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Abstract

Deformation transfer is an important research problem in geometry processing

and computer animation.A fundamental problem for existing deformation trans-

fer methods is to build reliable correspondences. This is challenging, especially

when the source and target shapes differ significantly and manual labeling is

typically used. We propose a novel deformation transfer method that aims at

minimizing user effort. We adapt a biharmonic weight deformation framework

which is able to produce plausible deformation even with only a few key points.

We then develop an automatic algorithm to identify a minimum set of key points

on the source model that characterizes the deformation well. While minimal user

effort is still needed to specify corresponding points on the target model for the

selected key points, our approach avoids the difficult problem of choosing key

points. Experimental results demonstrate that our method, despite requiring

little user effort, produces better deformation results than alternative solutions.
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1. Introduction

Shape deformation is a fundamental problem in computer animation and

shape modeling. With the aim of generating realistic shapes, various approaches

have been proposed, including skeleton rigging, shape deformation [1, 2] and de-

formation transfer [3, 4]. Skeleton rigging is suitable for shapes such as human5

bodies with a well-defined skeletal structure. Shape deformation is more flex-

ible, but often requires specifying and moving a group of handles to produce

a deformed shape. To produce a deformation sequence, it not only requires

knowledge and expertise, but it is also tedious to produce each deformed shape.

When some deformed shapes are available, deformation transfer makes it10

possible to transfer the deformation of source shapes to target shapes, effectively

reusing existing deformations. This makes it much more efficient to produce new

deformed shapes, while avoiding the requirement of having shape deformation

expertise. Previous work for deformation transfer mainly focuses on improving

deformation transfer quality and extending it to handle general shapes and15

large deformation. Another key step for deformation transfer is finding reliable

correspondences. However, this step is challenging, especially when the source

and target shapes differ significantly (e.g. transferring the deformation of a

human to an armadillo). In such cases, correspondences are either manually

specified, or even if some semi-automatic algorithms are used, constraints of20

key correspondences are still required to be specified by the user. However,

specifying a set of sufficient and effective correspondences requires expertise,

including understanding of the underlying deformation transfer technique. In

practice, this is often achieved using a trial-and-error approach where further

correspondences are added if the user is unsatisfactory with the deformation25

transfer results.

In this paper, we propose a novel approach to deformation transfer with

automatic key point selection. Given a source shape and one or more deformed

source shapes, as well as a target shape, deformation transfer produces the same

number of deformed shapes with the same geometry as the target shape and the30
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deformation of the deformed source mesh transferred. Our major observation is

that while it is difficult for an ordinary user with little experience to understand

which correspondences are most effective, it is intuitive for users to specify the

semantically meaningful point on the target shape that corresponds to a given

point on the source shape. By producing a small set of essential key points,35

users are only required to specify their corresponding points on the target shape.

Therefore, our technique can greatly reduce the time and expertise needed for

deformation transfer. To the best of our knowledge, this is the first work that

addresses the problem of automatic key point selection for deformation transfer.

To achieve this, we adapt biharmonic weight shape deformation [5, 6] to solve40

the problem of deformation transfer, with improved clustering and an error cost

suitable for deformation transfer. Extensive experiments show that our method

outperforms state-of-the-art deformation transfer methods, and our automat-

ically selected key points are more effective than those selected by ordinary

users.45

In the following sections, we first review the most related work to ours in

Sec. 2. Algorithm details are then presented in Sec. 3, followed by experimental

results and discussions in Sec. 4. Finally, we draw conclusions in Sec. 5.

2. Related Work

Shape deformation has received significant attention and many techniques50

have been developed to improve the representation capability to handle large-

scale deformation, and utilize examples to produce better deformation results

[7]. Please refer to [1, 2] for surveys of different deformation techniques. The

recent work [8] develops an automatic method to deform meshes of arbitrary

shapes to obtain their polycube form. The work [9] proposes a smooth, inter-55

polating representation for shapes with spherical topology, and demonstrates

its use for surface deformation. Many practical problems involve shape de-

formation. The work [10] studies stain formation and evolution on deforming

cloths, and [11] exploits shape deformation for surgical simulation. In order to
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improve realism, physics-based methods [12, 13] are also developed for shape60

deformation. In this work, we focus on transferring deformation from one shape

to another, taking a simpler and more efficient data-driven geometry-based ap-

proach.

