1

C∑
c=1

1(yi = c) log s(yi = c|d,wc). (6)

In this network, the C-way classification layer is determined
by the number of classes in the affective dataset.

C. Joint Training Process

As shown in Fig. 3, our WSCNet will produce two outputs
for sentiment detection and sentiment classification tasks.
Given the training set, we explicitly train the proposed deep
model to optimize the joint loss function:

L = Ldec(x, y) + Lcls(x, y). (7)

Since derivatives w.r.t. all the parameters can be derived, we
can conduct an effective end-to-end representation learned
using stochastic gradient descent (SGD) to minimize the joint
loss function. With this scheme, we can detect the sentiment
map using weakly supervised learning, and utilize the localized
information for discriminative classification.

D. Discussion

In order to utilize the image-level label for training, the
cross-spatial pooling strategy is employed to summarize the
information of feature maps into image-level scores, which
includes no parameters to learn compared to others, e.g., the
attention-based strategy [77], [78]. This kind of architecture
is also reversed in the CAM-based methods [45], [79], which
employ global pooling before the last fully connected layer.
For example, the whole network needs to be trained first,
and fully-connected weights of the corresponding class are
then extracted to combine the feature maps from the previous
convolutional layer, as shown in Fig. 4 (b). This order needs
an unnatural way for visualizing class-specific heatmaps, while

the proposed cross-spatial pooling layer can be visualized with
direct localization of discriminating regions. In addition, due
to the ambiguity information existing in the sentiments, we
generate the sentiment map taking all the response feature
maps into consideration. In Fig. 5, we highlight the differences
for utilizing different classes to generate the maps. Note that
the sentiment scores reported are from the detection branch,
corresponding to the pooled vector vc. For the input disgust
image, the high scores are all from related classes (e.g., other
negative sentiments like anger and sadness), providing the
complementary information.

IV. EXPERIMENTS

In this section, we evaluate the proposed WSCNet on visual
sentiment classification and detection tasks. The datasets and
experimental setup are described in Sec. IV-A and Sec. IV-B,
respectively. We evaluate the effectiveness of our method for
classification and discuss important parameters in Sec. IV-C.
Finally, we evaluate the detection performance on two datasets
and visualize the quality of detection results in Sec. IV-D and
Sec. IV-E.

A. Datasets
We evaluate the proposed WSCNet on seven public affec-

tive datasets including the Flickr and Instagram (FI) [10],
Flickr [43], Instagram [43], Twitter I [19], Twitter II [31],
EmotionROI [14], EMOd datasets [15].

The FI dataset is labeled by a group of 225 Amazon Me-
chanical Turk (AMT) participants. Each one is asked to label
the images from social websites that are queried with eight
sentiment categories as keywords, i.e., anger, amusement, awe,
contentment, disgust, excitement, fear, sadness. And 23,308
images receiving at least three agreements finally form the
dataset. The Flickr and Instagram datasets contain 60,745
and 42,856 images from Flickr and Instagram, respectively,
each image of which is annotated with a sentiment polarity
(i.e., positive, negative) label. The above three datasets are the
current largest datasets in the domain. In addition, we also
evaluate on four small-scale datasets. Twitter I and Twitter
II datasets are collected from the social websites and labeled
with sentiment polarity categories by AMT participants, which
consist of 1,269 and 603 images, respectively. The Emotion-
ROI dataset is created for a sentiment prediction benchmark,
which is assembled from Flickr resulting in 1,980 images
with six sentiment categories. Besides, each image is also
annotated with 15 regions that evoke sentiments, which are
normalized to range between 0 and 1 as an emotion stimuli
map (ESM) [14]. The EMOd dataset is constructed from two
sources: (1) a subset (321) photos of the International Affective
Picture System (IAPS); (2) a set of 698 photos collected by the
authors. The EMOd dataset is the first to include eye-tracking
data. Subject eye movements are recorded by asking sixteen
subjects to observe each image freely for 3 seconds, followed
by a drift correction that requires subjects to fixate at the screen
center. For each image, a fixation map is generated by placing
at each fixation location a Gaussian distribution with sigma
equal to one degree of visual angle and then normalizing the
map to have a maximum value of 1.
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TABLE II
CLASSIFICATION ACCURACY (%) ON SEVEN AFFECTIVE DATASETS, INCLUDING FI, FLICKR, INSTAGRAM, TWITTER I, TWITTER II, EMOTIONROI,
EMOD DATASETS. WE EVALUATE THE PROPOSED WSCNET AGAINST SEVERAL BASELINE METHODS INCLUDING THE EXTRACTED FEATURE BASED

