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Abstract

Principal curvatures and principal directions are fundamen-
tal local geometric properties. They are well defined on
smooth surfaces. However, due to the nature as higher or-
der differential quantities, they are known to be sensitive to
noise. A recent work by Yang et al. combines principal com-
ponent analysis with integral invariants and computes robust
principal curvatures on multiple scales. Although the free-
dom of choosing the radius r gives results on different scales,
in practice it is not an easy task to choose the most appropri-
ate r for an arbitrary given model. Worse still, if the model
contains features of different scales, a single r does not work
well at all. In this work, we propose a scheme to automati-
cally assign appropriate radii across the surface based on lo-
cal surface characteristics. The radius r is not constant and
adapts to the scale of local features. An efficient, iterative
algorithm is used to approach the optimal assignment and
the partition of unity is incorporated to smoothly combine
the results with different radii. In this way, we can achieve
a better balance between robustness and accuracy of feature
locations. We demonstrate the effectiveness of our approach
with robust principal direction field computation and feature
extraction.

1 Introduction

Principal curvatures and principal directions are fundamen-
tal concepts of local differential geometry [do Carmo 1976].
They are well defined on smooth, differentiable surfaces.
However, in discrete cases like the most widely used triangle
meshes, special considerations should be addressed, leading
to the so-called discrete differential geometry, a rather in-
tensive research topic in recent years. Discrete differential
geometry extends classical theories and computational meth-
ods from smooth surfaces to discrete settings and is widely
used in various geometry processing applications, including
anisotropic polygonal remeshing (e.g. [Alliez et al. 2003; Lai
et al. 2008]), non-photorealistic rendering (e.g. [Hertzmann
and Zorin 2000]), crest lines extraction (e.g. [Ohtake et al.
2004]) etc.

Although principal curvatures and principal directions
can be computed using discrete differential geometry [Des-
brun et al. 2002], principal curvatures are high-order differ-
ential quantities and the computation on practical triangle
meshes is not robust, due to the existence of noise or un-
wanted small-scale geometric details. Thus, in practice, a
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smoothing operator is usually applied in prior to the com-
putation of differential quantities. However, the smooth-
ing operator changes the underlying geometry and may be
problematic by itself in certain extreme cases, like spikes on
meshes etc. Moreover, such operators also have the risk of
smoothing out significant features.

This work is based on the robust estimate of principal cur-
vatures and principal directions using principal component
analysis of local neighborhood [Yang et al. 2006; Pottmann
et al. 2007]. Different neighborhoods could be used simi-
larly and we use integral invariants of the ball neighborhood
throughout the paper. The PCA-based integral invariants
are defined at a particular radius r. When the r is approach-
ing zero, the integral invariants are related to the traditional
principal curvatures and principal directions. For a particu-
lar radius r, the method can be used to compute curvature-
like quantities at the specific scale. Using a larger r, ob-
tained results tend to be more robust to noise, while at the
risk of losing relatively small-scale features. This provides
the user some freedom to estimate principal curvatures at a
desired scale; however, for many practical cases, users may
not be able to choose the most appropriate scale. Worse
still, if the model contains features of different scales (this
is quite usual for practical models), it is possible that a sin-
gle radius r never suits the overall model. In this work, we
propose a systematic way to automatically decide appropri-
ate neighborhood radius for a given model; treating radius
as a function of surface r(S) that varies to adapt to the na-
ture of local features. To achieve this, integral invariants are
computed in such a way that the local neighborhood size r
is adjusted to be comparable to the minimal principal ra-
dius. This is accomplished by using an iterative process to
approach the optimal distribution of r(S). To significantly
improve the performance, the integral invariants at a set
of discrete scales are pre-computed and combined using the
partition of unity to form the results, which also improves
the smoothness of the output.

In Section 2, related work of principal curvature compu-
tation is briefly reviewed. Observation and motivation are
discussed in Section 3. Detailed algorithm is presented in
Sec. 4. Experimental results of the proposed method are
given in Section 5, while conclusions and discussions for fu-
ture work are given in Section 6.