Global rigid transformation is not suitable when non-rigid deformation is

involved. Instead, deforming the shape locally rigidly helps keep details while65

producing rich deformation results. The As-Rigid-As-Possible (ARAP) defor-

mation energy is based on this idea, and has been widely used in geometric

processing, such as shape manipulation [14, 15, 16, 17] and shape interpolation

[18, 19]. Recent work [15] extends As-Rigid-As-Possible (ARAP) to anisotropic

ARAP which is direction dependent, and can solve an important problem of70

flattening functional compression garments. Our work is based on [6], which

is efficient and allows plausible deformation results to be produced, even with

sparse key points.

We now focus on reviewing existing deformation transfer techniques which

are most related to our work. In the pioneering work [3], the deformations of75

shapes are encoded using deformation gradients in local regions. With reliable

correspondences between the source shape and the target shape, the deformation

gradients are transferred to the target shape, which are then used to reconstruct

the deformed target shape by solving Poisson equations. The method relies on

accurate correspondences to work effectively, and requires quite a large number80

of correspondences due to the local nature of deformation gradients. In addition

to transferring deformation, the deformation transfer results obtained using the

above method may also contain geometric details from the source shape, which

is undesirable and may produce unreasonable shapes. The work [20] improves

over [3, 21] by adding an additional step of projecting the resulting shape to85

the manifold of plausible target shapes. The method however requires a set of

target shapes that sufficiently covers the plausible deformation space, which is

not always available.

The methods above can only handle triangle meshes. In order to deal with

general shapes, cages (i.e. a set of polyhedra to enclose the shapes) are employed90
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to handle different shape representations such as triangle soups and tetrahedron

meshes [22, 23]. These two works need extra effort to generate suitable cages

which is not only time-consuming but also requires experience and expertise.

Moreover, cages are sensitive to topological change and topological proximity of

the models. For example, two points with a large geodesic distance can be close95

in Euclidean space, and so may be enclosed in the same cage and therefore de-

formed in the same way, which leads to unnatural deformation results. To deal

with shapes with multiple components where each component is a manifold sur-

face, an alternate solution is proposed using a graph structure to represent the

general shapes for transferring the deformation gradients on the graph node [24].100

This method requires the multi-component structure to be provided, and thus

is not suitable for shapes without multiple components.

Instead of specifying correspondences on shapes, Baran et al. [4] propose a

semantic deformation transfer method by exploiting the correlation between two

shape sets (source and target). They assume that the source and target shape105

sets contain corresponding shapes with the same semantic meaning. Each de-

formed source shape is projected onto the source shape set, and the obtained

combination weights are used along with the target shape set to produce the

deformed target shape corresponding to the given source shape. The method

achieves impressive results. However, it requires source and target shape sets110

with corresponding semantics as input which are only available in limited situ-

ations.

In this work, we address the problem of deformation transfer of meshes with

the aim of significantly reducing user effort. Our method only requires one

target shape as input, and does not require proxies such as cages. We generalize115

an efficient deformation method based on biharmonic weights to deformation

transfer as it produces plausible results even with very few correspondences.

We then develop an automatic key point selection algorithm such that the user

is only required to specify points on the target shape corresponding to the key

points that were produced automatically on the source shape, which is intuitive120

for ordinary users. Experimental results show that our method not only reduces
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Figure 1: The pipeline of our algorithm.

user effort but also produces much better deformation transfer results than using

correspondences specified by normal users, thanks to the effective choice of key

points.

3. Our Algorithm125

3.1. Algorithm Overview

The input to our algorithm is a source mesh A before deformation, a set

of deformed source meshes A′, and a target mesh B, our deformation transfer

algorithm produces a set of deformed target meshes B′. For each mesh A′ ∈ A′,

a deformed target mesh B′ is obtained by applying the deformation from A to130

A′ to the target shape B. Denote by m = |A′| the number of deformed source

meshes. Note that in the simplest case, A′ may only contain one deformed shape

(i.e. m = 1). Note that A and meshes in A′ share the same mesh connectivity,

but the mesh topology of the source and target shapes can be different.

The pipeline of our algorithm is illustrated in Fig. 1. We first obtain a set135

of vertices on the source mesh as candidates for key points (denoted as C), by

performing farthest point sampling [25, 26] to ensure candidate points provide

sufficient coverage of the shape. Denote by nc = |C| the number of candi-

date points. Although depending on the random choice of the first candidate

key point, farthest point sampling may generate different sets of candidate key140

points, our method produces very similar deformation transfer results even with

substantially different candidate key points, as shown by the example in Fig. 2.
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Figure 2: Comparison of deformation transfer results using different randomly initialized

candidate key points. Left: the source mesh and the target mesh, right: deformation results.