METHODS, DEEP LEARNING-BASED METHODS AND WEAKLY-SUPERVISED FRAMEWORKS. NOTE THAT SUN et al. AND YANG et al. METHODS ARE
PROPOSED FOR BINARY CLASSIFICATION AND MULTI-CLASS CLASSIFICATION, RESPECTIVELY, AND THUS DATASETS WITH INCOMPATIBLE CLASS

NUMBERS CANNOT BE EVALUATED, DENOTED AS ‘–’.

Method FI Flickr Instagram EmotionROI Twitter I Twitter II EMOd
Zhao et al. [13] 46.13 66.61 64.17 34.84 67.92 67.51 17.20
SentiBank [31] 49.23 69.26 66.53 35.24 66.63 65.93 18.93
DeepSentiBank [38] 51.54 70.16 67.13 42.53 71.25 70.23 21.79
ImageNet-AlexNet [53] 38.26 69.05 56.69 34.26 65.80 67.88 20.68
ImageNet-VGG16 [75] 41.22 69.88 63.44 37.26 67.49 68.79 22.54
ImageNet-Res101 [76] 50.01 72.26 67.28 40.79 72.55 70.42 28.77

Fine-tuned AlexNet 58.13 73.11 69.95 41.41 73.24 75.66 40.13
Fine-tuned VGG16 63.75 78.14 77.41 45.46 76.75 76.99 43.21
Fine-tuned Res101 66.16 80.03 79.33 51.60 78.13 78.23 46.56
Sun et al. [49] – 80.95 80.67 – 82.73 80.91 –
Yang et al. [36] 66.79 – – 52.40 – – –

SPN [62] 66.57 79.71 79.53 52.70 81.67 77.96 47.25
WILDCAT [66] 67.03 80.67 80.31 55.05 79.53 78.81 46.83
CAM-Res101 [45] 68.54 79.21 79.46 55.72 82.67 79.13 46.08

Ours 70.07 81.36 81.81 58.25 84.25 81.35 48.95

TABLE III
CLASSIFICATION ACCURACY (%) OF WSCNET USING DIFFERENT

NUMBERS OF FEATURE MAPS ON THE TEST SET OF THREE LARGE-SCALE
DATASETS, i.e., FI, FLICKR, INSTAGRAM. IN THE REMAINING

EXPERIMENTS, WE SET k = 4 IN OUR FRAMEWORK.

Dataset k = 1 k = 2 k = 4 k = 8 k = 16
FI 68.23 69.36 70.07 68.80 67.19
Flickr 81.46 81.87 81.36 81.15 81.98
Instagram 79.67 79.24 81.81 79.60 78.53

B. Experiment Setup

1) Implementation details: Our method is built on the pre-
trained ResNet-101 [76] on the ImageNet dataset. To deal with
the limited training data, we apply random horizontal flips and
crop a random 448×448 patch as a form of data augmentation
to reduce overfitting. We replace the last layers (global average
pooling and fully connected layer) by the proposed multi-
branch layer. The added layers are initialized using Gaussian
distributions with mean 0 and standard deviations 0.01, and the
biases are initialized to 0. The momentum and weight decay
are set to 0.9 and 0.0005 respectively. During training, the
mini-batch size for SGD is set to 32, the learning rates of
the convolutional layers and the last fully-connected layers on
both branches are initialized as 0.001, 0.01 respectively. The FI
datasets are split randomly into 80% training, 5% validation
and 15% testing sets. For the Flickr dataset and Instagram
dataset, we randomly sample the same number of images for
each class following the same configuration in [43], which
are split randomly into 90% training, 10% testing sets. The
small-scale datasets are split into 80% training and 20% testing
sets randomly except those with specified training/testing splits
[14], [31]. At test time we average the predictions of ten
images (i.e., the five crops and their horizontal reflections)
from the classification branch as final results. The sentiment
map is extracted from the detection branch according to

TABLE IV
ABLATION STUDY ON THE FI DATASET. THE BASELINE IS WSCNET

(k = 1) WITHOUT THE COUPLING OPERATION, DENOTED AS Base. NOTE
THAT SM DENOTES USING THE SENTIMENT MAP AS THE GUIDANCE, Local

DENOTES THAT ONLY THE COUPLED FEATURE MAP IS USED FOR
CLASSIFICATION, AND Coupling DENOTES CAPTURING BOTH THE

HOLISTIC AND LOCALIZED INFORMATION AS PRESENTED IN EQ. 4.