2 Related Work

Principal curvatures on discrete meshes can be computed
with discrete differential geometry. Original work on discrete
differential geometry usually computes in one- or two-ring
neighborhood [Desbrun et al. 2002]. However, certain meth-
ods derived from discrete differential geometry can actually
be extended to work on a larger neighborhood of the mesh,
leading to multi-scale results and improved robustness. For
example, the widely used normal cycles method by Cohen-
Steiner and Morvan [2003]. For a given edge, the principal
direction can be naturally defined along and across the edge



vector. To compute the principal curvatures at a particular
vertex, edges within a neighborhood of the vertex are inte-
grated (summed) over. It should be noted that even if such
methods can be used with larger neighborhood, producing
multi-scale results are not the aim of the method and the
results are still not really robust since they are apparently
affected by the connectivity of the mesh.

Local fitting is another approach to estimate local cur-
vature information on discrete meshes [Cazals and Pouget
2003; Goldfeather and Interrante 2004; Jiao and Zha 2008].
The basic idea is to first fit a local neighborhood of the
mesh with some analytical (e.g. polynomial) surface. Af-
ter that, principal curvatures and principal directions can
be estimated on the smooth fit surface, instead of given dis-
crete surfaces. Generally speaking, although a scale of local
neighborhood can be chosen, as indicated by the compara-
tive study in [Yang et al. 2006], the methods may not behave
well when the radius is getting large or in cases the local
surface patch cannot be well approximated by the analytical
representation.

Some methods consider adaptive weighting scheme to im-
prove the robustness, which is similar to our work. For exam-
ple, Kalogerakis et al. [2007] uses curvature tensor fitting to-
gether with statistical Iteratively Reweighted Least Squares
for adaptive estimation of principal curvatures. Our work
also has some relationship to the work by Mitra et al. [2004],
which considers the problem of computing appropriate ra-
dius for the estimation of normals of point clouds, however,
the problems and methods are different.

The concepts of integral invariants for the curve and sur-
face analysis have been used in different settings, includ-
ing the molecular shape analysis [Connolly 1986], 2D curve
matching [Manay et al. 2004] and feature extraction [Clarenz
et al. 2004]. Recently, a more systematic work using princi-
pal component analysis (PCA) based integral invariants for
robust curvature estimation is proposed in [Pottmann et al.
2007; Yang et al. 2006]. In the following, we will briefly re-
view part of the method mostly related to this work. We
assume that the ball neighborhood is used. A ball of ra-
dius r is placed at an arbitrary place p on the mesh surface
Φ and denoted as Br(p). The interior part of the surface
can be considered as a solid volume (denoted as D). Ball
neighborhood is defined as Nr

b := D∩Br(p). Principal com-
ponent analysis of this neighborhood leads to some integral
invariants related to principal curvatures. The center of this
neighborhood is s :=

∫

Nr
b

xdx/
∫

Nr
b

dx, and the covariance

matrix is J(Nr
b ) :=

∫

Nr
b

(x− s)(x− s)T dx. The three eigen-

values and eigenvectors of J can be computed. We denote
the eigenvalues in descending order as λ1, λ2 and λ3, with
corresponding eigenvectors e1, e2 and e3. e3 corresponds
to the normal direction, and e1 and e2 correspond to the
two principal directions. λ1 and λ2 are related to principal
curvatures when r tends to zero. Ignoring the higher order
terms, principal curvatures can be computed with λ1, λ2 and
the radius r [Yang et al. 2006]:

κr
1 :=

6

πr6
(λ2 − 3λ1) +

8

5r
, κr

2 :=
6

πr6
(λ1 − 3λ2) +

8

5r
.

For practical uses, the radius r in these equations is of
significant importance. Larger r tends to produce smoother
results and results more robust to noise, while at the risk of
smoothing out small-scale features that may be of interest to
the users. This is extremely important if the model contains
both larger and smaller parts where no single r suits the
need well (imagine stitching together a model and a scaled-
up version and considering it as a single model). This work
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Figure 1: Illustration of planar area integral invariant.

considers to use varied radii across the surface to adapt to
the local characteristic.

3 Motivation and Observation

Differential geometry and their discrete counterpart are well
defined on smooth surfaces or their sufficiently well discrete
approximation. However, real geometry objects are often
noisy. Integral invariants are introduced in such cases to pro-
duce robust curvature estimation. Intuitively, if the surface
is free from noise, the most accurate results are obtained,
with the minimum possible radius. If, on the other hand,
the surface is noisy, larger radius has the effect to smooth
out insignificant perturbations. However, this effect is not
the same for planar regions and sharp features. Sharp fea-
tures are more easily smoothed out. As an extreme case,
it is clear that for noisy planar regions, maximum possible
radius is most preferred.

