
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 1

SuperMatching: Feature Matching using
Supersymmetric Geometric Constraints

Zhi-Quan Cheng, Yin Chen, Ralph R. Martin, Yu-Kun Lai, Aiping Wang

Abstract—Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision
applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so
by considering triples or higher-order tuples of points, going beyond the pointwise and pairwise approaches typically used.
SuperMatching is formulated using a supersymmetric tensor representing an affinity metric which takes into account feature
similarity and geometric constraints between features: feature matching is cast as a higher-order graph matching problem.
SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well
as to store the estimated tensor compactly. Matching is performed by an efficient higher-order power iteration approach which
takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides
more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive
computational cost.

Index Terms—Feature matching, Geometric constraints, Supersymmetric tensor.

F

1 INTRODUCTION

Building correspondences between two sets of fea-
tures belonging to a pair of 2D images or 3D shapes is
a fundamental problem in many computer graphics,
geometry processing, and computer vision tasks. It
arises in applications such as registration of partial
or entire 3D shapes [1]–[2], shape retrieval from
databases [3], shape matching [4]–[5], shape recon-
struction [2], [6], [7], [8], and automatic shape under-
standing [9]–[10].

Correspondence determination is typically done in
three steps [11]–[12]: (i) computing high-quality de-
scriptors which serve to distinguish points from one
another, (ii) choosing certain salient points with un-
usual feature descriptors, for matching, and (iii) de-
termining the most suitable matching between the
two sets of points. The former two problems have
attracted considerable attention; their importance is
clear. However, even supposing ideal feature descrip-
tors and selectors that capture the most important and
distinctive information about the neighborhood of
each salient point, state-of-the-art algorithms still find
it challenging to determine the best matching [13].
Real input data is noisy, and data may only be ap-
proximately in correspondence; the problem is further
complicated by the presence of symmetric and con-
gruent regions. Various feature matching algorithms

• Zhi-Quan Cheng, Yin Chen, and Aiping Wang are with the National
Laboratory for Parallel and Distributed Processing, School of Com-
puting, National University of Defense Technology, Changsha, Hunan
Province, China, 410073.
E-mail: see http://www.computer-graphics.cn

• Ralph R. Martin and Yu-Kun Lai are with School of Computer Science
& Informatics, Cardiff University, Cardiff, Wales, UK, CF24 3AA.

have been devised to be robust in the presence of
such issues. RANSAC-like algorithms [14], [15] min-
imize the effects of outliers, while generalized mul-
tidimensional scaling [3] and heat kernel maps [16]
consider the manifold in which the points are embed-
ded. Möbius transformations [17], [10] also provide
a powerful approach. However, this previous work
generally does not treat the matching step as a sepa-
rate task, even if matching is not tightly coupled with
feature description and selection. This paper focuses
on the feature matching problem, treating it as an
independent problem in its own right.

Matching may be done pointwise (single points to sin-
gle points), or using tuples of points: e.g. point pairs,
separated by a fixed distance, to other point pairs,
triples of points forming a triangle to other triples of
points, and so on. As pointed out by [18], matching
single features leads to a linear assignment problem,
but if multiple features are matched simultaneously, a
quadratic or higher-order assignment problem results.
Matching two feature sets by considering similarities
of single features from each set can easily fail in the
presence of ambiguities such as repeated elements,
or similar local appearance. Quadratic and higher-
order assignment matches groups of features, enforc-
ing other constraints such as consistency of distances
between the points in each tuple being matched.
Doing so helps to reject many false matches, greatly
improving matching output. Feature similarity and
satisfaction of constraints may in general be expressed
in terms of an affinity tensor relating pairs of point
tuples.

As a particular example of quadratic assignment, Leor-
danu and Hebert [19] consider pairs of feature de-
scriptors, and use distances between pairs of features

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 2

Fig. 1. Correspondences between datasets determined by SuperMatching. Feature points were created by (left
example) simple uniform sampling of rigid scans, (right example) SIFT, on an isometrically deforming surface.
For clarity, only a few representative matches are shown.

from each set to reduce the number of incorrect
correspondences. Such pairwise distance constraints
are particularly helpful in cases when the features
themselves have low discriminative ability. The idea
has been widely adopted in 3D shape matching algo-
rithms [14]–[5], [10].

Higher-order assignment includes yet more complex
constraints between features. For example, third-order
potential functions, used in [20], [21]–[22], quantify
the affinity between two point triples by measuring
the similarity of the angles of the triangles formed by
such triples. Note that this angular similarity value
only considers the total difference in corresponding
angles, and does not change with reordering of ele-
ments in the tuple. When similarity is expressed in
this way, the affinity tensor becomes a supersymmetric
tensor [23], whose entries remain unchanged under
any permutation of its indices. As shown in [23],
such rich symmetry of the tensor permits a simpli-
fied version of the solution to be applicable, under
assumptions of convexity (or concavity) for the func-
tional induced by the tensor in question. This in turn
provides significant savings in computational time as
compared to the unconstrained solution method.

Going beyond the supersymmetric form in [23],
our SuperMatching algorithm also formulates higher-
order matching problems using a supersymmetric
affinity tensor scheme. A new supersymmetric affinity
tensor definition is introduced, and we use it to
deduce a more compact expression than in previous
work. This allows us to devise a compact higher-order
power iteration solution for the higher-order match-
ing problem. SuperMatching can accurately match
a moderate number (several hundreds) of features
using triples or larger tuples of features. The contri-
butions of this paper include:

• We show how to define a compact higher-order
supersymmetric affinity tensor to express geo-
metrically consistent constraints between feature
tuples.

• Complete computation of the full affinity tensor

is computationally infeasible. We efficiently esti-
mate it using a sampling strategy which takes ad-
vantage of supersymmetry. This avoids sampling
repetitive items, it allows the tensor to be stored
compactly, and also improves the matching accu-
racy by avoiding imbalances in sampling.

• We make full use of the compactness of the affin-
ity tensor to deduce a power iteration method
which efficiently solves the matching problem.

Our experiments using both synthetic and real cap-
tured data sets show that SuperMatching is more
accurate and robust than prior methods, yet has sim-
ilar computational cost. Importantly, it is a general
matching approach, independent of choice of 2D or
3D feature descriptors.

2 RELATED WORK

Previous approaches to feature matching can be clas-
sified as those which match single points to single
points, those which match point pairs to point pairs,
and so on.