# Base k = 4 SM Local Coupling FI
1

√
66.57

2
√ √

67.96
3

√ √ √
67.69

4
√ √ √

68.23
5

√ √ √ √
70.07

Eq. 3 as the probability of regions evoking sentiment for
detection evaluation. Our framework is implemented based
on the PyTorch deep learning framework [80]. All of our
experiments are performed on an NVIDIA GTX Titan X GPU
with 32 GB on-board memory.

2) Baseline: We evaluate the proposed WSCNet against
thirteen baselines including methods using traditional features,
CNN-based methods and weakly-supervised frameworks. For
the traditional methods, we extract the principle-of-art fea-
tures [13] from the affective images. We use a simplified
version provided by the author to extract 27 dimensional
features and use LIBSVM [84] for classification. We use the
1,200 dimensional mid-level representation from the ANP de-
tector of SentiBank and apply the pre-trained DeepSentiBank
to extract 2,089 dimensional features. For the basic CNN
models, we report the results of using three classical deep
learning methods pre-trained on ImageNet and fine-tuned on
the affective datasets: AlexNet [53], VGGNet [75] with 16
layers and ResNet-101 [76]. We also show the results of
fully-connected features extracted from the ImageNet CNN
with LIBSVM. We use the default value and employ the one
v.s. all strategy. We also report the results from three state-
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TABLE V
EMOTIONAL ATTENTION PREDICTION (RANK) ON THE EMOD DATASET USING DIFFERENT METHODS, INCLUDING THE BASELINES, OBJECTNESS

DETECTION ALGORITHM, SALIENCY DETECTION METHODS, WEAKLY SUPERVISED FRAMEWORKS AND THE SUPERVISED MODEL. NOTE ‘*’ DENOTES
THE CASNET IS PRE-TRAINED ON THE DATASET WITH FULL SUPERVISION. “AVG” INDICATES THE AVERAGE RANK OF EACH WEAKLY SUPERVISED

METHOD. HERE, WE USE THE NORMALIZED FIXATION MAP AS THE GROUND-TRUTH FOR EVALUATION.

Algorithm AUC-J AUC-B CC SIM KL EMD AVG

Random Map 0.50(7) 0.50(7) 0.00(7) 0.30(7) 1.88(3) 4.25(4) 5.83(6)
Center Crop 0.68(4) 0.59(4) 0.33(5) 0.39(4) 9.58(7) 3.71(3) 4.50(4)
Objectness [81] 0.61(5) 0.56(5) 0.17(6) 0.31(6) 7.51(6) 5.04(7) 5.83(6)
GBVS [82] 0.80(1) 0.66(1) 0.46(2) 0.47(2) 5.96(5) 4.59(6) 2.83(2)
IttiKoch [83] 0.73(3) 0.63(3) 0.37(3) 0.43(3) 2.09(4) 3.16(1) 2.83(2)
WILDCAT [66] 0.55(6) 0.52(6) 0.37(4) 0.32(5) 1.66(2) 4.52(5) 4.67(5)
WSCNet 0.76(2) 0.64(2) 0.48(1) 0.48(1) 1.23(1) 3.63(2) 1.50(1)

CASNet* [15] 0.86 0.72 0.64 0.56 0.85 1.98 -

of-the-art deep methods for sentiment classification. For the
binary datasets, we use Sun’s method [49] to select top-1
regions and combine the holistic feature with the region feature
from the fine-tuned ResNet. For the multi-class datasets, we
employ Yang’s method [36] to transform the single label to a
sentiment distribution and report the classification performance
using ResNet. Moreover, we also evaluate our method against
the state-of-the-art weakly supervised frameworks, i.e., the
WILDCAT, SPN, CAM methods, which are also based on
ResNet-101 with the same input size of 448 × 448 as our
method.