Most practical models are neither noise-free nor com-
pletely planar, so too large or too small scale radius is usually
not ideal. Computation of PCA-based integral invariants of
volumes is rather involved. The computation on area inte-
grals of 2D curves is simpler, but also gives reasonable hints
to extend to the 3D case.

From a typical textbook of differential geome-
try [do Carmo 1976], in a canonical coordinate, if we
assume that the underlying curve is sufficiently smooth and
the derivative of the curvature k w.r.t. x can be safely
omitted, a planar cure at a particular point can be expressed
as y = f(x) = k

2
x2, where k represents the curvature at

the point. As illustrated in Fig. 1, the planar area integral
invariant is defined as the area of the shaded region, which
can be computed as: Ir = π

2
r2 − 2Ir

1 + 2Ir
2 , where r is the

scale radius, and Ir
1 and Ir

2 are correction terms

Ir
1 =

∫ r

0

f(x)dx =
k

6
r3, Ir

2 =

∫ r

t

(f(x)−
√

r2 − x2)dx. (1)

Here, t is the x-coordinate of the intersection point. Without
loss of generality, assume that k is non-negative. By Taylor
expansion, t has the expansion:

t =

√
2

k

√

−1 +
√

1 + k2r2 = r − 1

8
k2r3 + O(r5). (2)

To estimate Ir
2 , we have to evaluate two separable integra-

tions. For the former term, note that t3 = r3− 3
8
k2r5+O(r6),

t4 = r4 + O(r6), we have

∫ r

t

f(x)dx =
k

6
(r3 − t3) =

1

16
k3r5 + O(r6). (3)

The latter term
∫ r

t

√
r2 − x2dx can be computed similarly

using Taylor expansion and induction. The major term is
also of the same order O(k3r5). Thus, we have Ir

2 = ck3r5 +



O(r6), where c is a positive constant ≈ 0.02 (sufficient for
our estimation purpose). A more accurate estimation is then
obtained as

Ir =
π

2
r2 − k

3
r3 + 2ck3r5 + O(r6). (4)

For the usual integral invariant, we ignore O(r4) term and
estimate the curvature k as k̄ = 3(π

2
r2 − Ir)/r3. Certainly

only when r is sufficiently small, this approximation is close
to the real k. By this estimation, we can now omit O(r6)
term, and have a more accurate equation, from which we
derive the relative systematic error for k̄:

k̄ − k

k
= −6ck2r2. (5)

It is clear that the relative systematic error is proportional
to (|k|r)2 (for general k). Estimating the noise level of a
given curve or surface is difficult, however, if we allow a
certain amount of relative systematic error ε, the optimal
scale radius against noise is

r =

√

ε

6c

1

|k| = α
1

|k| . (6)

In practice α may be chosen as around 1.0, which means ε is
around 12%. For more noisy dataset, we should increase α,
while for cleaner dataset, smaller α is reasonable. Note that
this formula coincides with the previous observations. For
planar regions where k = 0, maximum possible r is preferred.
For noise-free dataset, minimum possible r helps to reduce
the systematic error.

In the case of PCA-based integral invariants of 3D sur-
faces, the computation is more involved. We thus take the
heuristic of choosing r(p) to be comparable to the minimal
principal radius at the local place:

r(p) = α min

{

1

|κ1(p)| ,
1

|κ2(p)|

}

, (7)

4 Algorithm

In this section, we will discuss the algorithm in detail. As
noted before, we treat r as a function of position p over
the surface Φ (denoted as r(p)). r(p) should coincide with
the nature of the local neighborhood, as given in Eqn. 7. α
is a constant for the bias of using slightly larger or smaller
radius globally. To our purpose, α is usually chosen around
1. Larger α increases robustness and smaller α increases
the ability to capture local features and accurately locate
features. For all the examples shown in the paper, a constant
α = 0.9 is used and produces reasonable results.