Every column shows a different set of randomly initialized candidate key points, our selected

key points and corresponding deformation results. Similar deformation results are obtained

even if the candidate key points are significantly different.

The key points S are then selected from the candidate set C. Denote by

nk the number of selected key points. Since the correspondences between the

source and target meshes are not yet available and it is difficult to automatically145

judge the quality of deformed meshes, we take a practical approach aiming to

find a key point set S that minimizes total deformation error from A to each

mesh A′ ∈ A′. A trivial solution would consider all the subsets of C as S and

choose the best solution. This however involves 2nc − 1 combinations and is

prohibitively expensive. We propose to use a greedy approach, such that at150

each step, only one key point is optimized. Since initially only one or a few key

points are selected and treated as handles to deform A towards models A′ ∈ A′,

deformation methods based on local deformation gradients (e.g. [27, 3, 21])
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do not work well. We thus adapt the deformation method [6] with bounded

biharmonic weights [5], by utilizing the deformed source shapes A′ as constraints155

such that the deformed shapes are close to the desired shapes. Several energy

functions used in shape deformation typically measure some forms of elastic

shape distortion. As pointed out in the survey [28], using quadratic energies

leads to linear optimization problems, which are robust and efficient to optimize,

but result in linearization artifacts in the deformation results. So nonlinear160

energies [29, 30, 27, 31] are proposed to provide higher-quality deformation

results, but they are generally slow to optimize. We use as-rigid-as-possible

[14, 27, 32, 31] deformation along with clustering of the biharmonic weights

to achieve high quality deformation while ensuring efficiency. Moreover, the

deformations of neighboring vertices are highly correlated, so it is unnecessary165

to compute local rotation for each edge independently. Instead, by clustering

local vertices into some clusters based on biharmonic weights, local regions

are deformed consistently, which helps with both efficiency and deformation

quality. We incrementally add or update key points until convergence. The

user is then asked to specify points on B that correspond to the automatic170

selected key points S on A. Finally, the resulting mesh B′ with the deformation

transferred is obtained using biharmonic weight-based mesh deformation using

affine transformation of corresponding key points from the source mesh.

An example is shown in Fig. 3. We first apply farthest point sampling on the

source mesh A and the candidates nc = 100 are shown in Figs. 3 (a) and (b).175

They are well distributed, providing a sufficient set to choose key points from.

The selected key points using our automatic algorithm are shown in Figs. 3 (c)

and (d), and are effective in achieving the deformation from the original shape

(a)(b) to the deformed shape (c)(d).

3.2. Shape Deformation using Biharmonic Weights180

As a building block in our algorithm, we now introduce a shape deformation

method using biharmonic weights. Since it is used for deforming both source

shapes (for optimization of key points) and target shapes (for deformation trans-
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(a) (b) (c) (d)

Figure 3: An example demonstrating candidate points and selected key points for deforming

from (a)(b) to (c)(d). (a) and (b) are the candidates obtained using farthest point sampling

(front and back views, with nc = 100 candidate points), (c) and (d) are the key points

automatically selected by our algorithm (front and back views, nk = 12 key points).

fer), we describe the algorithm using a generic set of symbols. Given an input

mesh before deformation P, let Q be the deformed mesh. pi ∈ P and qi ∈ Q185

are the positions of the ith vertex of the mesh P and Q respectively. Both

meshes have the same connectivity. Denote by np = |P| the number of vertices

of both meshes. For the purpose of deformation, assuming H is the set of handle

vertices, and nh = |H| is the number of handles. For each handle hk ∈ H, it

is associated with an affine transformation Tk ∈ R3×4. For simplicity, these190

affine transformations are packed into a matrix T of size 12nh × 1 (column vec-

tor) by stacking each affine transformation as a 12-dimensional column vector.