Matching single points to single points leads to a
linear assignment problem which only considers an
affinity measure between two individual features, one
from each set being matched. The affinity measure
is typically defined as the feature distance between
the feature vectors, which in turn are based on local
information around each feature point, e.g. SIFT [24],
spin images [11], heat diffusion signatures [25], and
BRISK [12]. Point-to-point matching can give mis-
leading results as wrong correspondences are readily
established.

Matching point pairs in one set to point pairs in the
other set leads to a quadratic assignment problem.
Such methods now take into account both similarity
of the point features, and either the Euclidean distance
between the points in a pair, assuming the two sets of
points are related by a rigid transformation [19], [26],
or the geodesic distance, assuming isometry [27], [14]–
[5]. Unfortunately, this quadratic assignment problem

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 3

is NP-hard, and again, matches found are not always
reliable.

Several higher-order approaches have also been pro-
posed. While they can significantly improve match-
ing accuracy, higher-order assignment is even more
computationally demanding, so various approximate
methods have been developed. [28] considered a
probabilistic model of soft hypergraph matching.
They reduce the higher-order problem to a first-order
one by marginalizing the higher-order tensor to a one
dimensional probability vector. [21], [29] introduced
the use of a third-order tensor in place of an affinity
matrix to represent affinities of feature triples, and
higher-order power iteration is used to achieve the
final matching. [22] built a unified multiple higher-
order affinity tensor, by extending the third-order
tensor method [21], [29]. An alternative [30] is to
treat the tensor as a joint probability of assignments,
marginalize the affinity tensor to a matrix, and find
optimal soft assignments by eigendecomposition of
the matrix. Higher-order assignment problems typi-
cally require large amounts of memory and computa-
tional resources. By reducing the number of elements
needed to represent the affinity measures, the above
approaches can match moderate numbers (hundreds)
of features. However, these approaches do not re-
ally take proper advantage of supersymmetry of the
affinity tensor. SuperMatching does so, leading to an
improvement in matching accuracy.

A related idea also using higher order constraints
for 3D registration is the 4-points congruent sets
method (4PCS) proposed in [31]. It is a fast alignment
scheme for 3D point sets that uses widely separated
points. However, the need to find coplanar 4-tuples of
points and the assumption of their relation by rigid
transformation limit its applicability. Our approach
can not only be applied to rigid registration, but also
to more difficult correspondence issues involving e.g.
articulated or isometrically deformed data.

3 OVERVIEW

A tensor generalizes vectors and matrices to higher
dimensions: a vector is a tensor of order one, and a
matrix is a tensor of order two. A higher-order tensor
can be expressed as a multi-dimensional array [32].
More formally, an N th-order tensor is an element of
the tensor product of N vector spaces, each with its
own coordinate system. Here, we mainly consider the
third-order case, which represents a reasonable trade-
off between quality of solution and computational
cost, which increases rapidly with tensor order. Many
of the ideas generalize to higher order.

Assume we are given two sets of feature points P1

and P2, with N1 and N2 points respectively. Let
in = (f1in , f

2
in

) be a pair of points from P1 and

P2, respectively. Matching between these two feature
sets can be represented by an assignment variable x
which is a vector ∈ {0, 1}N1N2 , with each element
representing whether a pair in(f1in , f

2
in

) is selected in
the matching (if xin = 1) or not (if xin = 0). From the
N th-order tensor viewpoint, the matching problem is
equivalent to finding the optimal assignment tensor
x∗ ∈ {0, 1}N1N2 , satisfying [32]

x∗ = arg max
x

∑
i1,··· ,iN

TN (i1, · · · , iN)xi1 · · · xiN . (1)

Here, in ∈ {i1, · · · , iN} stands for an assignment in
the nth dimension of the N vector spaces. Let all
feature tuples for P1 and P2 be F1 and F2, then
∀(f1i1 , · · · , f

1
iN

) ∈ F1, there is a matching to corre-
sponding feature tuples in F2. For example, given
a third-order tensor, in ∈ {1, 2, 3}, each index could
be expressed as i1 = (f1i1 , f

2
i1

), i2 = (f1i2 , f
2
i2

), i3 =
(f1i3 , f

2
i3

): pairs of potentially matched points. The
product xi1 · · · xiN will be equal to 1 if the points
(f1i1 , · · · , f

1
iN

) are matched to the points (f2i1 , · · · , f
2
iN

),
and 0 otherwise. TN (i1, · · · , iN) is the affinity of the
set of assignments {in}Nn=1, which is high if the fea-
tures in tuple (f1i1 , · · · , f

1
iN

) have similar descriptor
values to the features in the tuple (f2i1 , · · · , f

2
iN

), and
have similar distances between them. Note that the
size of TN (i1, · · · , iN) is (N1N2)

N . In this paper, the
affinity measures expressing similarity of feature tu-
ples are compactly represented and efficiently com-
puted by using the supersymmetric tensor.

In the rest of the paper, we consider the one-to-many
correspondence problem. We assume that each point
in P1 is matched to exactly one point in P2, but that
the reverse is not necessarily true. If we do want
to treat both datasets in the same way, we can first
match P1 to P2, then match P2 to P1. This pair of
one-to-many matching results can be used as needed
in particular applications; most obviously, we could
intersect the result sets to build a set of one-to-one
correspondences.

From Eq. (1) we can see that there are four issues
to be considered when using higher-order matching
algorithms. How should we:

• organize and express the affinity measures TN in
a supersymmetric manner? (see Section 4.1)

• (approximately) solve the optimal higher-order
assignment problem efficiently? (see Section 4.2)

• determine an appropriate sampling strategy to
estimate the affinity tensor in a way which will
give good matching accuracy—it is too large to
compute fully? (see Section 4.3)

• define a suitable affinity measure between two
feature tuples? (see Section 4.4)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 4

4 SUPERMATCHING

We start by discussing the first two issues mentioned
above, which are independent of application; later we
turn to sampling strategy and definition of affinity
measure, which are application dependent.

4.1 Supersymmetric Affinity Tensor

The supersymmetric higher-order affinity tensor is
invariant under permutation of indices. The main
motivation of using supersymmetry is to allow us to
avoid redundant storage and computation.

Definition 1 (Supersymmetric Tensor): A tensor is super-
symmetric if its entries are invariant under any permu-
tation of its indices [23].