This definition is intuitive, however, to ensure robustness,
κ1 and κ2 in Eqn. 7 should be estimated also with a partic-
ular radius r. To solve this, an appropriate iterative algo-
rithm is proposed here to approach the optimal assignments.
We estimate κ1 and κ2 with a preassigned r, and the com-
puted values of principal curvatures may be used to update
the assignment of r in turn. During this process, princi-
pal curvatures at each vertex on different scales need to be
accessed frequently. In Section 4.1, an efficient approxima-
tion algorithm to estimate principal curvatures at different
scales is discussed, while the iterative algorithm for appro-
priate radius r and related principal curvatures is detailed in
Section 4.2. Post processing stage is introduced to produce
more smooth distribution of scales (see Section 4.3). The
overall pipeline of our method is as follows:

1. Compute the usual integral invariants at several differ-
ent scales for all the vertices [Yang et al. 2006].

2. Initialize the scale radius at each vertex, see Section 4.2.
3. For each vertex v, repeat the following until conver-

gence, see Section 4.2:
(a) Estimate principal curvatures at v, using the cur-

rent scale radius by interpolation of the precom-
puted values, see Section 4.1.

(b) Update the scale radius r based on the estimated
principal curvatures.

4. Globally smooth the scale radius distribution over the
whole model, see Section 4.3.

5. Estimate principal curvature information using com-
puted scale radius.

4.1 Approximation of Principal Curvatures

On discrete meshes, PCA-based integral invariants with ball
neighborhood of a particular size r requires computation of
barycenter s and covariance matrix J at each vertex. As
noted in [Pottmann et al. 2007], the integration can be con-
verted to 10 convolutions, which can be greatly sped up by
using Fast Fourier Transforms (FFT). However, computing
integral invariants at an individual vertex, or at vertices with
different radii is very slow. To solve this, we propose to pre-
compute a discrete set of principal tensors Jrk(pi) for all
the vertices {vi} at position {pi}, but with different radii
rk. Then, when we want to compute the principal tensor for
a vertex v with position p at a specific radius r, we inter-
polate the covariance matrix Jr(p) with principal tensors at
the same position p but different radii.

Assume we precompute principal tensors at n radii
r1, r2, . . . , rn. Assume that r1 < r2 < · · · < rn. To en-
sure that such approximation leads to smooth results, we
compute a set of weights wi(r), satisfying

∑n

i=1 wi(r) = 1,
using the idea of the partition of unity [Ohtake et al. 2003].
To compute wi, we first define a set of Gaussian radial basis
functions hi(r) representing the relative impact from the re-

sults obtained at radius ri: hi(r) := exp
{

− (r−ri)
2

σ2

}

, where

σ controls how the effect decreases when the distance in-
creases. σ is usually chosen at the scale comparable to the
interval of radius, i.e. (ri+1 − ri)/2. This also ensures that
approximated tensors at r′is are sufficiently close to the orig-
inal values.

The weights wi can be computed by normalizing hi, and

making it a partition of unity: wi(r) := hi(r)
∑

n
t=0

ht(r)
. Then,

Jr(p) can be computed by a linear combination Jr(p) :=
∑n

i=1 wi(r) · Jri(p).
The principal curvatures and principal directions can be

derived from Jr, as in the usual case. Compared with other
interpolation/approximation method, this method produces
smooth approximation (if we consider J at a particular po-
sition as a function of r), and is simple and sufficiently accu-
rate to produce high-quality estimation of principal curva-
tures and principal directions, as shown later in the experi-
ments.

Choice of ri. ri should be distributed in such a way that
they cover the radii of interests with sufficiently high den-

sity. A simple scheme is to choose ri as: ri = i|̇ē|, where
|ē| represents the average edge length of the model, and we
may set n to be 5, 7 or 9, depending on the size of the
model compared with the average edge length. Choosing
ri differently will not make significant difference as long as
the previously stated prerequisite is satisfied. However, the
choices of r1 and rn do affect the results. Actually, r1 spec-
ifies the smallest scale of interest and rn corresponds to the
largest scale. Increasing r1 can improve the robustness of



the results. Thus for noisy models, it may be preferable to
choose r1 larger than the average edge length. Increasing rn

can improve the ability to capture large-scale features. This
also improves the robustness to noise in flatter regions.

Discussions of performance. It seems that n times of com-
putation would be involved for the process of precomputa-
tion, but in fact, it only takes slightly more than 1

2
n times of

computation. Assume for a single scale, the computational
complexity is tscan+tint, where tscan corresponds to the time
for building the volume representation using scan conversion,
and tint corresponds to the time used for the computation of
integral invariants at a single scale, which includes 10 con-
volutions computed using FFT. As discussed in [Yang et al.
2006], we need 11 FFTs to transform 11 functions (χB , χD,
xχD, yχD, zχD, x2χD, xyχD, xzχD, y2χD, yzχD, z2χD)
to the frequency domain, and need 10 inverse FFTs to com-
pute the convolution of 10 functions other than χB with χB ,
where χB and χD are the characteristic functions of the ball
volume (with a certain radius) and the domain. Ignoring
the relatively inexpensive multipification in the frequency
domain, tint is equal to the time of 11 FFTs and 10 inverse
FFTs, i.e. tint = 21tF F T . It’s clear that scan conversion just
needs to be done once, and also the conversion of the input
volume to the frequency domain. Thus, the computational
complexity is: tscan + 10tF F T + 11ntF F T , just slightly more
than 1

2
n times of the original computation at a single scale.