For the detection task, we evaluate the performance of senti-
ment map detection against different methods. Three baseline
methods are employed to generate regions of interest for
affective images, i.e., random map, center crop and objectness
region generated by [81] and faster RCNN [70]. To generate
these baseline maps, we assign random probability to each
pixel, crop half of the image from the center, and use the
objectness tool [81] to generate one object region for each
image. We also use the Graph-Based Visual Saliency model
(GBVS) [82] and Itti-Koch model (IttiKoch) [83] to compute
the saliency map. For the weakly supervised methods, we
directly extract CAM (class activation maps) from the fine-
tuned ResNet-101 following [45], and also evaluate against
the final feature maps from the WILDCAT and SPN methods.
In addition, two fully supervised methods, i.e., FCNEL [14]
and CASNet [15], are also tested on the EmotionROI and
EMOd datasets, respectively, providing the upper bound for
weakly supervised detection. Note that CASNet is trained on
the SALICON [85] to achieve their best possible performance,
directly tested on the EMOd without training/fine-tuning on
them following [15].

3) Metrics: For the classification performance, we use the
universally-agreed metric: accuracy. For evaluation of senti-
ment detection, we use four commonly used metrics: MAE,
precision (P ), recall (R), and F−score. Before the evaluation,
we first binarize the predicted map using Otsu thresholding
following [14]. MAE is the mean absolute error between the
value of the predicted map and the ground truth map at all
locations. The precision is defined as

P =
1

N

N∑
i=1

|bi ∩ gi|
|bi|

, (8)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

MAE F1 Recall Precision

Random crop Center crop Objectness

Faster RCNN WILDCAT CAM

SPN WSCNet FCNEL*

↓ ↑ ↑ ↑

Fig. 6. Sentiment detection performance on the EmotionROI dataset (better
viewed in color version). We compare our proposed WSCNet with algorithms
including baseline methods, object detection algorithms, weakly supervised
methods and the fully-supervised model FCNEL. Note that ‘*’ denotes that
the method is trained with bounding box annotation, providing the upper
bound for weakly supervised detection methods. We employ four metrics for
detection evaluation. For MAE, lower is better, denoted by ↓). For the others,
larger is better, denoted by ↑.

where | · | is used to measure the number of pixels within the
given set. Note that gi and bi are the ground truth emotion and
the detected proposal of the i-th image. The recall is defined
as

R =
1

N

N∑
i=1

|bi ∩ gi|
|gi|

. (9)

Thus, F−score is computed using F = 2× R×P
R+P . In addition,

for the attention prediction, we use 6 metrics for comprehen-
sive evaluation following [15], including two variants of AUC
(Area Under the Curve) and four similarity metrics. AUC-J
and AUC-B [86] treat the saliency map as a binary classifier,
which alleviates the effects of center bias. Linear Correlation
Coefficient (CC) [87], histogram intersection (SIM) [88], the
Earth Movers Distance (EMD) [89] and the Kullback-Leibler
divergence (KL) [90] are used to measure the similarity
between the saliency map and fixation map. Note that for the
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Fig. 7. Weakly supervised detection results using different methods on the EmotionROI dataset. The input images and the ground truth are given in (a) and
(b). The detected regions and metric values of different weakly-supervised methods (i.e., CAM, SPN, WSCNet) are shown in the last three columns. In the
last row, we also show each average class activation maps, listed in descending order of predicted probability for each sentiment category. As can be seen,
by activating the sentiment-related areas, our method achieves the most accurate results compared to the ground truth.

first four metrics, larger is better, while for the last two metrics
smaller is better.

C. Classification Performance

We first evaluate the classification performance on seven
affective datasets, followed by a detailed discussion. We set
the hyper-parameter k = 4 in the proposed WSCNet as the
default setting. Tab. II shows that the deep representations
outperform the hand-crafted features, while the fine-tuned
CNNs have the capability to recognize sentiment from images.
The weakly supervised frameworks improve the performance
of Fine-tuned Res101 utilizing the regional information. Our
proposed method consistently performs favorably against the
state-of-the-art methods for sentiment classification, e.g., about
3.3% improvement on FI and 5.8% on EmotionROI, which il-
lustrates that WSCNet can learn more discriminative represen-
tation for this task. The following are the detailed discussion
for our proposed framework.