For example, a third-order supersymmetric tensor T3,
satisfies the relationships: T3(i1, i2, i3) = T3(i1, i3, i2) =
T3(i2, i1, i3) = T3(i2, i3, i1) = T3(i3, i1, i2) =
T3(i3, i2, i1).

Definition 2 (Supersymmetric Affinity Tensor): Given
two feature sets P1 and P2, with N1 and N2 features
respectively, the supersymmetric affinity tensor is
an N th order I1, · · · , IN , nonnegative tensor TN , for
which there exists a set of indices θN , and an N th

order potential function φN , such that

TN (i1, . . . , iN)=

{
φN (Ω(i1, . . . , iN)), ∀(i1, . . . , iN) ∈ θN

0 , ∀(i1, . . . , iN) /∈ θN
(2)

where Ω stands for an arbitrary permutation of the
vector. θN satisfies im 6= in ∀(i1, . . . , iN) ∈ θN ,∀im ∈
{i1, . . . , iN} and ∀in ∈ {i1, . . . , iN} − {im} .

A tensor element with (i1, . . . , iN) ∈ θN is called a
potential element, while other elements are called zero
elements. A potential element represents one matching
result out of all possible matching candidates. Poten-
tial elements are further detailed in Section 4.3.

Using our new Definition 2, we can reduce the
amount of storage needed, by representing every
potential element TN (i1, . . . , iN) by its canonical entry
TN (sort(i1, . . . , iN)), ∀(i1, . . . , iN) ∈ θN . Each stored
value thus provides the value for N ! entries. Further-
more, as zero elements are always zero, there is no
need to store them. This greatly reduces both storage,
and the amount of feature tuple sampling needed
when estimating the affinity tensor, as discussed in
Section 4.3. At the same time, it can be used to
make the power iteration process more efficient: see
Section 4.2.

Algorithm 1 Higher-order power iteration solution (with `1

norm) for the supersymmetric affinity tensor

Input: N th-order supersymmetric affinity tensor
Output: Unit `1-norm vector u

1: Initialize v0 to random values in [0,1], k = 1
2: repeat
3: for all (i1, · · · , iN) ∈ θN do
4: for all m ∈ (i1, · · · , iN) do
5: v

(k)
m = (N − 1)!φN (i1, · · · , iN)2v

(k−1)
m v

2(k−1)

i1
· · ·

v
2(k−1)

m−1 v
2(k−1)

m+1 · · · v2(k−1)

iN
6: end
7: for i = 1 : N1 do
8: v(k)(((i− 1) ·N2 + 1) : i ·N2) =

v̂(k)(((i−1)·N2+1) : i·N2)/‖v̂(k)(((i−1)·N2+1) :
i ·N2)‖1

9: end
10: end
11: k = k + 1;
12: until convergence;
13: u(k) = v2(k)

Note: u(k) = v2(k) , and v(k)(((i − 1) · N2 + 1) : i · N2)
denotes the slice of v(k) with indices from (i−1) ·N2+1
to i ·N2.

4.2 Supersymmetric Higher-order Power Iteration

The higher-order tensor problem in Eq. (1) may be
solved by tensor decomposition [32]; tensor decom-
position originated in [33]. We utilize the rank-one
higher-order power method [34] to approximately
solve Eq. (1); as noted, an exact computation is in-
feasible. Eq. (1) can be expressed as:

x∗ = arg max
x

∑
i1,i2,··· ,iN

TN (i1, · · · , iN)xi1 · · ·xiN

= max < TN ,x?N >, (3)

where x ∈ {0, 1}N , and ? is the Tucker product [23],
which is an N -fold succession of products. To get an
approximate solution, we relax the constraints: the bi-
nary assignment vector x ∈ {0, 1}N is replaced by an
assignment vector u with real elements in [0, 1]. These
values are naturally computed from the potential
functions in Section 4.4. This changes the optimization
problem to one of computing the rank-one approxi-
mation of the affinity tensor TN [23], i.e. finding a
scalar λ and a unit norm vector u ∈ RN , such that
the tensor T̂N = λu ? u ? · · · ? u = u?N minimizes the
Frobenius norm squared function f(T̂N) = ‖Tr−T̂N‖2F .
The final matching result is found by replacing each
element of u by 0 or 1 according to whichever it is
closer to.

The higher-order power method is commonly used
for finding rank-one tensor approximations; a version
for supersymmetric tensors (S-HOPM) is given in [23].
The S-HOPM algorithm converges under the assump-
tion of convexity (or concavity) for the functional
induced by the tensor [23], which is sufficiently robust
for practical applications. S-HOPM is performed in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 5

two iterative steps: higher-order power iteration of u,
followed by normalization of u under the Frobenius
norm. A recent effective improvement [21], [29] uses
the `1 norm to replace the traditional `2 norm.

We use the `1 norm, and further revise S-HOPM as
follows. To perform higher-order power iteration with

u, we must compute û(k) = I TN? (u(k−1))
TN
? (N−1)

,

where
TN
? is a so-called TN -product, and I is a unit

tensor [23]. In the specific case that û(k) belongs to
an N th-order supersymmetric affinity tensor, it can be

shown [23] that û(k) = I TN
? (u(k−1))

TN
? (N−1)

implies
that ∀m ∈ (i1, ..., iN), v(k)m =

∑
i1,...,iN

TN (i1, ..., iN)2v(k−1)m v
2(k−1)

i1
...v

2(k−1)

m−1 v
2(k−1)

m+1 ...v
2(k−1)

iN
,

(4)
where u(k) = v2(k) . For the supersymmetric affinity
tensor, putting Definition 2 into the former expression
leads to (see Appendix for derivation) that v(k)m =

(N−1)!φN (i1,...,iN)2v(k−1)m v
2(k−1)

i1
...v

2(k−1)

m−1 v
2(k−1)

m+1 ...v
2(k−1)

iN
,

(5)
where φN is the potential function explained in Sec-
tion 4.4. Eq. (5) is more compact than earlier expres-
sions in the literature, as it handles all symmetrically
related potential elements as a single item using mul-
tiplication by (N − 1)!.

Many initialization schemes have been proposed for
the S-HOPM method [23]. We simply use positive
random values between 0 and 1 to initialize u0, which
ensures convergence; proofs are detailed in [23], [35].