4.2 Iterative Algorithm

The iterative algorithm tries to find an appropriate r for each
vertex. The algorithm proceeds as follows: Initially, we may
set r(pi) to a constant radius. For example, we may simply
set it to r1+rn

2
. A better scheme is to assign r(pi) to the

median value of the minimal principal radius estimated at
different scales. The latter approach reduces the number of
iterations, and slightly improves the converged distribution
of radius. Then, r(pi) is updated iteratively. For each ver-

tex, κ
r(p)
1 and κ

r(p)
2 are computed with the approximation

scheme discussed in the last subsection. Using Eqn. 7, we
may compute a new radius r′(pi). In order to make the com-
putation robust, we introduce a step-size control variable λ,
and update r(pi) to be:

r(pi)← r(pi) + λ
(

r′(pi)− r(pi)
)

, (8)

where λ is set to a small number (e.g. 0.1). This iterative
update is repeated until convergence. We then get the esti-
mated optimal r for each vertex, and the corresponding prin-
cipal curvatures and principal directions can be estimated at
each vertex with the varied radius r. Although the iterative
algorithm may stop at some local minimum, as shown later
in Sec. 5, reasonable and robust radius distribution is usually
obtained for various tested examples.

4.3 Post Processing

Note that by using radial basis functions, our approximation
to the integral invariants at a particular scale is both efficient
and smooth. However, the distribution of r is mainly deter-
mined by the local characteristic at different scales (though
using integral invariants to estimate it has already taken the
local neighborhood into account), it may not be as smooth
as desired. Thus, it is reasonable to introduce an optional
post processing that smoothes the distribution of r over the
surface.

Generally, anisotropic smoothing that preserves signifi-
cant changes of r is preferred. We use an extended bilateral
filtering method [Tomasi and Manduchi 1998] to the mesh
surface for our purpose. Unlike their method, we consider

r as a piecewise-linear signal over the surface, and smooth
r to obtain a smoother version of the radius distribution r̄,
which is used instead to compute the integral invariants.

For each vertex vi, assume its position is pi and ra-
dius is r(pi). To achieve anisotropic smoothing, we first
define the relative weight of any vertex vj (within a cer-
tain neighborhood N(vi)) w.r.t. vi as w(vi, vj) = s(vi, vj) ·
t(vi, vj), where s(vi, vj) = exp

{

− ||pi−pj ||
2

2σ2

1

}

, and t(vi, vj) =

exp
{

− |r(pi)−r(pj)|2

2σ2

2

}

. Here, s(vi, vj) is a weight measuring

nearness in 3D positions of two vertices and t(vi, vj) is a
weight measuring closeness of radii between two vertices. σ1

and σ2 are two parameters used to control how rapidly the
effects drop off as the difference increases. For our purpose,
they can be chosen e.g. as the average of the edge length
and the average of the difference of r along edges.

Then, the smoothed radius r̄ at vertex vi, can be com-
puted as

r̄(pi) =

∑

vj∈N(vi)
w(vi, vj)r(pj)

∑

vj∈N(vi)
w(vi, vj)

. (9)

We then use r̄ instead of r as the local neighborhood size
for integral invariants computation.

5 Experimental Results

We have implemented our algorithm on an Intel Core2Duo
2GHz Laptop with 2GB RAM using C++ and tested our
algorithm on a variety of models with features.

Fig. 2 shows an example of minimal principal directions
computed using integral invariants. (a) and (b) show the
results obtained with smaller and larger neighborhood size,
respectively. Using small radius leads to noisy principal di-
rections, while using large radius may smooth out small-scale
but still significant features (emphasized by the red box). By
using feature adapted integral invariants, the distribution of
radius r is color-coded in (c), where blue and red correspond
to small and large radii respectively. For smooth regions, we
can safely use larger radius, producing more robust results.
For regions contain significant features, radius is reduced to
reflect the local geometric features. The obtained directions
with varied r is given in (d) where the feature in the red box
is successfully captured and the overall principal directions
are still reasonably smooth.