When applying the deformation method to source meshes, the deformed mesh

is known, and denoted as Q′ with q′
i representing the ith vertex of the known

deformed mesh.195

Similar to [6], the position of vertices on the deformed mesh Q can be com-

puted by applying affine transformations T with linear blend skinning. Denote

by W ∈ Rnp×nh the skinning weights, where Wph is the influence that the hth

handle has on the pth vertex. The skinning weights can be defined in many

ways, including manually specified by artists. In our implementation, we use200
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the bounded-biharmonic weight [5], which is known to be suitable for defor-

mation. Following [5], we compute the bounded-biharmonic weights with the

optimization below:

argmin
wk

nh∑
k=1

1

2

∫
p∈P

∥∆wk∥2dp

subject to :wk(pj) = δjk
nh∑
k=1

wk(p) = 1 ∀p ∈ P

0 ≤ wk(p) ≤ 1, k = 1, . . . , nh ∀p ∈ P

(1)

where Wjk = wk(pj) is the skinning weight of the jth vertex of the mesh w.r.t.

the kth handle vertex of the mesh, wk is a function over the space in which205

the mesh is embedded, and δjk is Kronecker’s delta (δjk = 1 if j = k and

0 otherwise). This is consistent with [5]; please refer to the paper for more

details.

Using linear blend skinning, the ith vertex position qi of the deformed mesh

Q is given as follows:

qi =

nh∑
k=1

WikTk

pi

1

 (2)

To measure the quality of deformation, following [6], we use an as-rigid-

as-possible (ARAP) energy [27] Earap with deformed positions obtained using

Eqn. 2. To better preserve (near) piecewise rigidity and avoid over-fitting, the

shape is partitioned into a set of regions G = {Gg}, g = 1, 2, . . . , |G| and |G| is

the number of regions (treated as edge groups). The details of the partitioning

algorithm will be introduced in Sec. 3.3. A local rotation matrix Rg is assigned

for each region Gg. The energy can be written as:

Earap =
∑
g

∑
(i,j)∈Gg

w̃ij ∥(qi − qj)−Rg(pi − pj))∥22 (3)

where w̃ij is a cotangent weight [33] which is useful for meshes with irregular

triangulation, and Rg ∈ SO(3) is the rotation of the edge group g.210
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For source meshes, since the deformed mesh Q′ is known, we further intro-

duce another energy term that measures the difference of the mesh obtained

by the deformation and the known deformed mesh. This penalizes meshes that

deviate too much from the known results.

Ediff =

np∑
i=1

∥∥∥qi − q
′

i

∥∥∥2
2

(4)

The overall energy is obtained by a linear combination of both energy terms:

E = λEarap + Ediff , (5)

where λ is a weight to balance the two terms. We set λ = 0.5 in our experiments.215

The energy aims to make the resulting mesh as close as possible to the known

deformed mesh, while keeping the local shapes by reducing the ARAP energy.

As we will show later, this helps to identify better transformations to better

reproduce the deformed mesh, and thus helps improve deformation transfer

results. The unknowns in this function include affine transformation Tk of each220

handle hk, and rotation matrix Rg for each edge group g of the mesh. Note that

the deformed mesh Q is determined once the affine transformations T are given.

We alternately optimize T and R; see Sec. 3.4 for details of the optimization.

3.3. Clustering with Skinning Weights and Rotation

As suggested by [6], we can obtain a segmentation of the mesh by using225

k-means clustering on the skinning weight matrix W, as it shows how different

handles contribute to the deformation of each vertex. The clustering of shapes

is derived from the result of key point selection. The number of clusters is the

same as the number of key points, i.e. we set the number of clusters to nh.

The clustering helps identify regions of the mesh with consistent deformation230

transformation. For deformation transfer, we also have a set of deformed source

meshes A′. It is therefore possible to exploit the local rotations of these meshes,

to help identify regions with consistent deformation. This provides useful addi-

tional information not available from W.
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(a) (b) (c) (d) (e)

Figure 4: K-means clustering on the biharmonic weight matrix W and rotation-augmented

weight matrix W′. The number of clusters nc is set to 13. (a) shows the handle points

selected by the user. (b) is the result of k-means clustering on W, (c) is the result of k-means

clustering only based on logr and s without W using the 55th model in the SCAPE dataset

as the deformed source shape, (d) is the result of k-means clustering on W′ including W,

logr and s using the 55th model in the SCAPE dataset, (e) is the result of k-means clustering

on W′ of all the 71 models in the SCAPE dataset [34].