Our supersymmetric higher-order power iteration so-
lution of Eq. (1) is performed by the SuperMatch-
ing algorithm—see Algorithm 1. Its efficiency relies
on two principles. Firstly, we take advantage of the
supersymmetry to deduce u as in Eq. (5), using just
a single canonical element for computation (see Step
5). Secondly, power iteration just considers potential
elements, and excludes all zero elements from the it-
eration process. The complexity of the whole iteration
process depends only on the number |θN | of non-
zero affinities. Consequently, this method reduces also
memory costs while keeping accuracy.

Note that, although [21], [29] use a supersymmetric
affinity tensor, their approaches do not make full
use of supersymmetry when creating the supersym-
metric affinity tensor, nor do they take advantage
of supersymmetry to accelerate the power iteration
process. By doing so, we overcome limitations due
to unbalanced and redundant tensor elements in [21],
[29], as our experiments show later.

4.3 Sampling Strategy

Algorithm 1 depends on the potential elements. We
next discuss the issue of how to sample the feature
tuples to build potential elements, which determines
the size |θN | and influences matching accuracy (as
well as speed).

Given two feature sets P1 and P2, a potential element
may be obtained by using a feature tuple sampled
from each feature set separately. For N th-order match-
ing, a straightforward way to construct the potential
elements is: first find all feature tuples for P1 and
P2, as F1 and F2; then ∀(f1i1 , · · · , f

1
iN

) ∈ F1, calculate
the potentials for (f1i1 , · · · , f

1
iN

) with all feature tuples
in F2. This is far too time-consuming, so sampling
is used instead. We suggest random sampling for
general feature matching problems, but this does not
preclude more directed sampling if prior knowledge
of the matching indicates a better approach.

Our sampling technique repeatedly randomly sam-
ples t1 feature tuples for each feature point from P1,
and fully samples P2. For P1, we take each feature in
turn as a required element, and then randomly choose
t1 feature tuples containing this required element.
Thus, the number of feature tuples in F1 is N1t1, and
NN

2 in F2. Then, for each feature tuple in F1, we find
the k most similar feature tuples in F2 to build k
potential elements as φki . Combining all the potential
elements obtained, we form the desired potential ele-
ment set θN = {φki }

N1t1
i=1 , of size |θN | = N1t1k. For P1,

the sampling cost is O(N1t1k logN2), where the logN2

factor comes from use of a k-D tree to search for the
k most similar feature tuples in F2. The parameters
t1 and k must be chosen according to the size of
the feature sets. In practice, for two feature sets each
with hundreds points, we may take t1 ≈ 100 and
k ≈ 300 for third-order matching. Our experiments
demonstrate that this sampling approach works well.

An important aspect of our sampling approach is to
use the supersymmetry of the affinity tensor. Poten-
tial elements whose indices are permutations of each
other have the same value, so should not be repeat-
edly sampled. Thus, we use a sampling constraint
that the sets of feature tuples F1 obtained from the
sampling process should have no repetition, in the
sense that

∀(f1i1 , f
1
i2 , · · · , f

1
iN), (f1j1 , f

1
j2 , · · · , f

1
jN) ∈ F1,

(f1i1 , f
1
i2 , · · · , f

1
iN) 6= Ω(f1j1 , f

1
j2 , · · · , f

1
jN) (6)

where Ω is an arbitrary permutation.

Earlier work [21], [22], [28] adopted random sampling,
but failed to impose any constraint on the sampling
process to take into account supersymmetry, leading
to the possibility that feature tuples may be sampled
multiple times. For example, for third-order matching,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 6

it is possible that a feature tuple (f1i1 , f
1
i2
, f1i3) may be

sampled from P1 and (f2i1 , f
2
i2
, f2i3) from P2, and also

a feature tuple (f1i1 , f
1
i3
, f1i2) from P1 and (f2i1 , f

2
i3
, f2i2)

from P2. That would create two tensor elements
φ3(i1, i2, i3) with index (i1, i2, i3) and φ3(i1, i3, i2) with
index (i1, i3, i2), which are the same. However, we just
need one tensor element to express the affinity on the
assignment group (i1, i2, i3) for any permutation of
indices. Such extra sampling is not only inefficient, but
may also reduce the accuracy of the power iteration:
one set of symmetrically related elements may be
represented by a different number of samples than
another set of symmetrically related elements, which
imbalances the power iteration process, and can lead
to inaccurate results. Our sampling method reduces
the sampling cost, while also improving the accuracy
of power iteration.

4.4 Higher-order Potentials

Different higher-order potentials are appropriate for
different applications. Here we briefly give two simple
examples of general higher-order potentials for 2D
and 3D matching respectively; we use them later
to evaluate our algorithm. The potentials are based
on a Gaussian function which guarantees the tensor
elements are non-negative and invariant under any
permutation of the input assignments.

In 2D, we use a well-known [21]–[30] third-order
geometric-similarity invariant potential φ3 for linking
point feature triples. Triangles formed by three points
are similar under scaling, rotation and translation—
interior angles are invariant. Thus φ3 can be defined in
terms of differences of corresponding interior angles:

φ3(i1, i2, i3) = φ3({p1, q1}, {p2, q2}, {p3, q3})
= exp(−1/ε2

∑
(l,l′)
‖αl − αl′‖

2) (7)

where ε > 0 is the kernel bandwidth, which is simply
set to the average of the `1 norm of all differences, and
{αl}3l=1 and {α′l}3l′=1′

are the angles formed by feature
triples (p1, p2, p3) and (q1, q2, q3): see Figure 2. Each
point corresponds to one interior angle. This potential
may be extended to higher order by using the internal
angles of polygons with more than 3 sides.

For 3D matching problems, we may replace the in-
ternal angles by edge lengths, which for meshes are
based on geodesic distance across the mesh in which
the points are embedded. This corresponds to as-
suming an isometry transform relating the meshes.
Geodesic distance may be computed by Dijkstra’s
algorithm [36], based on Euclidean distances between
neighboring mesh vertices. See Figure 2.

1

2 3

1

2 3

1

2

3

1

2
3

1p

1p
2p

3p

2p
3p

1q

2q
3q

1q

3q

2q

Fig. 2. Third-order potential. The geometric constraints
are: internal angle invariance in 2D (above), and edge
length invariance in 3D (below).

5 EXPERIMENTS

We have used synthetic data and real captured data
to evaluate the SuperMatching algorithm on a 2.3GHz
Core2Duo PC with 2GB memory.