1) Hyper-parameter k: We first analyze the effect of the
hyper-parameter k, i.e., the number of the response feature
maps for each sentiment category. Tab. III reports the classi-
fication performance of the detection branch using different
k on the FI, Flickr, Instagram datasets. With an increasing
number of feature maps, our method is able to achieve
better performance compared with the standard classification

strategy in the CNN (i.e., k = 1), which captures multiple
views for each sentiment category. However, over-amplifying
the feature maps results in suboptimal performance mainly
due to overfitting, which is similar to the finding reported
in WILDCAT [66]. For the FI and Instagram datasets, our
method achieves the best performance with k = 4, and
for the Instagram dataset, the best performance is achieved
with k = 16, although the performance is fairly stable with
changing k. Therefore, we set k = 4 in our framework for a
trade-off between efficiency and effectiveness.

2) Different Branch Accuracy: We report the classification
performance of the classification and detection branches, since
both branches use the image-level annotations for training.
On the FI dataset, the classification branch achieves 70.07%,
while the detection branch achieves a sub-optimal performance
of 68.51%. When fusing features from the detection and
classification branches, the LIBSVM result shows similar
performance (70.18%) as the classification branch. Thus, we
only use the classification branch as the final results.

3) Ablation Study: We perform an ablation study to illus-
trate the effect of each contribution. Our baseline is WSCNet
with k = 1 and without the coupling operation, where the
classification branch is the original classification layer in
the CNN (i.e., global pooling and fully connected layer).
From Tab. IV, we can draw the following conclusions: First,
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Fig. 8. Examples of class-specific units from the proposed WSCNet on the EmotionROI dataset [14]. Both binarized ground truths and sentiment maps are
shown. The proposed weakly supervised method can achieve comparable results as the human annotations without the labeling burden.

(a) Input (b) Human (c) Objectness (d) WSCNet (e) CASNet 

Fig. 9. Qualitative results generated by our model in comparison with the
objectness methods and fully supervised method (CASNet) on the EMOd
dataset.

using both multiple feature maps (k = 4) and the sentiment
map coupled representation improve classification accuracy by
about 1% on FI, illustrating the effectiveness of local repre-
sentation. Second, utilizing the coupling operation combining
multiple view information improves the base performance by
1.7%. Third, we achieve the best accuracy by utilizing the
components to train our model in an end-to-end manner, which
shows the complementarity of all the contributions.

D. Sentiment Detection

Fig. 6 reports the detection performance of different meth-
ods on the EmotionROI dataset. As shown, our WSCNet per-
forms favorably against the baselines and weakly supervised
methods (i.e., WILDCAT, CAM, SPN), and also achieves
comparable performance with the supervised FCNEL on most

evaluation metrics. We notice that FCNEL benefits from
supervised training with bounding box annotation, and has
significantly better recall than other methods. The reason is
that the regions evoking sentiments contain both the primary
objects and additional contextual background, while Object-
ness [81] only focuses on the foreground objects and thus
achieves a reasonable precision. Compared with the existing
weakly supervised methods, our method improves the recall to
0.60, which illustrates the effectiveness of taking the sentiment
characteristic into consideration for generating the sentiment
map.

We also evaluate the performance on the EMOd dataset in
Tab. V. We compare our method with six baselines without
training on ground truth regions. As can be seen, the saliency
models perform better on the AUC metrics, however, such
metrics cannot distinguish between cases where models predict
different relative importance values for different regions of
an image [15]. The proposed WSCNet has the best overall
performance among the baselines on the CC, SIM, KL metrics,
as well as the average rank (AVG), demonstrating its advantage
on emotional attention.

E. Visualization

We provide qualitative results in Figs. 7-10. We first show
more detection results using different weakly supervised meth-
ods on the EmotionROI. As shown in Fig. 7, compared with
the ground truth, WSCNet is able to detect the relevant regions
that influence the evoked sentiment, while CAM and SPN
may only focus on the salient objects leading to a reasonable
precision but a low recall. For example, on the third row,
SPN only responds to the foreground objects, which leads to
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Fig. 10. Visualization of our detected sentiment maps on four datasets, i.e., FI, EmotionROI, Flickr, Instagram. Our detected locations are not limited to
foreground objects, but also include sentiment-related background.

Input GT Ours Input GT Ours

Fig. 11. Failure cases selected from the EMOd dataset. As can be seen,
most cases are caused by small objects, low contrast between foreground and
background, and complex background.