To achieve this, for each mesh A′ ∈ A′, we first compute the local deforma-

tion gradient Di for the ith vertex of A′, which is calculated by minimizing the

following energy:
E(Di) =

∑
j∈Ni

w̃ij

∥∥eqij −Die
p
ij

∥∥2 (6)

where Ni is the 1-ring neighbors of the vertex i, eqij := qi−qj and epij := pi−pj .235

The deformation gradient Di can be decomposed into the product of a rotation

matrix and a scale/shear matrix by polar decomposition [35]:

Di = UiNi (7)

where Ui is a 3 × 3 rotation matrix and Ni is a 3 × 3 symmetric matrix that

represents the scaling/shear on the three orthogonal axes. Then the rotation

matrix can be mapped to space so(3) by the matrix logarithm operation: Ūi =

logU, which is known to make the space more linear. Because the matrix Ū is

a skew-symmetric matrix, we can rewrite the Ū in the space so(3) that consists

12



of three orthogonal basis vectors [36]:

Ū = u
(1)
i e1 + u

(2)
i e2 + u

(3)
i e3 (8)

where

e1 =


0 1 0

−1 0 0

0 0 0

 e2 =


0 0 1

0 0 0

−1 0 0

 e3 =


0 0 0

0 0 1

0 −1 0

 (9)

and u
(1)
i , u

(2)
i , and u

(3)
i ∈ R. We then obtain a vector ui for each vertex:

ui =
(
u
(1)
i , u

(2)
i , u

(3)
i

)
(10)

Similarly, the scaling/shear matrix can be rewritten as a long vector

si =
(
n
(1)
i , n

(2)
i , . . . , n

(9)
i

)
(11)

The rotation logarithm matrix logr for a deformed mesh is defined as:

logr =
[
u1 u2 . . . unp

]T
(12)

and the scaling/shear matrix s for a deformed mesh is defined as:

s =
[
s1 s2 . . . snp

]T
(13)

where np is the number of vertex. We collect all these matrices corresponding

to meshes in A′ as

l̃ogr = [logr1, logr2, . . . , logrm], s̃ = [s1, s2, . . . , sm] (14)

where logrj and sj are the logr and s matrices for the jth model of A′. Finally,

we augment W as follows:

W′ =
[
W

γlogr√
m

l̃ogr γs√
m
s̃
]
, (15)

√
m is used for normalization since the k-means clustering uses squared Eu-

clidean distance.240

Fig. 4 shows a comparison of clustering results using W and W′ on the

SCAPE dataset [34]. It can be seen that the segmentation obtained using W
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(Fig. 4b) does not always represent the correct rigid components and the bound-

aries of segments can also be inaccurate. When using the rotation/scaling alone

without W, the segmentation is quite noisy (Fig. 4c). By using our augmented245

matrix W′ combining both biharmonic weights W and rotation/scaling (logr

and s), the result is significantly better even with only one deformed example

(Fig. 4d), and further improved with the whole dataset (Fig. 4e). γlogr and γs

are the adjustable parameters, and by default we choose γlogr = 1, γs = 0.1.

3.4. Algorithmic Solution of Our Deformation Method250

Similar to [6, 27], the optimization of our deformation method can also be

solved by alternating two steps, namely the Global Step and the Local Step.

In the Global Step, we fix Rg for each edge group, and optimize the energy

E to obtain deformed positions qi. For the as-rigid-as-possible (ARAP) energy,

we set ∂Earap

∂qi
= 0, and Eqn. 3 can be rewritten as a system of linear equations

∑
g

∑
(i,j)∈Gg

w̃ij(qi − qj)

=
∑
g

∑
(i,j)∈Gg

w̃ijRg(pi − pj)
(16)

Eqn. 16 can be written in a matrix form as:

Lq = b (17)

where L is the Laplace matrix, q = [q1, . . . ,qnp
]T is the deformed positions to

be determined, and b is the right hand side coefficients.255

To minimize E, we add the terms related to Ediff to Eqn. 17 and obtain

the following linear system: λL
I

q =

λb
q

′

 (18)

where I is the n-dimensional identity matrix, and q
′ is the vertex position

of the known deformed source model.
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Next, we put Eqn. 2 into Eqn. 18, and obtain the following equations:

λL
I





∑
k W1kTk

p1

1


∑

k W2kTk

p2

1


...∑

k WnpkTk

pnp

1




=

λb
q

′

 (19)

Eqn. 19 can be further represented as:

SMT = b′ (20)

where S =

λL
I

, M is a (3np) × (12nh) sparse matrix, b′ is the right hand

side of Eqn. 18, and T ∈ R12nh×1 (a column vector) contains all the affine

transformations. We can pre-compute SM and obtain its LU decomposition to260

accelerate solving Eqn. 20, and obtain T needed for deformation transfer.