Fig. 3 shows color-coded radius distribution and mean
curvature before and after radius smoothing. The radius is
coded using the same color scheme, and the mean curvature
is color-coded so that red color corresponds to highly curved
regions with positive curvature, blue color corresponds to
highly curved regions with negative curvature and green
color corresponds to flat regions. By using radius smoothing,
both radius distribution and mean curvatures are slightly
smoother, without loss of significant features.

Fig. 4 shows an example of color-coded mean curvatures
of Lucy model. From left to right are results obtained with
relatively small r, relatively large r and feature-adapted ra-
dius. Two close-up views are also given at the bottom of
each result. Note that using smaller r tends to produce
noisy results, especially in flatter regions, like the bottom of
the statue. Using larger r produces results that may ignore
significant small-scale features, and may not be able to ac-
curately locate large-scale features. Using feature adapted
integral invariants, we are able to produce robust results in
flatter regions, more accurate results of features, and im-
proved ability to capture features of varied scales.



(a) (b) (c) (d)

Figure 2: Minimal principal directions computed with integral invariants of ball neighborhood. (a) the result computed with
small radius; (b) the result computed with large radius; (c) color-coded radius distribution of feature adapted integral invariants;
(d) the result obtained with feature adapted integral invariants.

(a) (b)

(c) (d)

Figure 3: Color-coded radius distribution (left) and mean
curvature (right) before (top) and after (bottom) radius
smoothing.

Due to the nature of integral invariants, our approach is
generally robust to noise. Moreover, we use radius adapted
to local geometric features, so that we can use larger neigh-
borhoods for flatter regions, without loss of significant fea-
tures. This further improves robustness in practical appli-
cations. Fig. 5 shows an example. (a) is the Happy Buddha
model with added noise. (b) gives the color-coded radius dis-
tribution. Reasonable radius distribution is obtained, even
on noisy models with quite a few features. Two close-ups
of minimal principal directions estimated with this method
are given in (c). For flatter regions, large neighborhood is
used, making it robust to otherwise dominant added noise.
For feature regions, appropriate size of neighborhood is used,
ensuring accurate principal directions.

We also applied our method to the problem of feature ex-
traction. Similar to [Lai et al. 2007], features are defined as
regions with at least one large principal curvature. Fig. 6
shows extracted features on Armadillo model with single-
scale and feature-adapted integral invariants. For single-
scale method, relatively large neighborhood size is used to
produce robust results; however, large-scale features tend to

(a) (b) (c)

Figure 4: Color-coded mean curvatures computed with (a)
small r, (b) large r, (c) adapted r (with close-ups).

have bleeding effect, and small-scale features can easily get
lost. Using feature adapted integral invariants, features are
extracted thinner and in more accurate locations. Combi-
nations of ridges and valleys are better preserved. Although
feature extraction may also be improved by combining ex-
tracted features from different scales [Pottmann et al. 2007],
our method produces a single, consistently combined curva-
ture estimation over the surface.

The computation time of feature adapted integral invari-
ants is dominated by computing integral invariants at sev-
eral scales. The examples in the paper used 8 scales, and
the overall computation times for different models are given
in Table 1.

Table 1: Running times of different models.

model grid size time (sec.)
Santa 204× 172× 184 87
Lucy 194× 112× 332 114

Armadillo 192× 228× 174 82
Buddha 136× 332× 136 113

6 Conclusions

In this paper, we proposed a simple and efficient method
to automatically decide radii over the surface, to achieve
the ideal balance between robustness and accuracy of fea-
ture locations in the integral invariant computation. We
demonstrate the effectiveness of our approach with applica-



(a) (b) (c)

Figure 5: Minimal principal directions estimated on a noisy
Happy Buddha model.

(a) (b)

Figure 6: Feature extraction using single-scale (left) and
feature-adapted (right) integral invariants.

tions including principal curvatures and principal direction
fields as well as feature extraction. We expect that such
technique may be helpful to a variety of applications that
require robust and accurate principal curvature estimation.
For example, line drawings in non-photorealistic rendering
may benefit from this technique to produce feature adapted
view-dependent curvature information. Thus, we plan to ex-
plore the applications of our method in robust line drawings.
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