To demonstrate the independence of the algorithm
from choice of feature descriptors, several descriptors
were used. In some cases, we simply uniformly sam-
pled feature points on the objects, and used a trivial
feature descriptor of 1 for all points, meaning affini-
ties are based simply on distances between feature
points—this allows us to show our method is robust
in the presence of ambiguous feature descriptors.
In other cases, we still used uniformly distributed
feature points, together with SIFT descriptors, which
shows that feature points do not have to be carefully
chosen. Note that we only used the feature descriptors
to select points as feature points and did not employ
them to build the matching. Both uniform and SIFT
features are widely used in real applications. Choos-
ing descriptors in this way lets us show that the
SuperMatching is independent of the descriptors to a
fair degree. The feature descriptors could be replaced
by any others—many have been proposed. We used
third-order matching in our experiments; it would be
simple (but more costly) to use higher order.

5.1 3D Rigid Shapes Scans

Firstly, we used SuperMatching to build pairwise
matchings between 3D rigid shape scans based on
uniformly sampled feature points. Rigid transforms
can be computed from each triple of compatible
matching points. The transform which brings the most
data points within a threshold distance of a point
in the model is chosen as the optimal alignment
transform [9]. As discussed in [38], such a voting

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 7

Fig. 3. Pairwise alignment of Coati and Dragon scans. From left to right: before alignment, our matching result,
our alignment result, and alignment results from 4PCS [31], ICP [37], [21], and [29].

scheme is guaranteed to find the optimal alignment
between pairwise scans and is robust to the initial
pose of the input scans.

To test the robustness of SuperMatching, the noisy
shapes used to test the recent 4PCS rigid registration
algorithm [31] were considered. The results demon-
strate that SuperMatching can produce good registra-
tion for all of these shapes. For example, Figure 3
shows the initial state of the input, and registration
results based on SuperMatching and 4PCS [31]. Even
for the Coati and Dragon examples, it is noticeable
that the final alignment details from the SuperMatch-
ing are somewhat better than for 4PCS. Other results
produced by ICP [37], [21], and [29] are shown in
Figure 3. It is noticeable that ICP [37] failed, while the
results from Supermatching, [21], and [29] are almost
the same. The times taken by both SuperMatching
and the 4PCS algorithm were very similar (about 10
seconds in each case), but [21] and [29] took over
20 seconds. Our time performance benefits from the
compact representation in Eq. (5) and the sampling
strategy based on supersymmetry.

Figure 4 shows some registration results for the
Rooster model from [39]. The left column shows
the original state, the two left middle columns are
our matching and alignment results, and the right
columns shows the corresponding results produced
by 4PCS [31], ICP [37], [21], and [29]. In this case,
4PCS [31] and ICP [37] have clearly failed. We believe
the main reason for failure of 4PCS is that it does
not take into account the correlation between each
set of 4 congruent points, and just computes optimal
alignment of sets. On the other hand, SuperMatch-
ing uses a global optimization scheme taking into
account all higher-order feature tuples at once to
compute the matching, as formulated by Eq. (1). The
transformation matrix computed by SuperMatching is
compared with the ground truth provided by [39] in
Table 1, demonstrating that our computed matrices for
matching I-II and I-III are close to the ground truth.
(The matrices are those needed to transform and align

TABLE 1
Transformation matrix comparison.

Computed matrix Ground truth
I 0.730 -0.005 -0.682 -127.6 0.707 -0.004 -0.707 -132.0

— -0.006 1.000 -0.016 -3.016 -0.012 1.000 -0.018 -3.300
II 0.693 0.021 0.700 -50.05 0.707 0.021 0.707 -54.10

0 0 0 1 0 0 0 1
I 0.005 -0.012 -0.995 -186.8 0.001 -0.022 -1.000 -187.7

— -0.014 1.003 -0.022 -4.769 -0.032 0.999 -0.022 -4.100
III 1.017 0.036 0.005 -176.6 1.000 0.032 0.000 -186.0

0 0 0 1 0 0 0 1

TABLE 2
The closest point-to-point standard RMS errors.

Shape pairs SuperMatching 4PCS [31] ICP [37] [21], [29]
Coati 0.410 0.589 1.231 0.457
Dragon 0.438 1.013 2.576 0.500
Rooster I-II 0.276 0.376 0.386 0.280
Rooster II-III 0.310 0.333 0.337 0.312

from II to I and III to I).

Estimation error was measured using the closest
point-to-point standard RMS error between the final
pairs. For these four pairs (Coati, Dragon, Rooster I-
II, Rooster II-III), Table 2 lists the RMS errors. Su-
perMatching outperforms 4PCS [31], ICP [37], [21],
and [29] when matching partial, noisy data.

Next, we used SuperMatching to build a complete
model from a set of scans from different viewpoints.
For these multiple scans, third-order matching was
first performed between each pair of consecutive
scans. After doing so, the alignment was refined
using the iterative closest point (ICP) algorithm [37].
Figure 5 illustrates the approach and shows the result.

5.2 3D Depth Scans with Color Information

We next provide a further real-world, noisy, exam-
ple of the use of SuperMatching. In this case, data
with surface color information was captured using a
Kinect camera [40]. Uniform samples and SIFT feature

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 8

II I

IIIII

Fig. 4. Pairwise alignment of Rooster I-II and II-III scans. From left to right: before alignment, our matching result,
our alignment result, and alignment results from 4PCS [31], ICP [37], [21], and [29].

I II III IV

VVIVIIVIII

ground truth

vs

final
alignment

Fig. 5. Alignment of several Rooster scans from differ-
ent viewpoints. Above: our final registered Rooster and
the ground truth [39]. Below: 8 partial scans, the dark
lines indicating the pairwise matching process.

Source shape

Target shape

Final alignment Pairwise Matching

Fig. 6. 3D real depth scans with color information,
captured using Kinect. Matching points are connected
by colored lines.

vectors were used as a basis for SuperMatching. This
resulted in robust matches, as illustrated in Figure 6.
(Source and target shapes are reversed, as the Kinect
device mirrors the input scene). There are no matching
points on the flat parts shown in white, as these lack
SIFT features and are filtered out before matching.

Fig. 7. Pairwise matching of an articulated Robot be-
tween two frames. Left: our matching. Right: registered
results produced by our approach and [42], side view;
red polygons indicate regions of large distortion.

5.3 3D Articulated Shape Synthetic Data

A further application is registration of approximately
articulated shapes. Such problems are common in dy-
namic range scanning such as human motion capture.
Given a sequence of range scans of a moving articu-
lated subject, our method automatically registers all
data to produce a complete 3D shape. Unlike many
other methods, we do not need manual segmentation,
markers, or a prior template. As shown by Figure 7,
SuperMatching provides robust, accurate matching,
even although the partial scans have holes and dif-
ferent poses.