The second step is the Local step. Given T, we can obtain the vertex

position of the deformed mesh q using Eqn. 2. We then find the optimal Rg

for each edge group g. Let us denote the edge vector eqij := qi − qj and

epij := pi −pj . Minimizing Eqn. 5 can be solved independently. For edge group265

g, this is achieved by maximizing the following:

argmax
Rg

Tr

Rg

∑
(i,j)∈Gg

w̃ije
p
ije

qT

ij

 (21)

where Tr(·) is the matrix trace. According to [27], the above optimization

has a closed form solution and the optimal Rg can be obtained using singular

value decomposition (SVD). Let us denote Ŝg =
∑

(i,j)∈Gg
w̃ije

p
ije

qT

ij . Then,

using SVD, Ŝg = ÛgΣ̂gV̂g. Rg can be obtained as V̂gÛ
T
g . If the resulting Rg270

does not satisfy detRg > 0, we negate it to ensure the obtained matrix is a

rotation matrix (rather than a mirrored matrix). We alternate the Global Step

and the Local Step until convergence (i.e. the energy stays stable).
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Figure 5: Results of transferring the deformation on the source mesh (a human from the

SCAPE dataset) onto a different target mesh (the Armadillo model) using our method with

automatic key point selection. Correspondences are highlighted using colored balls where the

same color indicates corresponding points. The first column contains the source and target

meshes without deformation. The first row shows the source meshes and the second row gives

the output meshes. The deformations of input meshes are reproduced successfully on the

target mesh, even with substantial geometric difference and large deformations.

3.5. Automatic Key Point Selection

Automatic key point selection aims to find a subset S ⊂ C from the candidate275

set C. To make the problem tractable, we use a greedy approach. The algorithm

works in two stages. In the first stage, we incrementally add new candidate key

point to S, and in the second stage, we try to improve existing key points in S.

In the first stage, we start by setting S = {c1}. Since we will later update

key points in the set, the choice of the first key point does not usually affect the

results. We then iteratively add a new key point ct to S, which is the one that

leads to the minimum energy:

Ê =
1

mnp
min

ct∈C−S

∑
A′∈A′

∥DS∪{ct}(A)−A′∥F , (22)

where DS(·) is an operator that produces the deformed mesh with S as key

points, np is the number of vertices, and m is the number of models. The process280

repeats until the resulting energy Ê is sufficiently small (under a threshold

ε = 0.03, where the models are scaled consistently to fit into a unit sphere).

The normalization makes the same error threshold applicable to a wide range
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Figure 6: The Euclidean distance between A′ and the deformed A using the example in Fig. 5.

The Euclidean distance decreases quickly and converges with a small number of key points.

of datasets.

In the second stage, we try to replace each selected key point in turn. For

key point ct ∈ S, we aim to find the best replacement while keeping other key

points unchanged:

c∗t = argmin
cj∈C−S∪{ct}

∑
A′∈A′

∥DS−{ct}∪{cj}(A)−A′∥F . (23)

We then replace ct with c∗t . This process guarantees the error is non-increasing,285

as if no better alternative exists, ct will remain unchanged. This repeats until

no further improvement can be found.

The pseudocode of the algorithm is summarized in Algorithm 1.

3.6. Deformation Transfer

After automatic key point selection, we use the method [6] to obtain the290

transformation T associated with each key point to deform the source mesh A

to its deformed shape A
′ . Then we ask users to select key points on the target

reference mesh B corresponding to the automatically selected key points on A.
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Algorithm 1 Algorithm for Automatic Key Point Selection
Input: Source mesh A, source deformed mesh set A′, the set of candidate points

from farthest point sampling C = {c1, c2, . . . , cnc
}, where nc is the number

of candidate points. nc = 100 is used in our experiments. nk ≤ nc is the

number of selected key points. ε is the threshold for termination of adding

key points.

Output: The set of selected key points S, the affine matrix T.

1: Initialize S = ∅

2: Initialize error = ∞

3: Add c1 into S, C = C − {c1}

4: while error > ε do ▷ first optimization

5: for ci ∈ C do

6: sumi = 0

7: for A
′

j ∈ A′ do

8: Let the desired deformed mesh Q′
j = A

′

j and use S ∪ {ci} as

handles

9: Solve Eqn. 5 to obtain deformed vertex positions Qj

10: errj =
1

mnp

∥∥∥Qj −Q′

j

∥∥∥
F

11: sumi = sumi + errj

12: end for

13: end for

14: Let t = argmini sumi be the index with the minimum error. Add ct to

S, and remove ct from C.