0.96 precision but only 0.51 recall. In contrast, our detected
sentiment map extends the object regions into the sentiment
related background, which achieves the recall of 0.83. In
addition, the last row shows more detailed results of the
detected sentiment map. Specifically, we show each average
class activation map as well as the corresponding weight,
i.e., the sentiment scores reported are from the detection
branch, corresponding to the pooled vector vc. As can be
seen, although two maps of opposite sentiment classes focus
on different regions of interest, by integrating the regions of
interest from the related class, our proposed method is able to
obtain a complementary sentiment map.

Fig. 8 shows the class-specific units for different sentiment
categories on the EmotionROI dataset as in [45]. Both the
detected sentiment maps as well as the ground truth are
generated using the Otsu thresholding for binarization. From
the figure we can identify the regions of the images that
are most discriminative for classification and exactly which
units detect these regions. The results show that the proposed
weakly supervised method can achieve comparable results as
the human annotations without the labeling burden. In addi-

Fig. 12. Per-class frequency of error modes, averaged across all classes on
the EmotionROI dataset.

tion, we also compare the prediction results with emotional
attention in Fig. 9, where the weakly supervised model can
also match human emotion prioritization.

We also show more detection results on other affective
datasets in Fig. 10. As mentioned before, for images with
clear foreground and background, some predicted sentiment
maps may be similar with the salient regions. However, there
are also significantly different regions. For example, the first
“fear” image in Fig. 10 highlights the scary face but not the
other one. Meanwhile, the sentiment-related background can
also be detected in our sentiment maps. For example, the
second “positive” image detects the sea in the background
rather than the foreground chair. Moreover, for more complex
user-contributed images, the detected sentiment maps achieve
comparable results to human annotations.

F. Failure Case Analysis

We show some failure detection cases of our framework in
Fig. 11. As can be seen, these failure cases can be categorized
into the following situations. In the first situation, the detected
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region covers the main part of the sentiment regions, while
the regions of no interest are also detected resulting in low
precision value. Typical examples are the images shown in the
first row of Fig. 11. For the second situation, as shown in the
second row, the regions evoking sentiment are not completely
localized, which can be caused by the low contrast between the
foreground and background. Last but not least, as is typical
for weakly-supervised methods, the detected results may be
misled by the salient objects in the complex scene as shown
in the last row.

In addition, we also categorize each of our sentiment maps
into one of the following five cases similar to [91]: (i) correct
detection (Recall>50%), (ii) hypothesis completely inside
ground-truth, (iii) reversed inclusion, (iv) none of the above,
but non-zero overlap, and (v) no overlap. For the EmotionROI
dataset, we show the frequency of these five cases for each
sentiment class and averaged over all classes in Fig. 12. We
have the following observations. Most failure cases have low
overlap and none of the samples belong to the fifth case due
to the soft proposal form. On average, our method predicts the
correct localization for about 60.27% images. About 37.54%
images are detected with low overlap, and only a few images
are detected excessively or partially.

Intuitively, a promising solution is to provide more prior
knowledge for the weakly-supervised learning process, such
as low-level appearances, mid-level features, and high-level
structure and attributes of the input images, so that the regions
with similar textures or semantics can be detected simultane-
ously. Another solution is to design more advanced pooling
operation utilizing rich information from both low-level and
high-level information in CNNs to deal with challenging inputs
with complex scenes.

V. CONCLUSIONS

In this paper, we present a weakly supervised framework for
both sentiment detection and classification, which addresses
the problem of time- and labor-consuming annotation process
in this domain. We develop an end-to-end coupled network
to take multiple information into consideration, which learns
the robust representation with two branches. The detection
branch is designed to automatically exploit the sentiment
map, which can provide the localized information of the
affective images. Then the classification branch, leveraging
both holistic and localized representations, can predict the
sentiments. Experimental results show the effectiveness of our
method against state-of-the-art algorithms on seven benchmark
datasets. In addition, analyses on EmotionROI and EMOd
show the effectiveness of the weakly supervised sentiment
detection.

Our weakly supervised coupled network combining local-
ized information with global representation have applications
beyond the proposed method. For example, tasks like the
aesthetic evaluation and painting classification are also subjec-
tive to obtain sufficient data, while our framework leveraging
weakly-supervised localization information can be beneficial
for analyzing such subjective tasks. In addition, the WSCNet
can also be adapted for semantic applications like Visual
Question Answering where localized features are important.
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