Again uniformly sampled points were used. Registra-
tion of scans was performed by computing piecewise
rigid transformations between matches. Each triple
provides a single rigid transformation; we then used
the mean-shift algorithm to cluster the transforma-
tions [41]. These transformations may be propagated
from feature points to the entire set of points in each
scan using nearest neighbor interpolation. Figure 7
shows a registration example for an articulated model,
and in comparison a result produced by the method
in [42]. Our matching and registration results are more
accurate and plausible.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 9

5.4 Isometric Deformable Surfaces

We further matched SIFT points on images of de-
forming surfaces1 showing a cloth and a cushion. The
surface of the cloth underwent relatively smooth de-
formation, while the surface of the cushion included
sharp folds. This data comes with ground truth, which
allows quantitative verification of the accuracy of the
matches found. From each surface set we randomly
chose two frames before and after a large deformation.
We randomly chose 100 corresponding points on each
surface, using the provided ground truth.

We used the above input data as a basis for compar-
ison with a spectral algorithm [26] (a quadratic as-
signment algorithm), the third-order tensor algorithm
in [21], [29], and a hypergraph matching algorithm
[28], using the authors’ code in each case. All methods
were executed in Matlab using the PC configuration
previously given. To enable direct and fair compari-
son, [21], [29], [28] and SuperMatching used the same
potential and the same tensor size.

In these tests, SuperMatching considered 3× 106 fea-
ture tuples, while the methods in [21], [29] consid-
ered 10 × 106 tuples and the method of [28] used
4×106. The difference in tuple numbers mainly comes
from the sampling strategy, but we have the lowest
sampling cost. The extra sampling of [21], [29] rela-
tive to ours is because they have no supersymmetric
constraint on the sampling process, so about 2/3 of
their samples are redundant, and extra samples are
needed to make the comparison with our approach
fair. For similar reasons, we also used more tuples
to evaluate [28]. The average running time to match
two feature sets each with 100 features was around
8s for SuperMatching, 13s for [21], 6.5s for [28], and
5s for [26]. SuperMatching takes less time than the
third-order tensor algorithm [21], [29] both because
it uses fewer feature tuples and because of the more
efficient supersymmetric higher-order power iteration
solution.

Matching accuracy was assessed by the number of
correctly matched points (known from the ground
truth) divided by the total number of points that could
be matched. The results are summarised in Table 3
and illustrated in Figure 8. Table 3 demonstrates that
SuperMatching achieves a higher matching accuracy
than previous algorithms. The worst matching result
is produced by the spectral quadratic assignment
algorithm [26], due to the lower discriminatory power
of pairwise geometric constraints. Higher-order al-
gorithms perform better due to the more complex
geometric constraints. Nevertheless, SuperMatching
significantly outperforms other third-order algorithms
[21], [29] and the hypergraph matching algorithm [28].

1. From http://cvlab.epfl.ch/data/dsr/

Fig. 8. Matching results. Left: cloth set, matching
between frame 80 and 90, right: cushion set, matching
between 144 and 156. Top to bottom, spectral method
[26], hypergraph matching method [28], a third-order
tensor method [21], [29], and SuperMatching.

TABLE 3
Accuracy of deformable surface matching.

Dataset cloth cushion
Matching F80- F90- F95- F100- F144- F156- F165- F172- Time
frames F90 F95 F100 F105 F156 F165 F172 F188
Ours 83% 85% 84% 81% 66% 60% 69% 56% 8s
[28] 73% 79% 70% 72% 44% 39% 54% 43% 6.5s
[21], [29] 67% 77% 73% 65% 39% 31% 47% 42% 13s
[26] 27% 29% 22% 27% 14% 5% 28% 7% 5s

5.5 Image matching under affine transformation

Previous examples used third-order potentials (N =
3), and as we show here, higher order potentials
(N > 3) offer more accurate matching at the cost
of extra running time. Matching images related by
an affine transformation is an important task, and
here a fourth-order potential function specific to this
particular matching application is appropriate.

Our new fourth-order potential φ4 is affine-invariant,
linking feature tuples with four features each. We use
affine invariance of the ratio between two closed areas
to define φ4 (see Fig. 9 top-left) as:

φ4(i1, i2, i3, i4) = φ4({p1, q1}, {p2, q2}, {p3, q3}, {p4, q4})
= exp(−1/ε2

∑
(l,l′)
‖αl − αl′‖

2) (8)

where {αl}4l=1 and {α′l}4l′=1
are the ratios between

the area of one triangle formed by three feature
points and the area of the quadrilateral formed by
all four feature points, so α1 = S4p1p2p3/S�p1p2p3p4

,
α2 = S4p2p3p4/S�p1p2p3p4

, α3 = S4p1p3p4/S�p1p2p3p4
,

α4 = S4p1p2p4/S�p1p2p3p4
, and similarly for the other

quadrilaterals.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 10

1p

2p
3p

4p
1q

2q
3q

4q

Fig. 9. Higher-order image matching under affine
transformation. Top-left: construction of fourth-order
potential; Top-right: image 1 in wall set; features de-
tected by MSER shown in green, yellow points are
outliers. Middle, bottom: results using third and fourth
order matching.

We now use third- and fourth-order potentials to
evaluate our algorithm; for third-order we use the
potential function in Eq. (7) based on internal angle
invariance in 2D. We used the wall2 image set to
evaluate the matching accuracy of our method under
affine transformations. For the test images, we used
30 feature points detected by MSER [43] in the central
area of image 1 as feature set P1 (the green points
in Figure 9 top-right). In the test, the images were
taken from quite different viewpoints, leading to quite
different texture appearances, making it difficult to
match features just using an MSER or SIFT detector.
The results demonstrate that both third (Figure 9
middle) and fourth (Figure 9 bottom) methods pro-
duce a high matching accuracy as they take structural
information into account. However, the fourth-order
method is much more stable than third-order, at the
cost of higher computation time (about 6s vs 4s).