15: Set error = sumt.

16: end while

17: Get the key point set S, and S ∪ C = {c1, c2, . . . , cnc
}

18: repeat ▷ second optimization

19: ∀ci ∈ S, move ci from S into C

20: Find the optimal key point ct in C, move ct from C into S

21: until the set S is not changed

22: Return S and the corresponding T.

18
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Figure 7: Comparison of deformation results (top row) and deformation transfer results (bot-

tom row) without (a) and with (b) the Ediff term.

Once this is done, we directly apply the transformation matrix T of each key

point from the source reference mesh A to the corresponding point of the target295

reference mesh B, and use the method [6] again to obtain the deformed mesh

B′ by Eq. 2.

4. Results and Evaluation

Our experiments were carried out on a computer with an Intel i7-6850K

CPU and 16GB RAM. The algorithm complexity w.r.t. the number of candi-300

date sample points nc is O(n2
c). Since the calculation of errors with a different

added key point can be performed independently, we parallelize the algorithm

using OpenMP. The running times for key point selection, biharmonic weight

calculation and deformation transfer for different examples in the paper are re-

ported in Table 1. The key point selection process takes between a few minutes305

to about half an hour, whereas the deformation transfer is under a minute. Note

that key point selection can be considered as an offline preprocessing step so

the running time is acceptable.
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Figure
Source

(#V/#F)

Target

(#V/#F)

Key Point

Selection (hours)

SWT/h

(s)

LBS Time

(ms)

Fig. 5 2161/4318 4502/9000 0.2831 1.342 0.58

Fig. 9 2752/5500 6890/13776 0.1452 4.164 1.3

Fig. 13 2161/4318 4526/9028 0.2085 1.664 0.47

Fig. 10 2502/5000 5012/10000 0.6938 1.888 0.78

Fig. 15 1127/2129 5050/9999 0.084 1.856 0.31

Fig. 11 2502/5000 5002/10000 0.2957 2.138 1.1

Fig. 12 1856/3708 2161/4318 0.0534 0.448 0.098

Table 1: Statistics of running times of automatic key point selection and deformation transfer.

SWT/h is the time of calculating skinning weights per handle. In the last column of the table,

the LBS Time is the time for linear blend skinning, i.e. calculating Eqn. 2.

We used various datasets to compare with the existing research [22, 3]. These

various datasets come from [3] (Horse, Flamingo), SCAPE [34], TOSCA310

[25] (Dog, Gorilla, Micheal), MPI DYNA [37] (Fig. 14), MPI FAUST [38]

(Fig. 9), FaceWareHouse [39] (Fig. 15), Cactus and Armadillo. When com-

pared with [22], we used the released code. In this section, we will show various

examples to demonstrate the performance of our method and compare it with

the existing state-of-the-art methods.315

Fig. 5 shows the results of transferring human deformation from the SCAPE

dataset to the Armadillo model. It can be seen that the human and armadillo

models differ significantly in geometry, and our method with automatic key point

selection effectively produces high-quality deformation transfer results with a

very sparse set of correspondences (highlighted as colored balls). We further320

show the Euclidean error with an increasing number of key points selected in

Fig. 6. It shows that the energy decreases quickly and converges with a small

number of key points. To show the effect of incorporating Ediff for deformation

transfer, we compare the results (a) without and (b) with this term in Fig. 7.

The top row shows the deformation of the source model. The Ediff term helps325
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User6 User7 User8 User9 User10

Our

Figure 8: Comparison deformation transfer results obtained with automatic key point selection

and user manual selection.
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Figure 9: Deformation transfer results on sequences of the MPI DYNA dataset. From left to

right, we incrementally add new shapes to A′. The bottom row shows the key points that are

selected by our algorithm with increasingly large A′.
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Figure 10: Results of transferring the deformation of a horse to a dog. The first column shows

the source and target meshes with correspondences highlighted. Top row: source meshes,

second row: the results of [3], bottom row: our results.

to make the deformation result much closer to the given deformed source shape

A′. As a result, this also helps improve the deformation transfer result (bottom

row).

To evaluate the effectiveness of key point selection, we performed a user

study. 10 participants were involved in the user study where they were asked330

to choose nk correspondences manually. Results for the human to armadillo

transfer example are shown in Fig. 8. The deformation transfer result using

our deformation transfer framework but with manual correspondences performs

significantly worse than the result with our automatically selected key points,

with obvious artifacts, including distortions and dissimilarity of poses. Our335

automatic key point selection not only reduces user effort but produces much
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Figure 11: Results of transferring the deformation of a person to a gorilla. The first col-

umn shows the source and target meshes with correspondences highlighted. Top row: source

meshes, second row: the results of [3], bottom row: our results.

more realistic deformation transfer results.

We further evaluate how our key point selection copes with a larger set of

deformed source shapes A′. Fig. 9 shows an example based on the MPI DYNA

dataset. The results from left to right show key points selected with more shapes340

added to A′. It can be seen that the selected key points are updated to reflect

the needs of newly added shapes.

We also compare our deformation transfer method with state-of-the-art de-

formation transfer methods [22, 3] using a variety of examples (Figs. 10-13).

These examples are challenging as the source and target shapes differ signif-345

icantly (e.g. a cactus vs. a person in Fig. 12, and a person vs. a flamingo

in Fig. 13) and contain large deformations. Our method produces plausible

deformation transfer results which are artifact-free and semantically correct.

Alternative methods [22, 3] can create distorted output due to too few corre-

spondences, such as dissimilar deformations from the source deformation and im-350
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Figure 12: Results of transferring the deformation of a cactus to a person. The first column

shows the source and target meshes. Top row: source meshes, second row: the results of [3],

third row: the results of [22], bottom row: our results.

plausible shapes (e.g. wrongly bent legs of the flamingo). Since the method [22]

uses cages, additional effort is needed to create such cages. For some exam-

ples, cages may include additional parts of the mesh, causing poor deformation

results. Artifacts of these methods are highlighted using red rectangles.

It is generally difficult to provide a quantitative evaluation for deformation355

transfer methods. We use the MPI FAUST dataset which contains human bodies

of different shapes with the same set of poses (see Fig. 14). We can therefore use

it for computing a numerical measure taking the target shape with desired pose

as the ground truth. We use both our automatically selected key points and the

manually specified ones (the best result out of the 10 participants) and compare360
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Figure 13: Results of transferring the deformation of a person from the SCAPE dataset to

a flamingo. The first column shows the source and target meshes. Top row: source meshes,

second row: the results of [3], third row: the results of [22], bottom row: our results.

deformation transfer results with our method and alternative methods [22, 3].

We measure the average Euclidean distance between corresponding vertices of

the deformation transfer results and the ground truth. We show the proportion

of correspondences (y-axis) within an error bound (x-axis) of different results.

Our method is consistently better than the alternative methods. Moreover, for365

our method, our automatically selected key points outperform user specified key

points.

We also show a challenging example of transferring human facial expressions

to a dog (see Fig. 15). Our method is able to produce natural deformation
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Figure 14: Comparison with methods [22, 3] on the MPI FAUST dataset. We show the

proportion of correspondences (y-axis) within an error bound (x-axis) with results generated

by different deformation transfer methods, as well as automatic and manually selected key

points.

results even with a large difference of shapes.370

5. Conclusions

In this paper, we adapt skinning with biharmonic weights to deformation

transfer, and provide an automatic method to select effective key points. Ac-

cording to the amount of deformation and the level of deformation details, our

method adaptively selects a suitable number of key points, as well as their po-375

sitions, such that good transfer results are obtained. Therefore, if the source

deformed mesh A
′ has more deformation details, more key points will be se-

lected. Nevertheless, the number of key points required is still less than tradi-

tional methods [3]. The aim of our method is to obtain effective deformation

transfer with as few key points as possible. We exploit deformed source meshes380

to provide better segmentation and add an additional constraint to ensure the

deformed shape is close to the given deformed source meshes. Our deformation
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Figure 15: Deformation transfer results produced using our method showing the expressions

on the face transferred to a dog. The face shapes are from the FaceWareHouse dataset.

transfer method outperforms state-of-the-art methods. We also provide an ef-

fective approach to automatically selecting key points. Extensive experiments

show that this greatly reduces user effort and produces better deformation trans-385

fer results than those manually specified by normal users. Currently, our key

point selection algorithm is treated as offline preprocessing. In the future we

would like to consider more effective optimization approaches to speed up this

stage.
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