6 CONCLUSIONS

This paper has presented the SuperMatching algo-
rithm, which tackles the classic computer graphics
and computer vision problem of feature matching,
independently of feature description. It is an efficient

2. From http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html

higher-order matching algorithm which uses a com-
pact form of the higher-order supersymmetric affinity
tensor to express relatedness of features. Matching is
performed using an efficient power iteration method,
which takes advantage of supersymmetry and avoids
computing with zero elements. We also give an ef-
ficient sampling strategy for choosing feature tuples
to create the affinity tensor. Experiments on both
synthetic and real 2D and 3D data sets show that
SuperMatching has greater accuracy than competing
methods, whilst having competitive performance.

In future, we wish to further improve the performance
of the SuperMatching algorithm. Random sampling
could be executed in parallel. We also intend to apply
it to more challenging imperfect deformable 3D data
matching based on real captured data. SuperMatching
is applicable to many fields, as matching is a founda-
tion for many computer graphics and computer vision
applications.

APPENDIX
PROOF OF EQ.5 IN THE THIRD-ORDER CASE

∀(i1, i2, i3) ∈ θ3,

v
(k)
i1

=T3(i1, i2, i3)2v
(k−1)
i1

v
2(k−1)

i2
v
2(k−1)

i3

+ T3(i1, i3, i2)2v
(k−1)
i1

v
2(k−1)

i2
v
2(k−1)

i3

=φ3(i1, i2, i3)2v
(k−1)
i1

v
2(k−1)

i2
v
2(k−1)

i3

+ φ3(i1, i3, i2)2v
(k−1)
i1

v
2(k−1)

i2
v
2(k−1))

i3

=2φ3(i1, i2, i3)2v
(k−1)
i1

v
2(k−1)

i2
v
2(k−1)

i3
.

v
(k)
i2

=T3(i2, i1, i3)2v
(k−1)
i2

v
2(k−1)

i1
v
2(k−1)

i3

+ T3(i2, i3, i1)2v
(k−1)
i2

v
2(k−1)

i1
v
2(k−1)

i3

=φ3(i2, i1, i3)2v
(k−1)
i2

v
2(k−1)

i1
v
2(k−1)

i3

+ φ3(i2, i3, i1)2v
(k−1)
i2

v
2(k−1)

i1
v
2(k−1)

i3

=2φ3(i2, i1, i3)2v
(k−1)
i2

v
2(k−1)

i1
v
2(k−1)

i3
.

v
(k)
i3

=T3(i3, i1, i2)2v
(k−1)
i3

v
2(k−1)

i1
v
2(k−1)

i2

+ T3(i3, i2, i1)2v
(k−1)
i3

v
2(k−1)

i1
v
2(k−1)

i2

=φ3(i3, i1, i2)2v
(k−1)
i3

v
2(k−1)

i1
v
2(k−1)

i2

+ φ3(i3, i2, i1)2v
(k−1)
i3

v
2(k−1)

i1
v
2(k−1)

i2

=2φ3(i3, i1, i2)2v
(k−1)
i3

v
2(k−1)

i1
v
2(k−1)

i2
.

ACKNOWLEDGMENTS

We are grateful to Will Chang, Timothée Cour, Olivier
Duchenne, Misha Kazhdan, Niloy J. Mitra, and Ron
Zass, for sharing source code, executable programs,
and test data.

This work was supported by the Natural Science
Foundation of China (No. 61103084, 61272334).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 11

REFERENCES

[1] P. J. Besl and N. D. McKay, “A method for registration of 3-
d shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, pp. 239–256, 1992.

[2] W. Chang and M. Zwicker, “Global registration of dynamic
range scans for articulated model reconstruction,” ACM Trans-
actions on Graphics, vol. 30, pp. 26:1–26:15, 2011.

[3] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovs-
janikov, “Shape google: Geometric words and expressions
for invariant shape retrieval,” ACM Transactions on Graphics,
vol. 30, pp. 1:1–1:20, 2011.

[4] A. C. Berg, T. L. Berg, and J. Malik, “Shape matching and
object recognition using low distortion correspondence,” in
IEEE CVPR, pp. 26–33, 2005.

[5] T. Windheuser, U. Schlickwei, F. R. Schimdt, and D. Cremers,
“Large-scale integer linear programming for orientation pre-
serving 3d shape matching,” Computer Graphics Forum (Proc.
SGP), vol. 30, no. 5, pp. 1471–1480, 2011.

[6] B. J. Brown and S. Rusinkiewicz, “Global non-rigid alignment
of 3-d scans,” ACM Transactions on Graphics, vol. 26, 2007.

[7] Y. Pekelny and C. Gotsman, “Articulated object reconstruction
and markerless motion capture from depth video,” Computer
Graphics Forum (Proc. EuroGraphics), vol. 27, no. 2, pp. 399–408,
2008.

[8] M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh,
P. Jenke, L. Guibas, H.-P. Seidel, and A. Schilling, “Efficient
reconstruction of nonrigid shape and motion from real-time 3d
scanner data,” ACM Transactions on Graphics, vol. 28, pp. 15:1–
15:15, 2009.

[9] D. P. Huttenlocher and S. Ullman, “Recognizing solid objects
by alignment with an image,” International Journal of Computer
Vision, vol. 5, pp. 195–212, November 1990.

[10] V. G. Kim, Y. Lipman, and T. Funkhouser, “Blended intrinsic
maps,” in SIGGRAPH, pp. 79:1–79:12, 2011.

[11] A. E. Johnson and M. Hebert, “Using spin images for efficient
object recognition in cluttered 3d scenes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433–
449, 1999.

[12] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in International Conference of
Computer Vision, 2011.

[13] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A
survey on shape correspondence,” Computer Graphics Forum,
vol. 30, no. 6, pp. 1681–1707, 2011.

[14] A. Tevs, M. Bokeloh, M. Wand, A. Schilling, and H.-P. Seidel,
“Isometric registration of ambiguous and partial data,” in
IEEE CVPR, pp. 1185–1192, 2009.

[15] A. Tevs, A. Berner, M. Wand, I. Ihrke, and H.-P. Seidel,
“Intrinsic shape matching by planned landmark sampling,”
Computer Graphics Forum, vol. 30, no. 2, pp. 543–552, 2011.

[16] M. Ovsjanikov, Q. Mrigot, F. Mmoli, and L. Guibas, “One point
isometric matching with the heat kernel,” Computer Graphics
Forum (Proc. SGP), vol. 29, no. 5, pp. 1555–1564, 2010.

[17] Y. Lipman and T. Funkhouser, “Möbius voting for surface
correspondence,” ACM Transactions on Graphics (Proc. SIG-
GRAPH), vol. 28, pp. 72:1–72:12, 2009.

[18] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years
of graph matching in pattern recognition,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 18, no. 3,
pp. 265–298, 2004.

[19] M. Leordeanu and M. Hebert, “A spectral technique for cor-
respondence problems using pairwise constraints,” in Interna-
tional Conference of Computer Vision, pp. 1482–1489, 2005.

[20] Y. Zeng, C. Wang, Y. Wang, X. Gu, D. Samaras, and N. Para-
gios, “Dense non-rigid surface registration using high-order
graph matching,” in IEEE CVPR, pp. 382–389, 2010.

[21] O. Duchenne, F. Bach, I. Kweon, and J. Ponce, “A tensor-based
algorithm for high-order graph matching,” in IEEE CVPR,
pp. 1980–1987, 2009.

[22] A. Wang, S. Li, and L. Zeng, “Multiple order graph matching,”
in Asian Conference on Computer Vision, pp. 471–482, 2010.

[23] E. Kofidis and P. A. Regalia, “On the best rank-1 approxima-
tion of higher-order supersymmetric tensors,” SIAM Journal
on Matrix Analysis and Applications, vol. 23, no. 3, pp. 863–884,
2002.

[24] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
pp. 91–110, 2004.

[25] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably
informative multi-scale signature based on heat diffusion,” in
Symposium on Geometry Processing, pp. 1383–1392, 2009.

[26] T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,”
in NIPS, pp. 313–320, 2006.

[27] H. Li, R. W. Sumner, and M. Pauly, “Global correspondence
optimization for non-rigid registration of depth scans,” Com-
puter Graphics Forum (Proc. SGP), vol. 27, no. 5, pp. 1421–1430,
2008.

[28] R. Zass and A. Shashua, “Probabilistic graph and hypergraph
matching,” in IEEE CVPR, pp. 1–8, 2008.

[29] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, “A tensor-
based algorithm for high-order graph matching,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33,
pp. 2383–2395, 2011.

[30] M. Chertok and Y. Keller, “Efficient high order matching,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, pp. 2205–2215, 2010.

[31] D. Aiger, N. J. Mitra, and D. Cohen-Or, “4-points congruent
sets for robust pairwise surface registration,” ACM Transactions
on Graphics, vol. 27, no. 3, 2008.

[32] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[33] F. L. Hitchcock, “The expression of a tensor or a polyadic as
a sum of products,” Journal of Mathematics and Physics, vol. 6,
pp. 064–089, 1927.

[34] L. D. Lathauwer, P. Comon, B. D. Moor, and J. Vande-
walle, “Higher-order power method,” in Proceedings of NOLTA,
pp. 2709–2712, 1995.

[35] P. A. Regalia and E. Kofidis, “The higher-order power method
revisited: convergence proofs and effective initialization,”
in Proceedings of the Acoustics Speech and Signal Processing,
pp. 2709–2712, IEEE Computer Society, 2000.

[36] G. Peyré, M. Péchaud, R. Keriven, and L. D. Cohen, “Geodesic
methods in computer vision and graphics,” Foundations and
Trends in Computer Graphics and Vision, vol. 5, pp. 197–397,
2010.

[37] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp
algorithm,” in 3DIM, pp. 145–152, IEEE Computer Society,
2001.

[38] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust
global registration,” in Symposium on Geometry processing, 2005.

[39] M. Chuang, L. Luo, B. J. Brown, S. Rusinkiewicz, and M. M.
Kazhdan, “Estimating the laplace-beltrami operator by re-
stricting 3d functions,” Computer Graphics Forum (Proc. SGP),
vol. 28, no. 5, pp. 1475–1484, 2009.

[40] Kinect, “Kinect homepage,” 2012. http://www.xbox.com/en-
US/kinect.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, JANUARY 2012 12

[41] N. J. Mitra, L. Guibas, and M. Pauly, “Partial and approximate
symmetry detection for 3d geometry,” ACM Transactions on
Graphics (SIGGRAPH), vol. 25, no. 3, pp. 560–568, 2006.

[42] W. Chang and M. Zwicker, “Range scan registration using
reduced deformable models,” Computer Graphics Forum (Proc.
Eurographics), vol. 28, no. 2, pp. 447–456, 2009.

[43] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-
baseline stereo from maximally stable extremal regions,” Image
and Vision Computing, vol. 22, no. 10, pp. 761–767, 2004.

Zhi-Quan Cheng received a BSc, MSc, and
PhD degree from Computer School at Na-
tional University of Defense Technology in
2000, 2002 and 2008, respectively. He is
lecturer at the PDL Laboratory, Computer
School, National University of Defense Tech-
nology (NUDT), and the leader of visual com-
puting team at NUDT. His research interests
include computer graphics, and digital geom-
etry processing.

Yin Chen received a BSc and MSc degree
from Computer School at National University
of Defense Technology in 2008 and 2010,
respectively. He is a Ph.D student, Com-
puter School, National University of Defense
Technology (NUDT). His research interests
include computer graphics, and digital geom-
etry processing.

Ralph R. Martin Ralph R. Martin received
the PhD from Cambridge University in 1983,
with a dissertation on Principal Patches, and
since then, has worked his way up from a
lecturer to a professor at Cardiff University.
He has been working in the field of CADCAM
since 1979. He has published more than 170
papers and 10 books covering such topics
as solid modelling, surface modelling, intel-
ligent sketch input, vision based geometric
inspection, geometric reasoning and reverse

engineering. He is a fellow of the Institute of Mathematics and Its
Applications, and a member of the British Computer Society. He is
on the editorial boards of Computer Aided Design, Computer Aided
Geometric Design, the International Journal of Shape Modelling, the
International Journal of CADCAM, and Computer- Aided Design and
Applications. He has also been active in the organisation of many
conferences.

Yu-Kun Lai received his bachelors degree
and PhD degree in computer science from
Tsinghua University in 2003 and 2008, re-
spectively. He is currently a lecturer of visual
computing in the School of Computer Sci-
ence, Cardiff University, Wales, UK. His re-
search interests include computer graphics,
geometry processing, computer-aided geo-
metric design and computer vision.

Aiping Wang received a BSc, MSc, and PhD
degree from Computer School at National
University of Defense Technology in 2004,
2006 and 2011, respectively. He is lecturer
Computer School, National University of De-
fense Technology (NUDT). His research in-
terests include computer graphics and vision.

